Tetrahedron 69 (2013) 570-576

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of 5-arylamino-1-arylpyrazoles from 5-aminopyrazoles with arylhalides via CuI catalyzed Ullman coupling reaction

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

En-Chiuan Chang^b, Chun-Yen Chen^{b,1}, Li-Ya Wang^c, Yu-Ying Huang^a, Mou-Yung Yeh^{b,*}, Fung Fuh Wong^{a,*}

^a Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan, ROC
^b Department of Chemistry, National Cheng Kung University, No. 1, Ta Hsueh Rd., Tainan 70101, Taiwan, ROC
^c The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan, ROC

ABSTRACT

ARTICLE INFO

Article history: Received 6 September 2012 Received in revised form 30 October 2012 Accepted 6 November 2012 Available online 14 November 2012

Keywords: Cross-coupling reaction 5-Amino-pyrazoles 5-Mono-N-substituted aminopyrazoles Amination Copper iodide

1. Introduction

Numerous compounds containing 1-*N*-arylpyrazole moiety have been shown to exhibit antihyperglycemic, analgesic, antiinflammatory sedative, and hypnotic activities.^{1–3} 5-Alkyl/arylamino substituted pyrazoles have been exploited in the design of pharmaceuticals and agrochemical agents exhibiting a range of biological activities.^{2,4–6} Several previous literature were reported for the synthesis of 1-aryl-5-*N*,*N*-disubstituted aminopyrazoles by means of the cyclization of hydrazines with β -ketoamides,^{5d,6,7} the defined starting precursors containing the hydrazones with an electron withdrawing group,^{5b,8} or the pre-generated 2-oxocarbothioamides (β -ketothioamides).⁹ However, a few methods could provide the satisfactory reaction conditions for the preparation of the 5-arylamino-1-arylpyrazoles. Herein, we reported an efficient method for the synthesis of 5-arylamino-1-arylpyrazoles derivatives, of which analogues are known selective COX-2 inhibitors.^{2,10} via Cul-catalyzed Ullman coupling reaction.

Introduction of nitrogen functionalities on aromatic rings has been one of the main topics in organic synthesis due to compounds

* Corresponding authors. E-mail address: wongfungfuh@yahoo.com.tw (F.F. Wong).

containing aromatic C(sp²)–N bonds possess various important pharmacologically activities.¹¹ Many metal-catalyzed aryl amination methods were reported by using palladium catalyst and phosphine ligand ^{11–13} or copper iodide and salicylic amide derivatives or proline.^{14–16} However, most of methods were performed in the amination of aryl compounds. That we provided the new development of a novel 5-amino-pyrazoles amination catalyzed by Cul, K₂CO₃, and 1,10-phenanthroline for efficient synthesis of 5-arylamino-1-arylpyrazole derivatives in this study was due to the copper-mediated reactions are significantly superior to the conventional palladium-mediated reactions.¹⁷

2. Result and discussion

An efficient method for synthesis of 5-arylamino-1-arylpyrazoles was developed by Ullman coupling

reaction of 5-aminopyrazoles and arylhalides in the presence of cuprous iodide (CuI) as the catalyst. The

corresponding 5-N-arylaminopyrazole products were obtained in good yields (>65%).

The 5-aminopyrazoles **1–13** were prepared as the starting substrates by following our previous published procedure via cyclodehydration and dehydrogenation in the neat condition.¹⁸ In this newly developed method, we chose 3-phenyl-1-(pyridin-2-yl)-1*H*-pyrazol-5-amine (**1**)¹⁸ as the model for the selection of best condition for the Cul-catalyzed Ullman coupling reaction (see Scheme 1). To search for the optimum conditions and establish a reproducible procedure, we firstly investigated the ligand effect. Compound **1** was allowed to react with phenyl iodide (PhI), K₂CO₃, and the various ligands including L-proline, DMEDA, pyrozole-2-COOH, *N*-methylglycine, and 1,10-phenanthroline in the presence

¹ The contribution equal to first author.

of the catalytic amount of Cul (0.10 equiv) at 70 °C for 1.0 h in DMF. Following the experimental results, we found that the use of 0.10 equiv of 1,10-phenanthroline as the ligand in DMF provided the best result to give the corresponding product **14** in 84% yield (see entries 1–5 of Table 1). Consequently, we explored the cross-coupling reaction by modifying the polarity of aprotic polar solvents, such as DMF, DMSO, and DMAC. Based on the result, the 0.10 equiv of 1,10-phenanthroline in DMF solution can be considered as the best suitable ligand and solvent system (see entry 5–7 of Table 1).

Table 1

The result of optimization studies

Entry	Ligand	Solvent	Base	Yields ^{a,b} (%) of compound 14
1	L-Proline	DMF	K ₂ CO ₃	62
2	DMEDA	DMF	K ₂ CO ₃	77
3	Pyrozole-2-COOH	DMF	K ₂ CO ₃	74
4	N-Methylglycine	DMF	K ₂ CO ₃	16
5	1,10-Phenanthroline	DMF	K ₂ CO ₃	84
6	1,10-Phenanthroline	DMSO	K ₂ CO ₃	52
7	1,10-Phenanthroline	DMAC	K ₂ CO ₃	34
8	1,10-Phenanthroline	DMF	Li ₂ CO ₃	34
9	1,10-Phenanthroline	DMF	Na ₂ CO ₃	39
10	1,10-Phenanthroline	DMF	Cs ₂ CO ₃	43
11	1,10-Phenanthroline	DMF	t-BuOK	60
12	1,10-Phenanthroline	DMF	NaOMe	55
13	1,10-Phenanthroline	DMF	NaHCO ₃	54
14	1,10-Phenanthroline	DMF	K ₃ PO ₄	72
15	1,10-Phenanthroline	DMF	_	Non-detectable

^a Compound **1** (1.0 mmol, 1.0 equiv), PhI (1.0 mmol, 1.0 equiv), and various bases (1.2 mmol, 1.2 equiv) and ligands (0.10 mmol, 0.10 equiv) with catalytic amount CuI (0.10 mmol, 0.10 equiv) in aprotic polar solvents at 70 °C for 1.0 h under nitrogen gas.

