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A B S T R A C T

An efficient and multicomponent method has been developed for the synthesis of functionalized

tricarboxamides at room temperature using CuI nanoparticles as catalyst. This method involved five-

component coupling reactions of Meldrum’s acid, isocyanides with aromatic aldehydes and amines at

room temperature. Atom economy, wide range of products, excellent yields in short time and mild

reaction conditions are some of the important features of this protocol. Notably, this catalyst could be

recycled and reused for several times without significantly decreasing the catalytic activity.

� 2013 Javad Safaei-Ghomi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights

reserved.
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1. Introduction

Multicomponent reactions (MCRs) have been proved to be an
efficient method to approach complex structures in a single
synthetic operation from simple building blocks. Advantages of
MCRs are high selectivity, high atom economy, and procedural
simplicity due to the formation of carbon–carbon or carbon–
heteroatom bonds in one pot [1,2]. Typically, purification of products
resulting from MCRs is also simple since all the organic reagents are
consumed and converted into the target products [3–7].

Isocyanide-based multi-component reactions (IMCRs) are
specifically interesting as they are more varied and versatile than
other MCRs [8,9]. Isocyanides in multi-component reactions
increase the diversity of available bond forming procedures,
functional group tolerance, and levels of stereo-, chemo-, and
regioselectivity. Therefore MCRs including isocyanides have
emerged as suitable tools for the synthesis of structurally varied
chemical libraries [10–12].

On the other hand, tricarboxamides and their analogs have
displayed a wide range of important bioactivities, such as anti-tumor
[13], anti-bacterial [14], anti-diabetic [15], neuroprotective [16] and
anti-carcinogenic properties [17]. Carboxamides segments have an
affinity to nucleic acids and cells, so their introduction into medicines
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can ease their interactions between cells and tissues and thereby
provides a vigorous strategy to produce novel drugs or compounds.

The diversity of the structures encountered, as well as their
pharmaceutical and biological relevance, has motivated research
purposed at the development of convenient and efficient synthetic
strategies, especially for the synthesis of substituted tricarbox-
amide scaffolds [18–22].

The chemical synthesis productivity can be increased by nano
sized catalysts because of small size and high surface to volume
ratios. Moreover, this productivity was improved by using
heterogeneous catalysts for their simplicity of separation [23–27].
Recently, it was reported that CuI nanoparticles as heterogeneous
catalysts offer huge opportunities for a wide range of applications in
chemical synthesis and chemical manufacturing procedures [28,29].

In continuation of our efforts to develop syntheses of various
biological compounds using reusable nano catalysts [30–32], we
report here the use of CuI nanoparticles catalyzed five-component
synthesis of tricarboxamides in mild conditions (Scheme 1).

2. Experimental

2.1. Preparation of copper iodide nanoparticles

The catalyst was prepared by ultrasonic irradiation. CuSO4 was
used as the Cu source. Firstly, the copper substrate (1 mmol) was
ultrasonically cleaned for 20 s in acetone followed by repeated
rinsing with distilled water. After drying, the substrate was dipped
slowly into a solution of KI (1 mmol) in 40 mL of distilled water and
. on behalf of Chinese Chemical Society. All rights reserved.
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Scheme 1. Synthesis of tricarboxamides using CuI nanoparticles as catalyst.

Table 1
Optimization of model reaction.

Entry Solvent/condition Catalyst (mol%) Time (h) Yield (%)a

1 MeCN/rt CuI (12%) 10 62

2 CH2Cl2/rt CuI (12%) 10 87

3 H2O/rt CuI (12%) 10 31

4 MeOH/rt CuI (12%) 10 88

5 EtOH/rt CuI (12%) 10 89

6 EtOH/reflux CuI (12%) 10 54

7 EtOH/rt None 9 82

8 EtOH/rt MgO (15%) 10 81

9 EtOH/rt InCl3 (20%) 10 85

10 EtOH/rt Nano CuI (1%) 4 94

11 EtOH/rt Nano CuI (2%) 4 98

12 EtOH/rt Nano CuI (3%) 4 98

a Isolated yields.
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sonicated to react for 30 min. When the reaction was completed,
gray precipitate was obtained. The solid was filtered and washed
with distilled water and dried.

