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AbstractÐRXR class selectivity and RXR transcriptional activation activity compared to those for the retinoic acid receptor sub-
types were enhanced on the 4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenylethenyl)benzoic acid sca�old and its 3-methyl
analogue by replacing their 1,1-ethenyl bridge by a 1,1-(2-methylpropenyl) or cyclopropylidenylmethylene group. # 2000 Elsevier
Science Ltd. All rights reserved.

The RXRs are unique members of the nuclear receptor
superfamily of ligand-inducible transcription factors
because they heterodimerize with the retinoic acid recep-
tors (RARs), vitamin D receptor, thyroid hormone recep-
tor, and orphan receptors, such as the peroxisome
proliferator-activated receptors a and g, and TR3/nur77
(reviewed in ref 1). Increasing evidence indicates that the
RXR heterodimeric partner, its ligand, and the response
element to which the retinoid-heterodimer complex
binds in¯uence whether RXR will be occupied by ligand
to further modulate gene transcription.2ÿ9 The ability of
RXR-selective retinoids to enhance transactivation by
RAR-selective retinoids2ÿ9 suggests that they may also
enhance the therapeutic e�cacy of these and other ligands
that activate RXR dimeric partners.

4-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl-
carbonyl)benzoic acid (SR11004, 1 in Fig. 1),10 an ana-
logue of the RAR-selective 6-substituted 2-naphthalene-
carboxylic acid CD567 (2),11 and 4-[2-(5,6,7,8-tetra-
hydro-3,5,5,8,8 - pentamethyl - 2 - naphthalenyl)propenyl]
benzoic acid (3-methyl-TTNPB, 3)12 provided the leads
to RXR-selective synthetic analogues of RAR/RXR
panagonist 9-cis-retinoic acid (9-cis-RA, 6 in Table
1).13,14 Retinoid receptor transcriptional activation assays
using the (TREpal)2-tk-CAT reporter construct15ÿ17 in
CV-1 cells cotransfected with an expression vector for

one of the RAR subtypes a, b, and g, or RXRa indi-
cated that (1) decreasing the distance between the
hydrophobic and polar termini in 2 by replacing its 2,6-
disubstituted naphthalenyl moiety by a 1,4-disubstituted
phenyl ring, (2) increasing the hydrophobicity of the sp2
bridge linking the aryl rings of 1, and (3) including a 3-
methyl group on the tetrahydronaphthalene ring of 4
enhanced RXRa transactivation, as demonstrated by 1,
4, and 5, respectively.10,15,18

RXR-selective 5 (LGD1069)19 prevented mammary
tumor formation in rats treated with the carcinogen N-
methyl-N-nitrosourea20 and showed anticancer e�cacy in
clinical trials.21 The potent, more RXR-selective 2-[1-(5,6,
7,8- tetrahydro -3,5,5,8,8 -pentamethyl -2 -naphthalenyl)
cyclopropyl]-5-pyridinecarboxylic acid (LGD100268)22

was reported to lack cancer preventive e�cacy when
administered alone under these conditions.23 These and
other results8,17,24,25 suggest that the cancer preventive
and therapeutic e�ects of RXR-selective retinoids
require concomitant activation of RARs, as occurs by
using the panagonist 9-cis-RA alone or the combination
of an RXR-selective retinoid with an RAR-selective
retinoid24 or with another agent, such as interferon a.26

Enhancing alkyl bulk on the bridge between the aryl rings
in sp3-carbon-bridged RXR analogues improved RXR
selectivity.10,15 Here, we report the e�ects on RXRa acti-
vation and selectivity on the (TREpal)2-tk-CAT reporter
construct, compared to those of the RAR subtypes, by
replacing the hydrogens on the ethenyl bridges of 4 and
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5 by alkyl substitutents. Substitution with methyl groups
produced 4-[1-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-
naphthalenyl)-2-methylpropenyl]benzoic acid (7)10,15

and itsmore potent 3-methyl homologue (8)17,24 (see Table

1). However, introducing a sp2 cyclopropylidenylmethy-
lene bridge between the aryl rings provides selective
RXR/RAR-subtype panagonists, in which further mod-
i®cations of the aryl rings may modulate RAR-subtype
activity. For example, 9 activates both RARb and
RXRa on the (TREpal)2-tk-CAT, whereas at 10 nM 10
is more selective and more potent than 9 in activating
RXRa (108% compared to 2%).