^b The isolated yields were determined by column chromatography on silica gel.

with column chromatography on silica gel, the desired 5-N-monoarvlamino substituted pyrazole 14 was isolated as solids (entries 5 and 8–12 of Table 1). Among of bases, we found that the use of potassium phosphate (K_3PO_4) and potassium carbonate (K_2CO_3) gave the better results in 72% and 84% yields, respectively (see entries 5 and 14 of Table 1). Yields of the desired 5-arylamino-1arylpyrazole 14 after 1.0 h were substantially decreased when using potassium, sodium, and lithium carbonate salts (entries 5 and 8–9 of Table 1). However, low yield was also observed with Cs₂CO₃ (entry 10 of Table 1). Conditions using other bases, such as sodium bicarbonate (NaHCO₃), potassium tert-butoxide (t-BuOK), or without bases resulted in only poor result (entries 11 and 13-15 of Table 1). Based on these optimizations, we finally decided to choose the combination of CuI, 1,10-phenanthroline, and K₂CO₃ in DMF as the standard conditions for the metal catalyzed cross-coupling reaction of 5-arylamino-1-arylpyrazoles in the following studies.

In this reaction, the reliable procedure involved the treatment of 5-amino-pyrazole substrates, aryl halide, and K₂CO₃ using 0.10 equiv of catalytic amount CuI and 1,10-phenanthroline ligand in anhydride DMF at 70 or 140 °C for more than 1.0 h (see Scheme 2). For investigation of the reactivity of different phenyl halide substrates, the amination reaction was performed with phenyl chloride, bromide, and iodide, and tolvl iodide. After comparing the results, we found that the use of phenyl and tolyl iodides were obviously better than the use of phenyl bromide and chloride (entries 1-4 of Table 2). For phenyl chloride, reaction was incomplete even after 7.0 h at 140 °C (entry 1 of Table 2). These results were consistent with the literature amination order.¹⁸ Application of same cross-coupling reaction conditions to 3-p-methylphenyl-1-(pyridin-2-yl)-1H-pyrazol-5amine **2**, 3-*p*-methoxylphenyl -1-(pyridin-2-yl)-1*H*-pyrazol-5amine **3**, and 3-tert-butyl-1-(pyridin-2-yl)-1H-pyrazol-5-amine **4** with various of aryl iodine, including PhI, tolyl iodine, and pmethoxylphenyl iodine also gave the corresponding products 16-18 in good yields (80-93%, entries 5-7 of Table 2).

We knew that the appropriate choice of base might be important for the cross-coupling reaction. Thus, we treated an anhydrous DMF solution of 3-phenyl-1-(pyridin-2-yl)-1*H*-pyrazol-5-amine (**1**) and Phl with catalytic amount of Cul and 1,10-phenanthroline in the presence of 1.2 equiv of different bases, including lithium, sodium, cesium and potassium carbonate (Li₂CO₃, Na₂CO₃, Cs₂CO₃ and K₂CO₃), potassium *tert*-butoxide (*t*-BuOK), sodium methoxide (NaOMe), sodium bicarbonate (NaHCO₃) and potassium phosphate (K₃PO₄) at 70 °C for 1.0 h. After normal work-up and purification The synthetic strategy was applicable to 3-*p*-totyl-1-(quinolin-2-yl)-1*H*-pyrazol-5-amine **5** with phenyl chloride, bromide, and iodide to afford the desired amination products **18** in 23%, 77%, and 96% yields, respectively (see entries 8–10 of Table 2). Although phenyl bromide and chloride were also successfully coupled by using the Cul/L catalyst system, higher temperatures (>100 °C) and long reaction times were required. For further demonstration of the reactivity of phenyl halides, 3-(4-methoxyphenyl)-1-(quinolin-2-yl)-1*H*-pyrazol-5-amine **6**, 3-*tert*-butyl-1-(quinolin-2-yl)-1*H*-

Table 2 The result of CuI catalyze	ed Ullman couț	oling reaction of 5-	aminopyrazoles with	n arylhalic	les	
						-