To obtain a visual image of this catalyst, powder X-ray
diffraction (XRD) and scanning electron microscopy (SEM) was
carried out (see Figs. S1 and S2 in supporting information). As
shown in the XRD pattern, all reflection peaks can be readily
indexed to pure cubic crystal phase of nanocrystalline copper
iodide. Crystallite size of CuI has been found to be 20 nm, which
was calculated by the Debye-Scherrer equation (D = Kl/bcos u)
and confirmed by SEM. The increased surface area due to small
particle size increased reactivity. This factor is responsible for the
accessibility of the substrate molecules on the catalyst surface.

In addition, the specific surface area was measured by nitrogen
physisorption (the BET method), the specific surface area was
approximately 2.94 m2/g.

2.2. General procedure for the preparation of tricarboxamides (5a–r)

A solution of aldehyde (2 mmol), Meldrum’s acid (2 mmol), CuI
nanoparticles (2 mol%) and ethanol (4 mL) was stirred for 30 min.
Then, cyclohexyl isocyanide (2 mmol) and amine (4 mmol) was
added and vigorously stirred for the appropriate time (Table 1,
monitored by TLC). After completion of reaction, the solid was
filtered off and washed with chloroform. The residue was dissolved
in hot methanol and then filtered until the heterogeneous catalyst
was recovered. The filtrate solution was recrystallized to afford the
pure product in 89%–98% yield.

N2,N20-Bis(4-chlorophenyl)-N1-cyclohexyl-1-phenylethane-1,2,2-

tricarboxamide (5b): White solid; mp 309–311 8C, FT- IR (KBr,
cm�1): n 3280, 3262, 1681, 1643, 1607; 1H NMR (400 MHz, DMSO-
d6): d 1.11–1.62 (m, 10 H, 5CH2), 3.52 (s, 1H, NCH), 3.81 (d, 1H,
J = 11.2 Hz, CH), 4.14 (d, 1H, J = 11.2 Hz, CH), 6.99–7.51 (m, 13H,
Ar), 8.21 (brs, 1H, NH), 9.62 and 9.75 (2s, 2H, 2 NH); 13C NMR
(100 MHz, DMSO-d6): d 173.2, 168.6, 167.1, 151.6, 150.9, 147.3,
147.1, 129.7, 128.3, 126.1, 125.6, 124.5, 122.3, 121.9, 118.7, 62.5,
49.4, 46.2, 33.4, 33.1, 26.8. Anal. Calcd. for C29H29Cl2N3O3: C, 64.68;
H, 5.39; N, 7.81. Found: C, 63.77; H, 5.16; N, 7.93. MS (EI) (m/z): 537
(M+).

N2,N20-Bis(4-bromophenyl)-1-(4-chlorophenyl)-N1-cyclohexy-

lethane-1,2,2-tricarboxamide (5g): White solid; mp 314–318 8C, FT-
IR (KBr, cm�1): n 3287, 3265, 1680, 1646, 1611; 1H NMR (400 MHz,
DMSO-d6): d 1.13–1.57 (m, 10H, 5CH2), 3.55 (s, 1H, NCH), 3.79 (d,
1H, J = 11.4 Hz, CH), 4.17 (d, 1H, J = 11.3 Hz, CH), 7.06–7.68 (m,
12H, Ar), 8.19 (brs, 1H, NH), 9.63 and 9.77 (2s, 2H, 2 NH); 13C NMR
(100 MHz, DMSO-d6): d 173.4, 168.1, 167.5, 151.8, 151.2, 148.0,
147.8, 146.5, 129.2, 127.4, 125.9, 124.3, 122.7, 122.1, 118.6, 62.6,
49.8, 46.7, 33.5, 33.0, 27.0. Anal. Calcd. for C29H28Br2ClN3O3: C,
52.60; H, 4.23; N, 6.35. Found: C, 52.43; H, 4.16; N, 6.51. MS (EI) (m/
z): 659 (M+).

N2,N20-Bis(4-methoxyphenyl)-1-(4-nitrophenyl)-N1-cyclohexy-

lethane-1,2,2-tricarboxamide (5i): Yellowish solid; mp 323–325 8C,
FT-IR (KBr, cm�1): n 3288, 3268, 1682, 1650, 1617; 1H NMR
(400 MHz, DMSO-d6): d 1.10–1.58 (m, 10H, 5CH2), 3.59 (s, 1H,
NCH), 3.82 (d, 1H, J = 9.7 Hz, CH), 4.18 (d, 1H, J = 9.7 Hz, CH), 7.02–
7.64 (m, 12H, Ar), 8.12 (brs, 1H, NH), 9.60 and 9.74 (2s, 2H, 2 NH);
13C NMR (100 MHz, DMSO-d6): d 173.2, 168.6, 167.1, 150.6, 149.8,
148.7, 145.4, 145.1, 129.9, 126.7, 125.4, 124.1, 122.9, 121.6, 118.5,
63.7, 50.1, 46.9, 33.7, 33.4, 26.4. Anal. Calcd. for C31H34N4O7: C,
64.81; H, 5.92; N, 9.76. Found: C, 64.55; H, 5.72; N, 9.94. MS (EI) (m/
z): 574 (M+).

