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Abstract—RXR class selectivity and RXR transcriptional activation activity compared to those for the retinoic acid receptor sub-
types were enhanced on the 4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenylethenyl)benzoic acid scaffold and its 3-methyl
analogue by replacing their 1,1-ethenyl bridge by a 1,1-(2-methylpropenyl) or cyclopropylidenylmethylene group. © 2000 Elsevier

Science Ltd. All rights reserved.

The RXRs are unique members of the nuclear receptor
superfamily of ligand-inducible transcription factors
because they heterodimerize with the retinoic acid recep-
tors (RARs), vitamin D receptor, thyroid hormone recep-
tor, and orphan receptors, such as the peroxisome
proliferator-activated receptors o and v, and TR3/nur77
(reviewed in ref 1). Increasing evidence indicates that the
RXR heterodimeric partner, its ligand, and the response
element to which the retinoid-heterodimer complex
binds influence whether RXR will be occupied by ligand
to further modulate gene transcription.>™ The ability of
RXR-selective retinoids to enhance transactivation by
RAR-selective retinoids®>® suggests that they may also
enhance the therapeutic efficacy of these and other ligands
that activate RXR dimeric partners.

4-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl-
carbonyl)benzoic acid (SR11004, 1 in Fig. 1),!° an ana-
logue of the RAR-selective 6-substituted 2-naphthalene-
carboxylic acid CD567 (2),'! and 4-[2-(5,6,7,8-tetra-
hydro-3,5,5,8,8 - pentamethyl - 2 - naphthalenyl)propenyl]
benzoic acid (3-methyl-TTNPB, 3)!? provided the leads
to RXR-selective synthetic analogues of RAR/RXR
panagonist 9-cis-retinoic acid (9-cis-RA, 6 in Table
1).13-14 Retinoid receptor transcriptional activation assays
using the (TREpal),-tk-CAT reporter construct'>~17 in
CV-1 cells cotransfected with an expression vector for
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one of the RAR subtypes «, B, and y, or RXRa indi-
cated that (1) decreasing the distance between the
hydrophobic and polar termini in 2 by replacing its 2,6-
disubstituted naphthalenyl moiety by a 1,4-disubstituted
phenyl ring, (2) increasing the hydrophobicity of the sp2
bridge linking the aryl rings of 1, and (3) including a 3-
methyl group on the tetrahydronaphthalene ring of 4
enhanced RXRa transactivation, as demonstrated by 1,
4, and 5, respectively.!0-15-18

RXR-selective 5 (LGD1069)'° prevented mammary
tumor formation in rats treated with the carcinogen N-
methyl-N-nitrosourea® and showed anticancer efficacy in
clinical trials.?! The potent, more RXR-selective 2-[1-(5,6,
7,8-tetrahydro-3,5,5,8,8 - pentamethyl - 2 - naphthalenyl)
cyclopropyl]-5-pyridinecarboxylic acid (LGD100268)%?
was reported to lack cancer preventive efficacy when
administered alone under these conditions.?* These and
other results®!7-2425 suggest that the cancer preventive
and therapeutic effects of RXR-selective retinoids
require concomitant activation of RARs, as occurs by
using the panagonist 9-cis-RA alone or the combination
of an RXR-selective retinoid with an RAR-selective
retinoid?* or with another agent, such as interferon o.>

Enhancing alkyl bulk on the bridge between the aryl rings
in sp3-carbon-bridged RXR analogues improved RXR
selectivity.!%!> Here, we report the effects on RXRa acti-
vation and selectivity on the (TREpal),-tk-CAT reporter
construct, compared to those of the RAR subtypes, by
replacing the hydrogens on the ethenyl bridges of 4 and
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5 by alkyl substitutents. Substitution with methyl groups
produced 4-[1-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-
naphthalenyl)-2-methylpropenyl]benzoic acid (7)'%-!3
and its more potent 3-methyl homologue (8)!7->* (see Table

Figure 1. Structures of SR11004 (1), CD567 (2), 3-MeTTNPB (3),
MM11225 (4), and MM11247 (5), which were initial leads to more
potent RXR-selective retinoids.

Table 1.

1). However, introducing a sp2 cyclopropylidenylmethy-
lene bridge between the aryl rings provides selective
RXR/RAR-subtype panagonists, in which further mod-
ifications of the aryl rings may modulate RAR-subtype
activity. For example, 9 activates both RARP and
RXRa on the (TREpal),-tk-CAT, whereas at 10 nM 10
is more selective and more potent than 9 in activating
RXRa (108% compared to 2%).

In contrast, analogue 11, in which the bonds corre-
sponding to the ethenyl bridge and the 4-substituted
benzoic acid ring of 4 are coplanar by inclusion in a 5-
substituted 2-naphthalenecarboxylic acid ring, and the
2-methylpropylidene analogue 12 were inactive. We
previously found that removal of the Z-methyl group of
7 only slightly decreased RXRa activity.! The loss of
activity by replacing the remaining E-methyl group by
an E-i-propyl group (12) suggests that further steric
constraints are present in the region of the RXRa

Retinoic acid receptor (RAR) subtype a, B, and y and retinoid X receptor (RXR) o 50% transcriptional activation (ACsy) on the (TRE-

pal),-tk-CAT by retinoids 7 to 12 compared to 1 uM trans-RA for the RARs and 1 uM 9-cis-RA (6) for RXRa?