Entry	5-Aminopyrazoles		ArX	Reaction	time & temperature	Products		Yields ^{a,b} (%)
				h	°C			
1		1	PhCl	48	140		14	_
2	$ \begin{array}{c} & NH_2 \\ & & N \\ & & N \\ & & Ph \end{array} $	1	PhBr	7	70	$ \begin{array}{c} \underset{N}{\overset{HN'}{\underset{N}{\overset{Ph}{\underset{N}{\overset{HN'}{\overset{Ph}{\underset{N}{\overset{HN'}{\overset{Ph}{\underset{N}{\overset{HN'}{\overset{Ph}{\underset{N}{\overset{HN'}{\overset{Ph}{\underset{N}{\overset{HN'}{\overset{Ph}{\underset{N}{\overset{HN'}{\overset{Ph}{\underset{N}{\overset{HN'}{\overset{HN'}{\overset{Ph}{\underset{N}{\overset{HN'}}{\overset{HN'}{\overset{HN}{\overset{HN'}{\overset{HN'}{\overset$	14	75
3		1	PhI	4	70	$ \underset{N \to N}{\overset{HN'}{\overset{Ph}{\underset{N \to N}{\overset{Ph}{\underset{N \to N}{\underset{N}{N}{\underset{N}{N}{\underset{N}{N}}{\overset{Ph}{\underset{N}{N}{N}{N}{\overset{Ph}{N}{N}{N}{N}{N}}{N}}}}}}}}}}}}}}}}}}$	14	91
4	NH_2 N N N N N	1	Tolyl—I	3	70	$ \underset{N}{\overset{HN}{\longrightarrow}} \underset{N=}{\overset{P-Me-Ph}{\underset{N=}{\overset{HN}{\longleftarrow}}} } $	15	84
5	NH ₂ N N p-Me-Ph	2	Tolyl—I	2	70	HN ^{-P-Me-Ph} N P-Me-Ph	16	93
6	NH ₂ N N P-OMe-Ph	3	p-OMe-Ph-I	1	70	$ \underset{N \to N}{\overset{HN^{-p}-\text{OMe-Ph}}{\underset{N \to N}{\longleftarrow}}} $	17	80
7	$ \underbrace{ \bigvee_{N=N}^{NH_2}}_{p-OMe-Ph} $	3	p-NO ₂ -Ph-I	>3	70	c	_	c
8	NH ₂ N N P-OMe-Ph	3	p-NO ₂ -Ph-Br	>7	70	c	_	c
9	$ \underbrace{ \bigvee_{N \in \mathcal{N}} NH_2}_{N \in \mathcal{N}} \underbrace{ \bigvee_{t \in \mathcal{B}u} NH_2}_{t \in \mathcal{B}u} $	4	PhI	3	70	$ \underset{N}{\overset{HN}{\longrightarrow}} \underset{N=}{\overset{Ph}{\underset{h=0}{\overset{HN}{\overset{h}{\underset{h=0}{\overset{h}{\underset{h}{\underset{h=0}{\overset{h}{\underset{h}{\underset{h}{\underset{h}{\underset{h}{\underset{h=0}{\overset{h}{\underset{h}{\underset{h}{\underset{h=0}{\overset{h}{\underset{h}{\underset{h}{\underset{h}{\atoph}{\underset{h}{\underset{h}{\underset{h}{$	18	86
10	NH2 NNN p-Me-Ph	5	PhCl	12	140	HN ^{-Ph} N N p-Me-Ph	19	23
11	NH2 N N p-Me-Ph	5	PhBr	5	70	HN ^{-Ph} N N p-Me-Ph	19	77
12	NH2 N N p-Me-Ph	5	Phl	3	70	HN ^{-Ph} N p-Me-Ph	19	96
13	NH ₂ N N p-OMe-Ph	6	PhCl	22	140	HN ^{-Ph} N N P-OMe-Ph	20	21

Table 2 (continued)

Entry	ntry 5-Aminopyrazoles		ArX	Reaction til	me & temperature	Products		Yields ^{a,b} (%)
				h	°C			
14	NH2 N N p-OMe-Ph	6	PhBr	3	70	HN'Ph N N p-OMe-Ph	20	68
15	NH2 N N p-OMe-Ph	6	PhI	3	70	HN ^{'Ph} N N p-OMe-Ph	20	94
16	NH2 N N t-Bu	7	PhCl	48	140	HN ² Ph N N t-Bu	21	17
17	NH2 N N t-Bu	7	PhBr	24	70	HN ^{2Ph} N N t-Bu	21	73
18	NH2 NNH2 t-Bu	7	PhI	22	70	HN ^{Ph} N N t-Bu	21	95
19	NH2 N N N Ph	8	Tolyl—I	3	70	$ \underset{N = V_{Ph}}{\overset{HN}{\xrightarrow{\rho-Me-Ph}}} $	22	90
20	NH2 N p-Cl-Ph	9	Tolyl—I	3	70	HN ^{-p-Me-Ph} N N p-Cl-Ph	23	86
21		10	PhI	30	70	$ \underset{N = }{\overset{HN}{\overset{Ph}{\underset{N = }{\overset{Ph}{\underset{Ph}{\overset{Ph}{\underset{N = }{\overset{Ph}{\underset{N = }{\overset{Ph}{N = }{\overset{Ph}{\underset{N =}{}}{\overset{Ph}{\underset{N = }{\overset{Ph}{\underset{N = }{}}{\overset{Ph}{\underset{N }{}}{\overset{Ph}{\underset{N }{}}{\overset{Ph}{\underset{N }{}}{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	24	78
22		11	PhI	36	70		25	72
23	MeO-V-N-V-N-V-N-V-N-V-N-V-N-V-N-V-N-V-N-V-	12	PhI	2	70	MeO-	26	88
24	O ₂ N NH ₂ N N Ph	13	Tolyl—I	36	70		27	65

^a 5-Amino-pyrazole substrates **1–13** (1.0 mmol, 1.0 equiv), arylhalides (PhCl, PhBr, Phl, *p*-MeO-Phl, or tolyl iodide, 1.0 mmol, 1.0 equiv), and K₂CO₃ (1.2 mmol, 1.2 equiv) with catalytic amount Cul (0.10 mmol, 0.10 equiv) and 1,10-phenanthroline (0.10 mmol, 0.10 equiv) in DMF at 70 or 140 °C within 1–48 h under nitrogen gas. ^b The isolated yields were performed by column chromatography on silica gel.

^c Non-detectable.

pyrazol-5-amine **7** were allowed to react with phenyl halides (PhCl, PhBr, and PhI) under the same reaction conditions. Following the experimental results, the similar reactive tendency of phenyl halides (PhI>PhBr>>PhCl) were detected in the newly developed Ullman coupling amination (see the entries 11–16 of Table 2). When employing 3-phenyl-1-(quinolin-2-yl)-1*H*-pyrazol-5-amine **8** and 3-*p*-chlorophenyl-1-(quinolin-2-yl)-1*H*-pyrazol-5-amine **9** as the reactant to treat with tolyl iodine, a good to excellent yields were also achieved (90% and 86%, entry 17–18 of Table 2).

