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Abstract: Mercuric iodide catalyzed condensation of bis-silyl-
ketene acetals with benzaldehyde provided a 1:1 erythro and threo
mixture of a-trimethylsilylesters. Only the threo adducts underwent
titanium(IV)-mediated cyclopropanation and acid induced Peterson
olefination to provide (Z)-1-ethenylcyclopropanols of considerable
synthetic potential.
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neighbouring group effect

Functionalized cyclopropanes and particularly 1-vinylcy-
clopropanol derivatives provide building blocks of con-
siderable synthetic potential. They not only undergo
selective acid, base or thermally-induced C3→C4–8 ring
expansions,1 and fluoride ion-induced C3→C10,15,20 ring
enlargements2 but, their corresponding sulfonic esters
(e.g., mesylates, tosylates) form significant p- or s-1,1-
ethylene allylmetal complexes, which then undergo regio-
and diastereoselective nucleophilic3 or electrophilic sub-
stitutions.4 Syntheses of various frameworks and natural
products have demonstrated the outstanding usefulness of
these rearrangements and substitutions.1–5 Consequently,
ready accesses to these synthons are of crucial impor-
tance. Previously available from 1,3-dichloroacetone,6 a-
enone silylenol ethers,7 cyclopropanone hemiacetals,8 or
1-hydroxycyclopropanecarboxylic acids,9 these com-
pounds have been recently prepared from the titanium-
mediated cyclopropanation10 of ethyl 3,3-diethoxypro-
pionate followed by modified Knoevenagel condensation
with malonic acid under microwave irradiation,11 or of b-
haloesters followed by base-induced dehydrohalogena-
tion,12 which provided diastereoselectively pure trans-1-
alkenyl-2-alkylcyclopropanols. On the other hand, titani-
um-mediated cyclopropanation of homoallyl alk-2-
enoates furnished diastereomerically pure cis-1-(1-alke-
nyl)-2-(2-hydroxyethyl)cyclopropanols.13

We report herein our investigations to form these attrac-
tive synthons, alternatively from the commercially avail-
able ethyl a-(trimethylsilyl)acetate 1. Thus, reaction of
acetate 1 with EtMgBr and n-BuMgBr (2.2 equiv) in the
presence of Ti(i-PrO)4 (0.1 equiv) following reported pro-
cedures,10d–12 gave the 1-(trimethylsilylmethyl)cyclopro-
panol 2a (R1 = H) and trans-2b (R1 = Et) in 67% and 56%

yields, respectively. Then, condensation with an aldehyde
were expected to furnish the adducts 3a and trans-3b, and
after Peterson olefination14 the required 1-ethenylcyclo-
propanols 4a and trans-4b (Scheme 1).

However, upon treatment with n-butyllithium (1 equiv)
and benzaldehyde (1 equiv), 2a,b underwent elimination
of hydroxysilane to give non-isolated volatile products,
likely methylenecyclopropane derivatives,15 rather than
the expected adducts 3a,b.16 Moreover, attempts to per-
form previous O-protection of the cyclopropanols 2a,b
(e.g., DHP, PPTs) before condensation, led also to elimi-
nation products.

In order to overcome the problem of the instability of the
1-[(trimethylsilyl)methyl]cyclopropanols 2a,b revealed
by this investigation,17 we have first carried out tentative-
ly the condensation of a-(trimethylsilyl)acetate 1 with
benzaldehyde. A 8:2 diastereomeric mixture of (E)- and
(Z)-bis(trimethylsilyl)ketene acetals 5a (R3 = SiMe3) was
obtained in 60% yield, upon treatment of 1 with 1 equiv-
alent of lithium diisopropylamide (LDA, from 1.6 M n-
BuLi in hexane and diisopropylamine) in the presence of
TMSCl in THF at –78 °C. Then, HgI2 (4.4%) induced
condensation of the mixture of (E,Z)-5a with benzalde-
hyde in toluene provided in 90% yield, an unseparable 1:1
erythro and threo mixture of ethyl 3-phenyl-2-tri(methyl-
silyl)-3-(trimethylsilyloxy)propionate 6a and 7a.18

Otherwise, reaction of 1 with LDA and TBDMSCl led ex-
clusively to the (E)-t-butyldimethylsilylketene acetal 5b
(R3 = Sit-BuMe2) in 33% yield; while, in the presence of
hexamethylphosphoramide (HMPT) as co-solvent, fol-
lowing a reported procedure,19 the ketene acetal (Z)-5c
was formed exclusively, in 60% yield. HgI2 catalyzed
condensation of (E)-5b with benzaldehyde gave also in
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70% yield a 1:1 mixture of diastereomeric adducts eryth-
ro-6b and threo-7b, which were now readily separable by
HPLC. Therefore, as reported for (E,Z)-5a,18 the geome-
try of the double bond of (E)-5b has also been lost during
the condensation reaction; on the other hand, attempted
condensation of (Z)-5c under the same conditions led nei-
ther to erythro-6b nor to threo-7b (Scheme 2).