50% Activation values (ACsp, nM) (% activation at 1 pM compared to 1 uM trans-RA

for RARs or 1 pM 9-cis-RA for RXRa)

Structure Name or code number RARa RARSB RARY RXRa
XX
X
X
COzH
6 9-cis-RA 19 (105) 2 (112) 3 (126) 7 (100)
R Ry
R1 COQH
7R;=H, R,=Me MM11217 >1000 (0) >1000 (21) >1000 (0) 160 (71)
8 Ry =Me, R,=Me MM11345 >1000 (0) >1000 (—6) >1000 (—12) 22 (107)
9 R;=H, R,=(CH,)— MM11346 >1000 (19) 17 (85) >1000 (16) 5 (118)
10 R, =Me, R,=(CH,)— MM11173 >1000 (—23) >1000 (—19) >1000 (12) <10 (120)
oA,
11 MM11258 >1000 (0) >1000 (1) >1000 (18) > 1000 (12)
l I i COoH
12 MM11344 >1000 (0) >1000 (—6) >1000 (—10) > 1000 (—1)

New compounds were fully characterized (IR, '"H NMR, mp) and passed analysis (elemental or HRMS).

bActivation (50%) for RARa, B, v, and RXRa on the (TREpal),-tk-CAT by retinoids in monkey kidney CV-1 cells transfected with expression vectors for
each of these receptors compared to that of 1 pM trans-RA for the RARs and 1 pM 9-cis-RA for RXRa as 100%. Two copies of the TREpal response
element, which is activated by RARs and RXRs, were linked to the chloramphenicol acetyl transferase reporter (CAT) containing the thymidine kinase
promoter (tk).'® The B-galactosidase expression vector was used to normalize for transfection efficacy. Data points are the means of triplicate experiments.
ACs values were calculated by interpolation of concentration-response curves. Assays were conducted at the Burnham Institute under license from Ligand

Pharmaceuticals for use of this patented technology.
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ligand-binding domain that interacts with the retinoid
bridge.

Previously, we demonstrated that RXR-selective reti-
noids inhibit the growth of retinoid-resistant MDA-MB-
231 human breast cancer cells in part by activating
RXRa-nur77 heterodimers on the BRARE to induce the
expression of RARP,? which is lost in many cancers. We
found that trans-RA had no effect on the growth of
MDA-MB-231 cells, largely due to their lack of RARB,?’
and 8 alone did not inhibit growth. However, trans-RA
plus 8 produced significant inhibition, as did the RAR/
RXR panagonist 9 alone (Fig. 2).

Inhibition by 9 is likely due to its induction of RARP
expression through the RXR-nur77,% followed by its
activation of the synthesized RARP protein that forms
the RXR-RARSB. Our finding that growth inhibition by
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Figure 2. Inhibition of MDA-MB-231 breast cancer cell growth by 0.1
UM trans-retinoic acid (trans-RA), 1 pM 8, 0.1 uM trans-RA plus 1
uM 8, and 1 uM 9 after 10 days, with medium containing 10% fetal
bovine serum and retinoid solution or Me,SO vehicle alone changed
every 48 h. The number of viable cells was determined by the MTT
assay.”® Results represent the average of triplicate experiments + the
standard error. Only growth inhibition by trans-RA plus 8 and by 9
was statistically significant (P <0.001).

COsMe
1 R=H
13 R=Me
@W Q\O /O .
X=H,Y= O

15 X=Br,Y= MegC

Scheme 1. Syntheses of retinoids 9 and 10 from diaryl ketones 1 and 13
(ref 10): (a) [cyclopropyltriphenylphosphonium bromide, KN(SiMes),,
toluene]; (MeOCH,CH,OCH,CH,);N, reflux (66% for 9, 69% for 10);
(b) KOH, aq EtOH; aq citric acid (90% for 9, 83% for 10, 80% for 8).
Synthesis of 8 from 14: (c) [i-Pr(C¢Hs);PI, KNSi(Mes),, THF]; (d) Br,
CH,Cl,; (e) DBU, THF; (66% overall); (f) 5,6,7,8-tetrahydro-3,5,5.,8,8-
pentamethyl-2-naphthaleneboronic acid, [(C¢Hs);P]4Pd, Na,CO;, aq
DME (41%).

the far more RXR-selective 8 requires the presence of an
RAR agonist suggests that activation of RXRa alone is
not sufficient for inhibiting the growth of these cells. These
data also suggest that RXR/RARJ panagonists, such as
9, alone or in combination with another therapeutic agent,
may be useful in cancer therapy, whereas more RXR-
selective retinoids, such as 8 and 10, may only be useful in
combination with an RAR-selective retinoid or another
agent. Interestingly, we found that 9 inhibited MDA-M B-
231 cell growth after seven days in culture with an I1Cs
value of 1.1 uM, whereas 12.5 pM 9-cis-RA gave only
45% inhibition.

The synthesis of 7 from diaryl ketone 1 was reported.!?
Retinoids 9 and 10 were similarly prepared in high
yields from ketones 1 and 13 as outlined in Scheme 1,
whereas the more sterically hindered 8 required a step-
wise procedure involving a vinyl bromide-aryl bromide
coupling.
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