On the other hand, we extended the new developed coupling amination to 1-aryl-3-phenyl-5-amino-1*H*-pyrazoles **10–13**, bearing various *N*-1 substituents including Ph, *m*-Cl–Ph, *m*-NO₂Ph, and *p*-OMePh. The corresponding 5-arylamino-1-aryl-3-phenyl-pyrazole products **24–27** were obtained in good yields (65–88%, entries 19–22 in Table 2). All 5-mono-*N*-substituted aminopyrazole Products **14–27** were fully characterized by spectroscopic methods and consistent with the literature data. Served as an example, compound **14** presented a peak at δ 6.41 ppm for ¹H–C= in C-4 position of pyrazole ring in ¹H NMR. In ¹³C NMR spectrum, compound **14** possessed characterization absorptions at δ 87.30 ppm for sp² carbon ¹³C–H and at δ 146.80 ppm for imine carbon N=¹³C in pyrazole ring. The IR absorptions of **14** showed peaks at 3215 cm⁻¹ for the stretching of the –NH group.

3. Conclusion

In conclusion, we have successfully developed a new crosscoupling method for the synthesis of 5-arylamino-1-arylpyrazoles using 1,10-phenanthroline as the ligand and CuI as catalyst. This methodology can applicable to the wide range of *N*-1 substituted aryl, pyridin-2-yl, isoquinolinyl or C-3 substituted aryl and *tert*butyl of 5-amino-pyrazole substrates to give the corresponding 5arylamino-1-arylpyrazole products in good yields.

4. Experimental section

4.1. General procedure for the CuI catalyzed cross-coupling reaction of primary 5-amino-pyrazoles

A 5-amino-pyrazole substrates (1.0 mmol, 1.0 equiv), arylhalides (PhCl, PhBr, PhI, *p*-MeO–PhI, or tolyl iodide, 1.0 mmol, 1.0 equiv), and K₂CO₃ (1.2 mmol, 1.2 equiv) with catalytic amount CuI (0.1 mmol, 0.1 equiv) and 1,10-phenanthroline (0.1 mmol, 0.1 equiv) in DMF at 70 or 140 °C within 1–48 h under nitrogen gas. After 5-amino-pyrazoles were completely consumed, the reaction mixture was work-up, extracted with CH₂Cl₂ (20 mL×2), and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding 5-arylamino-1-arylpyrazole products in 17–96%.

4.1.1. 5-Anilino-3-phenyl-1-(2-pyridyl)-1H-pyrazole (14). Yellow powder; mp 98–99 °C; ¹H NMR (CDCl₃, 300 MHz) δ 6.41 (s, 1H, Py), 7.01 (t, 1H, *J*=7.1 Hz, ArH), 7.13 (t, 1H, *J*=6.4 Hz, ArH), 7.28–7.45 (m, 7H, ArH), 7.81–7.92 (m, 3H, ArH), 8.19 (d, 1H, *J*=8.4 Hz, ArH), 8.38 (d, 1H, *J*=4.3 Hz, ArH), 10.59 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 87.30, 114.24, 118.20, 119.71, 121.76, 125.91, 128.31, 128.52, 129.38, 133.11, 138.83, 141.27, 146.03, 146.80, 152.25, 154.96; IR (diffuse reflectance) 3215 (m), 2927 (m), 2862 (w), 1682 (m), 1651 (s), 1557 (s), 1538 (m), 1505 (m), 1455 (m), 1252 (m), 1140 (m), 1075 (m) cm⁻¹; MS (ESI) *m/z*: 313 (M+H)⁺. HRMS (ESI) calcd for C₂₀H₁₇N₄ (M+H)⁺ 313.1453, found 313.1454.

4.1.2. 3-Phenyl-1-(2-pyridyl)-5-p-toluidine-1H-pyrazole (**15**). Yellow powder; mp 77–78 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.34 (s, 3H, CH₃), 6.32 (s, 1H, Py), 7.10–7.22 (m, 5H, ArH), 7.34–7.44 (m, 3H, ArH), 7.80–7.86 (m, 1H, ArH), 7.90 (d, 2H, *J*=7.4 Hz, ArH), 8.18 (d, 1H,

J=8.3 Hz, ArH), 8.37 (d, 1H, *J*=4.5 Hz, ArH), 10.43 (br, 1H, NH); 13 C NMR (CDCl₃, 75 MHz) δ 20.72, 86.75, 114.15, 117.65, 118.77, 119.59, 125.89, 128.25, 128.49, 129.87, 131.50, 133.18, 138.76, 146.03, 147.47, 152.27, 154.99; IR (diffuse reflectance) 3282 (m), 3056 (w), 2924 (m), 2855 (m), 1683 (m), 1651 (s), 1557 (m), 1505 (s), 1455 (s), 1361 (m), 1262 (m), 1044 (m), 955 (m) cm⁻¹; MS (ESI) *m/z*: 327 (M+H)⁺. HRMS (ESI) calcd for C₂₁H₁₉N₄ (M+H)⁺ 327.1610, found 327.1609.