N1-tert-Butyl-N2,N20-bis(4-chlorophenyl)-1-phenylethane-1,2,2-

tricarboxamide (5k): White solid; mp 317–319 8C, FT-IR (KBr,
cm�1): n 3301, 3287, 1678, 1647, 1636; 1H NMR (400 MHz, DMSO-
d6): d 1.18–1.27 (s, 9H, 3CH3), 3.77 (d, 1H, J = 10.5 Hz, CH), 4.19 (d,
1H, J = 10.6 Hz, CH), 7.09–7.63 (m, 13H, Ar), 8.32 (s, 1H, NH), 9.58
and 9.79 (2s, 2H, 2 NH); 13C NMR (100 MHz, DMSO-d6): d 173.4,
168.1, 166.9, 151.2, 151.0, 147.6, 147.1, 129.8, 128.1, 125.9, 125.5,
124.8, 122.8, 121.7, 119.2, 62.1, 49.6, 46.3, 29.9. Anal. Calcd. for
C27H28Cl2N3O3: C, 64.62; H, 5.18; N, 7.88. Found: C, 63.65; H, 5.11;
N, 7.98. MS (EI) (m/z): 511 (M+).

N1-tert-Butyl-N2,N20-bis(4-bromophenyl)-1-(4-chloropheny-

l)ethane-1,2,2-tricarboxamide (5p): Yellowish solid; mp 320–
322 8C, FT- IR (KBr, cm�1): n 3296, 3258, 1688, 1651, 1617; 1H
NMR (400 MHz, DMSO-d6): d 1.21–1.29 (s, 9H, 3CH3), 3.81 (d, 1H,
J = 11.0 Hz, CH), 4.16 (d, 1H, J = 10.9 Hz, CH), 7.09–7.73 (m, 12H,
Ar), 8.16 (s, 1H, NH), 9.68 and 9.81 (2s, 2H, 2 NH); 13C NMR
(100 MHz, DMSO-d6): d 173.7, 167.8, 167.1, 151.9, 151.0, 148.3,
147.5, 146.2, 128.8, 127.5, 126.3, 124.8, 123.1, 122.0, 118.9, 62.7,
50.1, 46.3, 29.2. Anal. Calcd. for C27H27Br2ClN3O3: C, 51.03; H, 4.18;
N, 6.61. Found: C, 52.37; H, 4.12; N, 6.48. MS (EI) (m/z): 633 (M+).

N1-tert-Butyl-N2,N20-bis(4-methoxyphenyl)-1-(4-nitropheny-

l)ethane-1,2,2-tricarboxamide (5r): Yellowish solid; mp 329–
331 8C, FT-IR (KBr, cm�1): n 3296, 3271, 1690, 1664, 1621; 1H
NMR (400 MHz, DMSO-d6): d 1.20–1.32 (s, 9H, 3CH3), 3.86 (d, 1H,
J = 8.1 Hz, CH), 4.22 (d, 1H, J = 8.1 Hz, CH), 7.05–7.61 (m, 12H, Ar),
8.11 (s, 1H, NH), 9.57 and 9.76 (2s, 2H, 2 NH); 13C NMR (100 MHz,
DMSO-d6): d 172.6, 168.9, 167.3, 151.1, 149.6, 148.8, 145.2, 145.1,
129.4, 126.3, 125.1, 124.5, 123.3, 121.2, 118.7, 63.9, 50.4, 46.7, 29.5.
Anal. Calcd. for C29H33N4O7: C, 63.49; H, 5.88; N, 10.21. Found: C,
64.11; H, 5.78; N, 9.95. MS (EI) (m/z): 548 (M+).