Titanium(IV)-mediated cyclopropanation10 of the 1:1 dia-
stereomeric mixture of erythro-6a and threo-7a by EtMg-
Br (2.2 equiv) in the presence of Ti(i-PrO)4 (0.2 equiv)
was expected to provide a mixture of cyclopropanols 8a
and 9a (R1 = H, R3 = SiMe3), which only differed in the
configuration of their 1-substituents. However, the reac-
tion performed in THF at room temperature for 4 h, gave
in 52% yield (based on the reactant) the single cyclo-
propanol 9a20a displaying in the 1H NMR spectrum of its
1-substituent [2-phenyl-1-(trimethylsilyl)-2-(trimethyl-
silyloxy)ethyl] two doublets at d 0.71 ppm and 5.33 ppm
[J(H1¢H2¢) = 4.95 Hz]; 9a was always accompanied by var-
ious amounts of the corresponding diol 9a¢ (R1, R3 = H)20b

arising from partial O-deprotection (oxygentrimethylsilyl
bond cleavage). The recovered unreacted bis-silylated ad-
duct disclosed the persistent 1H NMR signals of erythro-
6a, in particular a methylene signal at 4.08–4.26 ppm and
a coupling constant J(H2H3) = 10.7 Hz.18

Likewise, titanium(IV)-mediated cyclopropanation of the
pure silylated adduct threo-7b (R3 = TBDMS), occurred
to provide in 60% yield the single cyclopropanol 9b [dis-
playing in its 1H NMR spectrum two doublets at d 0.67
ppm and 5.38 ppm for which J(H1¢H2¢) = 3.40 Hz]; while
its isolated pure diastereomer erythro-6b appeared also
unreactive towards this cyclopropanation reaction, irre-
spective of the experimental conditions [number of equiv-
alents of Grignard reagents and of Ti(i-PrO)4, temperature
and time of reaction] (Scheme 3).

Otherwise, reaction of a 1:2 mixture of erythro-6a and
threo-7a with n-BuMgBr (2.2 equiv) and Ti(i-PrO)4 (0.2
equiv) in THF at room temperature, gave in 30% yield
(based on the reactant) a 1:1 mixture of cis- and trans-
2-ethyl-1-[2-phenyl-1-(trimethylsilyl)-2-(trimethylsilyl-
oxy)ethyl] cyclopropanols 11a (R1 = Et, R3 = SiMe3), sep-
arable by liquid chromatography (eluent pentane/diethyl
ether, 9:1), besides a 2:1 mixture of unreacted bissilylated
esters 6a and 7a. The formation of the corresponding diols

11a¢ (R1 = Et, R3 = H) was also observed. The configura-
tions of these cyclopropanols were determined from their
1H and 13C NMR  spectra, in particular trans-11a dis-
played one tertiary cyclopropanic proton at d 0.17 ppm (t,
J = 5.37 Hz, 1 H).13

Finally, O-desilylation and Peterson olefination were
achieved upon treatment of these cyclopropanols under
acidic conditions,21 e.g., with concentrated H2SO4 in THF
at –78 °C or with chlorotrimethylsilane in MeOH at room
temperature, to provide the 1-(Z)-styrylcyclopropanol 12
(R1 = H)22 in 50% and 76% yield, respectively, from 9a,
while the cis- or trans-2-ethyl-1-[(Z)-styryl] cyclopro-
panol 13 (R1 = Et) were obtained in 75% yield upon treat-
ment of the corresponding cis- or trans-11a with TMSCl
in MeOH. Indeed, comparison of the olefinic coupling
constants of 12 and 13 (J = 13 Hz), with the reported cou-
pling constants for the (E)-1-styrylcyclopropanol (J = 16
Hz),23 and for the (E)- and (Z)-1-(2-p-tolylethenyl)cyclo-
propanols (J = 16 Hz and 12 Hz, respectively),24 as well
as their respective olefinic chemical shifts, [doublets at d
5.70 ppm and 6.50 ppm for (Z)-12 and at 5.92 and 6.62
ppm for (E)-12],23 led to assign a (Z)-configuration for
their styryl double bond.