4.1.3. 1-(2-Pyridyl)-5-p-toluidine-3-p-tolyl-1H-pyrazole (**16**). Yellow powder; mp 86–87 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.33 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 6.29 (s, 1H, Py), 7.09–7.23 (m, 7H, ArH), 7.76–7.85 (m, 3H, ArH), 8.16 (d, 1H, J=8.3 Hz, ArH), 8.36 (dd, 1H, J=4.8, 1.1 Hz, ArH), 10.42 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 20.72, 21.32, 86.64, 114.12, 118.73, 119.48, 125.79, 129.19, 129.86, 130.37, 131.41, 138.09, 138.72, 138.80, 146.01, 147.38, 152.34, 155.01; IR (diffuse reflectance) 3253 (m), 2923 (m), 2852 (m), 1594 (s), 1557 (s), 1539 (m), 1468 (m), 1442 (m), 1362 (m), 1248 (m), 948 (m) cm⁻¹; MS (ESI) m/z: 341 (M+H)⁺. HRMS (ESI) calcd for C₂₂H₂₁N₄ (M+H)⁺ 341.1766, found 341.1764.

4.1.4. 5-Anisidino-3-(4-methoxyphenyl)-1-(2-pyridyl)-1H-pyrazole (**17**). Yellow powder; mp 110–111 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.81 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 6.12 (s, 1H, Py), 6.89–7.26 (m, 7H, ArH), 7.79–7.81 (m, 3H, ArH), 8.14 (d, 1H, *J*=8.3 Hz, ArH), 8.34 (d, 1H, *J*=3.4 Hz, ArH), 10.22 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 55.27, 55.57, 85.64, 113.86, 113.91, 114.63, 119.34, 121.30, 125.95, 127.15, 134.65, 138.69, 146.03, 148.43, 152.10, 154.99, 155.28, 159.77; IR (diffuse reflectance) 3243 (m), 2923 (m), 2852 (m), 1593 (s), 1556 (s), 1531 (s), 1470 (s), 1441 (s), 1361 (m), 1295 (m), 1246 (s), 1173 (m), 1033 (m), 948 (m) cm⁻¹; MS (ESI) *m/z*: 373 (M+H)⁺. HRMS (ESI) calcd for C₂₂H₂₁N₄O₂ (M+H)⁺ 373.1665, found 373.1667.

4.1.5. 5-Anilino-3-tert-butyl-1-(2-pyridyl)-1H-pyrazole (18). ¹H NMR (CDCl₃, 300 MHz) δ 1.34 (s, 9H, 3× CH₃), 5.95 (s, 1H, Py), 6.96 (t, 1H, *J*=7.3 Hz, ArH), 7.06 (t, 1H, *J*=6.2 Hz, ArH), 7.21 (d, 2H, *J*=8.2 Hz, ArH), 7.29–7.34 (m, 2H, ArH), 7.77 (td, 1H, *J*=8.1, 1.4 Hz, ArH), 8.04 (d, 1H, *J*=8.4 Hz, ArH), 8.32 (d, 1H, *J*=4.9 Hz, ArH), 10.50 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 30.04, 32.51, 86.89, 114.13, 117.81, 119.12, 121.28, 129.27, 138.62, 141.51, 145.81, 145.93, 155.10, 163.42; IR (diffuse reflectance) 3247 (m), 2949 (m), 2923 (m), 2854 (m), 1592 (s), 1556 (s), 1470 (s), 1441 (s), 1365 (m), 1255 (m), 1132 (m), 1086 (m), 981 (m) cm⁻¹; MS (ESI) *m/z*: 293 (M+H)⁺. HRMS (ESI) calcd for C₁₈H₂₁N₄ (M+H)⁺ 293.1766, found 293.1767.

4.1.6. 5-Anilino-1-(2-quinolinyl)-3-p-tolyl-1H-pyrazole (**19**). Yellow powder; mp 160–161 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.40 (s, 3H, CH₃), 6.44 (s, 1H, Py), 7.03–7.06 (m, 1H, ArH), 7.27–7.51 (m, 7H, ArH), 7.69–7.85 (m, 4H, ArH), 7.95 (d, 1H, *J*=8.5 Hz, ArH), 8.24 (d, 1H, *J*=9.0 Hz, ArH), 8.40 (d, 1H, *J*=8.9 Hz, ArH); ¹³C NMR (CDCl₃, 75 MHz) δ 21.35, 87.21, 114.08, 117.84, 121.66, 125.65, 125.73, 125.88, 127.34, 127.74, 129.25, 129.47, 130.20, 130.26, 138.30, 138.80, 141.24, 145.00, 147.09, 152.57, 154.00; IR (diffuse reflectance) 3210 (m), 3057 (m), 2922 (m), 2855 (m), 1602 (s), 1589 (s), 1556 (s), 1504 (s), 1455 (m), 1430 (s), 1371 (s), 1252 (m), 1119 (m), 1042 (m), 947 (m) cm⁻¹; MS (ESI) *m/z*: 377 (M+H)⁺. HRMS (ESI) calcd for C₂₅H₂₁N₄ (M+H)⁺ 377.1766, found 377.1763.

4.1.7. 5-Anilino-3-(4-methoxyphenyl)-1-(2-quinolinyl)-1H-pyrazole (**20**). Yellow powder; mp 183–184 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.86 (s, 3H, OCH₃), 6.40 (s, 1H, Py), 6.96–7.05 (m, 3H, ArH), 7.33–7.51 (m, 5H, ArH), 7.69–7.96 (m, 5H, ArH), 8.24 (d, 1H, J=9.0 Hz, ArH), 8.38 (d, 1H, J=9.2 Hz, ArH), 11.40 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 55.30, 87.00, 113.95, 114.04, 117.86, 121.66, 125.62, 125.70, 125.77, 127.28, 127.32, 127.74, 129.47, 130.26, 138.79, 141.24, 145.01, 147.11, 152.34, 153.99, 159.93; IR (diffuse reflectance) 3195 (w), 3072 (m), 2920 (m), 2847 (m), 1591 (s), 1556 (s), 1504 (s), 1455 (m), 1428 (s), 1366 (m), 1245 (s), 1174 (m), 1025 (m), 944 (m) cm⁻¹; MS (ESI) *m/z*: 393 (M+H)⁺. HRMS (ESI) calcd for $C_{25}H_{21}N_4O$ (M+H)⁺ 393.1715, found 393.1716.