In contrast, analogue 11, in which the bonds corre-
sponding to the ethenyl bridge and the 4-substituted
benzoic acid ring of 4 are coplanar by inclusion in a 5-
substituted 2-naphthalenecarboxylic acid ring, and the
2-methylpropylidene analogue 12 were inactive. We
previously found that removal of the Z-methyl group of
7 only slightly decreased RXRa activity.1 The loss of
activity by replacing the remaining E-methyl group by
an E-i-propyl group (12) suggests that further steric
constraints are present in the region of the RXRa

Table 1. Retinoic acid receptor (RAR) subtype a, b, and g and retinoid X receptor (RXR) a 50% transcriptional activation (AC50) on the (TRE-

pal)2-tk-CAT by retinoids 7 to 12 compared to 1 mM trans-RA for the RARs and 1 mM 9-cis-RA (6) for RXRaa,b

50% Activation values (AC50, nM) (% activation at 1 mM compared to 1 mM trans-RA
for RARs or 1 mM 9-cis-RA for RXRa)

Structure Name or code number RARa RARb RARg RXRa

6 9-cis-RA 19 (105) 2 (112) 3 (126) 7 (100)

7 R1=H, R2=Me MM11217 >1000 (0) >1000 (21) >1000 (0) 160 (71)
8 R1=Me, R2=Me MM11345 >1000 (0) >1000 (ÿ6) >1000 (ÿ12) 22 (107)
9 R1=H, R2=(CH2)ÿ MM11346 >1000 (19) 17 (85) >1000 (16) 5 (118)
10 R1=Me, R2=(CH2)ÿ MM11173 >1000 (ÿ23) >1000 (ÿ19) >1000 (12) <10 (120)

11 MM11258 >1000 (0) >1000 (1) >1000 (18) >1000 (12)

12 MM11344 >1000 (0) >1000 (ÿ6) >1000 (ÿ10) >1000 (ÿ1)
aNew compounds were fully characterized (IR, 1H NMR, mp) and passed analysis (elemental or HRMS).
bActivation (50%) for RARa, b, g, and RXRa on the (TREpal)2-tk-CAT by retinoids in monkey kidney CV-1 cells transfected with expression vectors for
each of these receptors compared to that of 1 mM trans-RA for the RARs and 1 mM 9-cis-RA for RXRa as 100%. Two copies of the TREpal response
element, which is activated by RARs and RXRs, were linked to the chloramphenicol acetyl transferase reporter (CAT) containing the thymidine kinase
promoter (tk).10 The b-galactosidase expression vector was used to normalize for transfection e�cacy. Data points are the means of triplicate experiments.
AC50 values were calculated by interpolation of concentration-response curves. Assays were conducted at the Burnham Institute under license from Ligand
Pharmaceuticals for use of this patented technology.

Figure 1. Structures of SR11004 (1), CD567 (2), 3-MeTTNPB (3),
MM11225 (4), and MM11247 (5), which were initial leads to more
potent RXR-selective retinoids.
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ligand-binding domain that interacts with the retinoid
bridge.

Previously, we demonstrated that RXR-selective reti-
noids inhibit the growth of retinoid-resistant MDA-MB-
231 human breast cancer cells in part by activating
RXRa-nur77 heterodimers on the bRARE to induce the
expression of RARb,25 which is lost in many cancers. We
found that trans-RA had no e�ect on the growth of
MDA-MB-231 cells, largely due to their lack of RARb,25

and 8 alone did not inhibit growth. However, trans-RA
plus 8 produced signi®cant inhibition, as did the RAR/
RXR panagonist 9 alone (Fig. 2).

Inhibition by 9 is likely due to its induction of RARb
expression through the RXR-nur77,25 followed by its
activation of the synthesized RARb protein that forms
the RXR-RARb. Our ®nding that growth inhibition by

the far more RXR-selective 8 requires the presence of an
RAR agonist suggests that activation of RXRa alone is
not su�cient for inhibiting the growth of these cells. These
data also suggest that RXR/RARb panagonists, such as
9, alone or in combination with another therapeutic agent,
may be useful in cancer therapy, whereas more RXR-
selective retinoids, such as 8 and 10, may only be useful in
combination with an RAR-selective retinoid or another
agent. Interestingly, we found that 9 inhibitedMDA-MB-
231 cell growth after seven days in culture with an IC50

value of 1.1 mM, whereas 12.5 mM 9-cis-RA gave only
45% inhibition.

The synthesis of 7 from diaryl ketone 1 was reported.10

Retinoids 9 and 10 were similarly prepared in high
yields from ketones 1 and 13 as outlined in Scheme 1,
whereas the more sterically hindered 8 required a step-
wise procedure involving a vinyl bromide-aryl bromide
coupling.
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