As the acid-induced Peterson olefination was known to
entail anti elimination of hexamethyldisiloxane,25 the ex-
clusive formation of the cyclopropanols (Z)-12 and cis-
and trans-(Z)-13 led to assign a threo configuration for the
1-substituents as shown for 9a and 11a (Scheme 3). From
these results it must be concluded that the configurations
of adducts 6a and 7a had been previously assigned erro-
neously.18 Moreover, X-ray crystallographic analyses of
the solid diol 9a¢ (recrystallized from hexane) have con-
firmed a threo configuration for its 1-substituent.26 On the
other hand, upon treatment with one equivalent of tetrabu-
tylammonium fluoride (n-Bu4NF) in THF at room tem-
perature, 9b underwent only O-desilylation to give
exclusively the 1-[2-hydroxy-2-phenyl-1-(trimethyl-
silyl)ethyl]cyclopropanol 9a¢20b while, its reaction with
BF3·Et2O was ineffective (Scheme 4).

Titanium-mediated cyclopropanation of the b-hydroxyes-
ter derivatives 14 (X = THP, TBDMS; R = Me, Ph, 2-
naphthyl) by EtMgBr and n-BuMgBr has been recently
reported to provide in 54–65% yields, the cyclopropanols
15a (R1 = H) and diastereoselectively the cyclopropanols
trans-15b (R1 = Et; de:100%) (Scheme 5).13b Therefore,
the presence of the a-trimethylsilyl substituent appeared
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responsible for the surprising difference of reactivity ob-
served between the diastereomeric silylated adducts
erythro-6a,b and threo-7a,b and for the lack of stereo-
selectivity in these cyclopropanation reactions.

Scheme 5

This difference of reactivity towards the titanium-mediat-
ed cyclopropanation reaction which occurred between the
stereoisomers erythro-6a and threo-7a was amazing. Ap-
parently, it does not simply result from different steric
hindrances around the carboxylate moiety of these a-silyl-
esters. In order to elucidate this unexpected stereoselectiv-
ity, we have assumed that the reactivity of the silylated
esters 6a and 7a is controlled by the formation of the in-
termediate titanafurans A and B. Therefore, we have un-
dertaken computational studies of the transition structures
resulting from the approaches of these esters by the titana-
cyclopropane 16.10 Taking into account the three chiral
centers of A and B, calculations were carried out on the
four possible approaches leading to the diastereomers
SRR-17 and SSS-18 arising from erythro-6a, SRS-19 and
SSR-20 arising from threo-7a (Schemes 6 and Figure 1).
After determination of the chiral chain conformations of
the esters by molecular dynamics simulations (MM2 force
field type), all the structures were minimized by semi-em-
pirical ZINDO method.27 To confirm our model, Hessian
calculations were carried out for each case and resulted in
a transition structure, i.e., in a first-order saddle point with
the Hessian having one negative eigenvalue.

The differences in energies between these four structures,
DE = 3.1, 7.2, 0, and 9.0 kcal mol–1, respectively, appeared
consequently in full agreement with the difference of re-
activity observed between the adducts erythro-6a and
threo-7a, in this titanium(IV) induced cyclopropanation.

In conclusion, the titanium(IV)-mediated cyclopropana-
tion by Grignard reagents of a-trimethylsilylesters arising
from mercuric iodide catalyzed condensation of bissi-

lylketene acetals 5a,b with benzaldehyde, followed by
acid induced Peterson olefination can provide 1-[1-(Z)-
alkenyl]cyclopropanols 12 and cis- or trans-13; however,
this three-membered ring formation appeared highly de-
pendant on the configurations of the intermediate a-tri-
methylsilylester adducts 6a,b and 7a,b.
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vacuo; flash chromatography of the residue (eluant: pentane/
diethyl ether 9:1) gave 128 mg (76% yield) of 1-(Z)-styryl 
cyclopropanol 12. 1H NMR (250 MHz, CDCl3) d 0.71–1.32 
(m, 4 H), 2.16 (s, 1 H), 5.26 (d, J = 13 Hz, 1 H), 6.53 (d, J = 
13 Hz, 1 H), 7.32–7.55 (m, 5 H); MS m/z (EI) 160 (41) [M+], 
159 (74), 145 (54), 131 (68), 127 (36), 115 (43), 103 (63), 91 
(33), 77 (100), 51 (52); MS m/z (CI with NH3) 178 (100), 
161 (22), 160 (17), 159 (14), 143 (18), 131 (13).
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(27) Molecular mechanics calculations (using a MM+ force field) 
and semi-empirical ZINDO calculations have been 
performed with the Hyperchem software (version 5.1). The 
Ti-O and Ti-C bond lengths and the Ti-bond angles were in 
accord with reported RX data for titanium complexes. See: 
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