4.1.8. 5-Anilino-3-tert-butyl-1-(2-quinolinyl)-1H-pyrazole (**21**). Yellow powder; mp 119–120 °C; ¹H NMR (CDCl₃, 300 MHz) δ 1.39 (s, 9H, 3× CH₃), 6.03 (s, 1H, Py), 7.00 (t, 1H, *J*=7.0 Hz, ArH), 7.27–7.49 (m, 5H, ArH), 7.67–7.72 (m, 1H, ArH), 7.78 (d, 1H, *J*=8.0 Hz, ArH), 7.92 (d, 1H, *J*=8.4 Hz, ArH), 8.19 (d, 1H, *J*=9.1 Hz, ArH), 8.29 (d, 1H, *J*=9.1 Hz, ArH), 11.32 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 30.04, 32.62, 86.98, 114.18, 117.56, 121.29, 125.39, 125.54, 127.29, 127.70, 129.40, 130.11, 138.58, 141.47, 145.07, 146.28, 154.16, 163.69; IR (diffuse reflectance) 3456 (m), 3223 (m), 3063 (w), 2959 (m), 2862 (m), 1586 (s), 1556 (s), 1504 (s), 1430 (s), 1371 (s), 1225 (m), 1134 (m), 1044 (m), 981 (m) cm⁻¹; MS (ESI) *m/z*: 343 (M+H)⁺. HRMS (ESI) calcd for C₂₂H₂₃N₄ (M+H)⁺ 343.1923, found 343.1922.

4.1.9. 3-Phenyl-1-(2-quinolinyl)-5-p-toluidine-1H-pyrazole (22). Yellow powder; mp 174–175 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.36 (s, 3H, CH₃), 6.39 (s, 1H, Py), 7.18–7.52 (m, 8H, ArH), 7.72 (td, 1H, J=7.5, 1.0 Hz, ArH), 7.81 (d, 1H, J=7.9 Hz, ArH), 7.93–7.95 (m, 3H, ArH), 8.25 (d, 1H, J=9.0 Hz, ArH), 8.40 (d, 1H, J=9.0 Hz, ArH), 11.22 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 20.74, 86.78, 114.04, 118.41, 125.65, 125.75, 125.98, 127.38, 127.73, 128.39, 128.53, 129.97, 130.25, 131.45, 133.09, 138.69, 138.79, 145.04, 147.81, 152.53, 154.01; IR (diffuse reflectance) 3210 (m), 3057 (m), 2922 (m), 2855 (w), 1621 (m), 1592 (s), 1556 (s), 1504 (s), 1430 (m), 1367 (m), 1249 (m), 1042 (m), 946 (m) cm⁻¹; MS (ESI) *m/z*: 377 (M+H)⁺. HRMS (ESI) calcd for C₂₅H₂₁N₄ (M+H)⁺ 377.1766, found 377.1768.

4.1.10. 3-(4-*Chlorophenyl*)-1-(2-*quinolinyl*)-5-*p*-toluidine-1H-pyrazole (**23**). Yellow powder; mp 180–181 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.36 (s, 3H, CH₃), 6.31 (s, 1H, Py), 7.18–7.22 (m, 4H, ArH), 7.38 (d, 2H, *J*=8.3 Hz, ArH), 7.48 (t, 1H, *J*=7.5 Hz, ArH), 7.70 (t, 1H, *J*=7.8 Hz, ArH), 7.77–7.93 (m, 4H, ArH), 8.22 (d, 1H, *J*=9.0 Hz, ArH), 8.34 (d, 1H, *J*=9.0 Hz, ArH), 11.21 (br, 1H, NH); ¹³C NMR (CDCl₃, 75 MHz) δ 20.75, 86.50, 113.88, 118.46, 125.72, 125.75, 127.20, 127.37, 127.72, 128.67, 129.98, 130.28, 131.58, 131.62, 134.08, 138.55, 138.81, 144.97, 147.94, 151.31, 153.87; IR (diffuse reflectance) 3217 (m), 3065 (m), 2921 (m), 2855 (w), 1602 (s), 1591 (s), 1556 (s), 1504 (s), 1465 (m), 1431 (s), 1367 (s), 1249 (m), 1090 (m), 1043 (m), 1013 (m), 946 (m) cm⁻¹; MS (ESI) *m/z*: 413 (M+3)⁺, 411 (M+H)⁺. HRMS (ESI) calcd for C₂₅H₂₀ClN₄ (M+H)⁺ 411.1376, found 411.1380.

4.1.11. 5-Anilino-1,3-diphenyl-1H-pyrazole (**24**). Yellow powder; mp 152–153 °C; ¹H NMR (CDCl₃, 300 MHz) δ 5.55 (br, 1H, NH), 6.52 (s, 1H, Py), 6.99 (d, 2H, *J*=7.8 Hz, ArH), 7.18–7.50 (m, 9H, ArH), 7.63 (d, 2H, *J*=7.7 Hz, ArH), 7.86 (d, 2H, *J*=7.2 Hz, ArH); ¹³C NMR (CDCl₃, 75 MHz) δ 93.72, 115.91, 120.94, 124.38, 125.61, 127.67, 127.93, 128.50, 129.34, 129.44, 133.18, 138.33, 142.17, 142.98, 151.47; IR (diffuse reflectance) 3233 (m), 3004 (m), 2935 (m), 1596 (s), 1494 (m), 1452 (m), 1361 (m), 1301 (m), 1255 (w), 1165 (m) cm⁻¹; MS (ESI) *m/z*: 312 (M+H)⁺. HRMS (ESI) calcd for C₂₁H₁₈N₃ (M+H)⁺ 312.1501, found 312.1503.