3. Results and discussion

In our initial experiments, the model reaction conditions were
established based on the reactions between benzaldehyde
(2 mmol), 4-chloroaniline (4 mmol), cyclohexyl isocyanide
(2 mmol) and Meldrum’s acid (2 mmol) in different solvents and
catalysts. This reaction was carried out using the aprotic (Table 1,
entries 1 and 2) and protic solvents (Table 1, entries 3–5). The best
result was obtained in ethanol (Table 1, entry 5). Next, we studied
the model reaction in ethanol at different temperatures (Table 1,



Fig. 1. TEM images of nano CuI before used (a), after four uses (b).
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entries 5 and 6). The maximum yield was obtained at room
temperature (Table 1, entry 5). The model reaction in ethanol at
room temperature was also studied in absence of catalyst and
using other types of catalysts (Table 1, entries 6–12). Although in
the absence of catalyst, the reaction was carried out but in the
presence of CuI nanoparticle we observed higher yield of product
in shorter time (Table 1, entry 7). We believe that nano copper
iodide surface chemistry plays an important role in this reaction.
The best results were obtained with 2 mol% of nano CuI (Table 1,
entry 11).

The same reaction was carried out many times in a row to check
the reusability of catalyst. The catalyst could be reused four times
with a minimal loss of activity (see Fig. S3 in supporting
information). The characterization of the nano CuI before used
and after four times reused, showed the same particle size by TEM
(Fig. 1.). Interestingly, the shape and size of the nanoparticles
remained the same before and after the reactions. We believe that,
this is also the possible reason for the extreme stability of the CuI
nanoparticles presented herein.

We have shown this reaction is possible under similar
conditions with a wide range of aromatic aldehydes, amines,
Table 2
Synthesis of tricarboxamides using CuI nanoparticles.a

Entry R1 R2 R3 Product Time (h) Yield (%)b

1 H H Cyclohexyl 5a 4 97

2 H 4-Cl Cyclohexyl 5b 3 98

3 H 2-Me Cyclohexyl 5c 4 94

4 4-NO2 H Cyclohexyl 5d 4 95

5 4-Br H Cyclohexyl 5e 3 96

6 4-Me H Cyclohexyl 5f 4 93

7 4-Cl 4-Br Cyclohexyl 5g 5 93

8 2-Cl 4-Me Cyclohexyl 5h 6 92

9 4-NO2 4-OMe Cyclohexyl 5i 6 91

10 H H Tert-butyl 5j 4 95

11 H 4-Cl Tert-butyl 5k 4 97

12 H 2-Me Tert-butyl 5l 5 94

13 4-NO2 H Tert-butyl 5m 5 93

14 4-Br H Tert-butyl 5n 4 95

15 4-Me H Tert-butyl 5o 4 92

16 4-Cl 4-Br Tert-butyl 5p 5 91

17 2-Cl 4-Me Tert-butyl 5q 5 90

18 4-NO2 4-OMe Tert-butyl 5r 5 89

a Reaction and conditions: aldehyde/Meldrum’s acid/isocyanide and

amine = 2:2:2:4, 2 mol% nano CuI, EtOH; rt.
b Isolated yield.
and isocyanides. Three substituents in the products could be varied
freely of each other. The results were summarized in Table 2.

Aromatic aldehydes and amines possessing both electron-
withdrawing and electron-donating substituents were converted
into the corresponding tricarboxamides in good yields. In fact, the
reaction was carried out well with all aldehydes and amines.
However, aromatic aldehydes with low steric hindrance, and
amines involving withdrawing groups showed excellent reactivity
in this approach. Using benzaldehyde, 4-chloroaniline and
cyclohexyl isocyanide gave the best yield (98%).

A proposed mechanism for this five-component reaction was
outlined in Scheme 2 [19]. The first step of this reaction could be
considered as nano CuI catalyzed Knoevenagel condensation
between aldehyde 1 and Meldrum’s acid 2 to afford intermediate
6. Then 6 reacted with cyclohexyl isocyanide 3 following by a [1+4]
cycloaddition, to give iminolactone 7 [33,34].

It was known that acylated Meldrum’s acid readily was
transformed into b-ketoamide by aminolysis [35]. Correspondingly,
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Scheme 2. Possible mechanism for the formation of tricarboxamides.
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it was reasonable to assume that the reaction of iminolactone with
amine leaded to produce vinylogous carbonate 8. Subsequently, in
the presence of CuI, 8 reacted with another molecule of amine to
afford product 5 after losing acetone.

4. Conclusion

In conclusion, we have demonstrated an efficient, clean, and
one-pot procedure for the synthesis of tricarboxamides via five-
component coupling of Meldrum’s acid, isocyanides with aromatic
aldehydes and amines over the high surface area of nano CuI as
catalyst at room temperature. Wide range of products, mild
reaction conditions, excellent yields of the products, reduced time
of reaction, and a recyclable catalyst are advantages of this
procedure over the previous reported ones.
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