4.1.2. 5-Anilino-1-(3-chlorophenyl)-3-phenyl-1H-pyrazole (**25**). Yellow powder; mp 128–129 °C; ¹H NMR (CDCl₃, 300 MHz) δ 5.49 (br, 1H, NH), 6.51 (s, 1H, Py), 6.97 (d, 2H, *J*=8.4 Hz, ArH), 7.28–7.43 (m, 7H, ArH), 7.56 (d, 1H, *J*=7.7 Hz, ArH), 7.73 (s, 1H, ArH), 7.85 (d, 2H, *J*=7.4 Hz, ArH); ¹³C NMR (CDCl₃, 75 MHz) δ 94.54, 116.10, 121.32, 121.86, 124.39, 125.60, 127.54, 128.18, 128.59, 129.55, 130.28, 132.92, 135.09, 139.60, 142.37, 142.79, 151.92; IR (diffuse reflectance) 3390 (m), 3065 (w), 2923 (m), 2855 (m), 1593 (s), 1557 (s), 1538 (m), 1362 (m), 1250 (m), 1076 (m), 952 (m) cm⁻¹; MS (ESI) m/z: 348 (M+3)⁺, 346 (M+H)⁺. HRMS (ESI) calcd for C₂₁H₁₇ClN₃ (M+H)⁺ 346.1111, found 346.1109.

4.1.13. 5-Anilino-1-(4-methoxyphenyl)-3-phenyl-1H-pyrazole (**26**). Yellow powder; mp 147–148 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.78 (s, 3H, OCH₃), 6.77 (s, 1H, Py), 7.04 (d, 2H, *J*=8.8 Hz, ArH), 7.32–7.45 (m, 6H, ArH), 7.63 (d, 2H, *J*=8.8 Hz, ArH), 7.70 (d, 2H, *J*=7.6 Hz, ArH), 7.90 (d, 2H, *J*=7.1 Hz, ArH), 8.76 (br, 1H, NH); IR (diffuse reflectance) 3434 (m), 2922 (s), 2852 (m), 1651 (m), 1613 (m), 1557 (s), 1539 (s), 1505 (s), 1455 (m), 1273 (m), 1252 (m), 1161 (m), 1024 (m) cm⁻¹; MS (ESI) *m/z*: 342 (M+H)⁺. HRMS (ESI) calcd for C₂₂H₂₀N₃O (M+H)⁺ 342.1606, found 342.1605.

4.1.14. 1-(3-Nitrophenyl)-3-phenyl-5-p-toluidine-1H-pyrazole (**27**). Yellow powder; mp 148–149 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.28 (s, 3H, CH₃), 5.43 (br, 1H, NH), 6.48 (s, 1H, Py), 6.83 (d, 2H, *J*=8.3 Hz, ArH), 7.07 (d, 2H, *J*=8.3 Hz, ArH), 7.34–7.45 (m, 3H, ArH), 7.58 (t, 1H, *J*=8.1 Hz, ArH), 7.84 (d, 2H, *J*=7.5 Hz, ArH), 8.08–8.14 (m, 2H, ArH), 8.63–8.65 (m, 1H, ArH); ¹³C NMR (CDCl₃, 75 MHz) δ 20.55, 96.02, 116.51, 118.33, 121.41, 125.63, 128.44, 128.65, 128.77, 130.03, 130.09, 131.20, 132.61, 139.87, 140.43, 143.36, 148.70, 152.45; IR (diffuse reflectance) 3376 (m), 3036 (w), 2923 (m), 2855 (m), 1593 (m), 1556 (s), 1532 (s), 1455 (m), 1350 (s), 1247 (m), 1078 (m), 951 (m) cm⁻¹; MS (ESI) *m/z*: 371 (M+H)⁺. HRMS (ESI) calcd for C₂₂H₁₉N₄O₂ (M+H)⁺ 371.1508, found 371.1510.

Acknowledgements

We are grateful to the China Medical University (CMU100-ASIA–17 and CMU101-S–23), and the National Science Council of Republic of China (NSC-99-2320-B-039-014-MY3) for financial support. This study is also supported in part by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004).

Supplementary data

Supplementary data related to this article can be found online at http://dx.doi.org/10.1016/j.tet.2012.11.022.

References and notes

- For the Reviews; (a) Elguero, J. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Potts, K. T., Eds.; Pergamon: Oxford, 1984; Vol. 5; p 167; (b) Elguero, J. In *Comprehensive Heterocyclic Chemistry II*; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 3; p 1; (c) Kost, A. N.; Grandberg, I. I. In *Advances in Heterocyclic Chemistry*; Katritzky, A. R., Boulton, A. J., Eds.; Academic: New York, NY, 1966; Vol. 6; p 347; (d) Lee, K. Y.; Kim, J. M.; Kim, J. N. *Tetrahedron Lett.* **2003**, *44*, 6737–6740 and references therein.
- Sakya, S. M.; Rast, B. Tetrahedron Lett. 2003, 44, 7629–7632 and references therein.
- Huang, Y. R.; Katzenellenbogen, J. A. Org. Lett. 2000, 2, 2833–2836 and references therein.
- (a) Nishigaki, N. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 2985–2988; (b) Braibante, M. E. F.; Braibante, H. T. S.; da Roza, J. K.; Henriques, D. M. Synthesis **2003**, 1160–1162; (c) Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; D'Amico, M.; Filippelli, W.; Falcone, G.; De Novellis, V. *II Farmaco* **1995**, *50*, 179–182; (d) Cooper, C. B.; Helal, C. J.; Sanner, M. A.; Wagner, T. T. PCT WO 18346 A1, 2002.
- (a) Ansel, J. E.; El Kaim, L.; Gadras, A.; Grimaud, L.; Jana, N. K. *Tetrahedron Lett.* 2002, 43, 8319–8321; (b) Atlan, V.; Buron, C.; El Kaim, L. *Synlett* 2000, 489–490; (c) Palacios, F.; Aparicio, D.; de los Santos, J. M. *Tetrahedron* 1996, 52, 4123–4132; (d) Moreno-Mañas, M.; Sebastián, R. M.; Vallribera, A.; Carini, F. *Synthesis* 1999, 157–161.
- 6. Dodd, D. S.; Martinez, R. L. Tetrahedron Lett. 2004, 45, 4265–4267.
- 7. Abdel-Rahman, R. M.; Seada, M.; Fawzy, M.; El-Baz, I. Pharmazie 1994, 49, 729–733.
- 8. Atlan, V.; El Kaïm, L.; Grimaud, L.; Jana, N. K.; Majee, A. Synlett 2002, 352-354.
- (a) Tang, J.; Shewchuk, L. M.; Sato, H.; Hasegawa, M.; Washio, Y.; Nishigaki, N. Bioorg. Med. Chem. Lett. 2003, 13, 2985–2988; (b) Cooper, C. B.; Helal, C. J.; Sanner, M. A.; Wagner, T. T. PCT WO 02/18346A1, 2002.

- Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347–1365.
- 11. For reviews, see: Jiang, L.; Buchwald, S. L.; Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, 2004; vol. 2, pp 699-760.
- (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382–2384; (b) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691–1692 For reviews, see: (c) Lindley, J. Tetrahedron 1984, 40, 1433–1456; (d) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449.
- (a) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1144–1157; (b) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158–1174; (c) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101–1104; (d) Huang, X.; Buchwald, S. L. Org. Lett. 2001, 3, 3417–3419; (e) Ali, M. H.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2560–2565; (f) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421–7428; (g) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043–6048; (h) Gaertzen, O.; Buchwald, S. L. J. Org. Chem. 2002, 67, 465–475; (i) Enguehard, C.; Allouchi, H.; Gueiffier, A.; Buchwald, S. L. J. Org. Chem. 2003, 68, 4367–4370; (j) Charles, M. D.; Schultz, P.; Buchwald, S. L. Org. Lett. 2005, 7, 3965–3968; (k) Klingensmith, L. M.; Strieter, E. R.; Barder, T. E.; Buchwald, S. L. Organometallics 2006, 25, 82–91; (l) Strieter, E. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 925–928; (m) Shekhar, S.; Ryberg, P.; Hartwig, J. F.; Mathew, J. S.; Blackmond, D. G.; Strieter, E. R.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 3584–3591; (n) Anderson, K. W.; Tundel, R. E.; Ikawa, T.; Altman, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 6523–6527; (o) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001–13007; (p) Biscoe, M. R.; Barder, T. E.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 7232–7235.
- (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727–7729; (b) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803–3805; (c) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002,

124, 11684–11688; (d) Job, G. E.; Buchwald, S. L. Org. Lett. **2002**, *4*, 3703–3706; (e) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. **2002**, *4*, 581–584; (f) Kwong, F. Y.; Buchwald, S. L. Org. Lett. **2003**, *5*, 793–796; (g) Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald, S. L. J. Am. Chem. Soc. **2004**, *126*, 3529–3533; (h) Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. **2004**, *69*, 5578–5587; (i) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. **2005**, *127*, 4120–4121; (j) Altman, R. A.; Buchwald, S. L. Org. Lett. **2006**, *8*, 2779–2782; (k) Martin, R.; Rivero, M. R.; Buchwald, S. L. Org. Lett. **2006**, *128*, 8742–8743; (m) Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. **2006**, *128*, 8742–8743; (m) Altman, R. A.; Buchwald, S. L. Org. Lett. **2007**, *9*, 643–646; (n) Martin, R.; Larsen, C. H.; Cuenca, A.; Buchwald, S. L. J. Org. Chem. **2007**, *7*, 7968–7973.

- (a) Ma, D.; Jiang, J. Tetrahedron: Asymmetry 1998, 9, 1137–1142; (b) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459–12467; (c) Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583–2586; (d) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453–2455; (e) Ma, D.; Xia, C.; Jiang, J.; Zhang, J.; Tang, W. J. Org. Chem. 2003, 68, 442–451; (f) Ma, D.; Cai, Q. Synlett 2004, 128–130; (g) Cai, Q.; Zhu, W.; Zhang, H.; Zhang, Y.; Ma, D. Synthesis 2005, 496–499; (h) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164–5173; (i) Zou, B.; Yuan, Q.; Dawei, M. Angew. Chem., Int. Ed. 2007, 46, 2598–2601; (j) He, G.; Wang, J.; Ma, D. Org. Lett. 2007, 9, 1367–1369.
- (a) Yamada, K.; Kubo, T.; Tokuyama, H.; Fukuyama, T. Synlett 2002, 231–234; (b) Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987–4990; (c) Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630–6631; (d) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136–7137; (e) Okano, K.; Tokuyama, H.; Fukuyama, T. Chem.—Asian. J. 2008, 3, 296–309.
- 17. Kubo, T.; Katoh, C.; Yamada, K.; Okano, K.; Tokuyama, H.; Tohru Fukuyama, T. Tetrahedron **2008**, *64*, 11230–11236.
- Su, W.-N.; Lin, T.-P.; Cheng, K.-M.; Sung, K.-C.; Lin, S.-K.; Wong, F. F. J. Heterocycl. Chem. 2010, 47, 831–837.