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Abstract: A copper-catalyzed cyclization reaction of
trifluoromethyl-containing ortho-halo-B-chlorostyr-
enes with ketones has been developed. Using a com-
bination of copper(I) bromide, 2,2,6,6-tetramethyl-
heptane-3,5-dione and sodium fert-butoxide, a varie-
ty of 4-trifluoromethylbenzoxepines was prepared
in moderate to good yields by the tandem a-alkeny-
lation of ketones with subsequent O-arylation.
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Benzoxepines are an important class of heterocyclic
compounds and widely represented in a variety of dif-
ferent biologically active molecules,!"! including natu-
ral products,” and natural herbicides.”! Consequently,
extensive research efforts have been focused on the
development of methods for constructing the benzox-
epine ring.¥! The majority of the traditional ap-
proaches available for the assembly of these mole-
cules involve multistep transformations and harsh re-
action conditions.”! In contrast, transition metal-cata-
lyzed cyclization reactions provide a straightforward
access to these benzoxepines. For example, Lul® re-
ported the synthesis of 1-benzoxepines by two cation-
ic palladium-catalyzed [5+2]annulation reactions.®l
Ramachary et al.l”) also developed a ruthenium-cata-
lyzed ring closing metathesis (RCM) reaction for the
synthesis of highly substituted benzo[b]oxepines. Al-
though the incorporation of a CF; group into aromat-
ics often enhances their biological activity and has
come to represent a powerful and widely used strat-
egy in the process of drug design, to date, no synthetic
methods have been reported for the synthesis of tri-
fluoromethylated benzoxepines.®!
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Recently, reports in the literature have highlighted
the copper-catalyzed carbon-oxygen bond forming re-
actions.”) The palladium-catalyzed direct a-arylation
of ketones has also become a general methodology
for the synthesis of a-aryl ketones.'” A copper-cata-
lyzed oa-arylation of activated methylene compounds,
including malonates!""! and B-keto esters!'” has also
been developed. To the best of our knowledge, how-
ever, the copper-catalyzed a-arylation or alkenylation
of simple ketones still remains a challenging area for
exploration. As part of our ongoing studies towards
the synthesis of trifluoromethylated aromatic com-
pounds,® we have been investigating the preparation
of CF;-contanning benzoxepines from our previously
reported building blocks via a tandem C—-C/C-O
bond-forming reaction. Herein, we report a simple
and efficient protocol for the synthesis of 4-trifluoro-
methylbenzo[b]oxepines by the copper-catalyzed
tandem a-alkenylation of ketones with a subsequent
O-arylation reaction (Scheme 1).

The reaction of 1-bromo-2-(2-chloro-3,3,3-trifluoro-
prop-1-en-1-yl)benzene (1a)!' with acetophenone
(2a) was used as a model reaction to screen for the
optimal reaction conditions, and the results are sum-
marized in Table 1. Initially, treatment of substrate 1a
with acetophenone (2a), Cul (10 mol%), and -
BuONa (3 equiv.) in DMF at 100°C afforded the de-
sired product 3 in 56% yield (entry 1). The structure
of product 3 was confirmed by an X-ray single-crystal
diffraction analysis (Figure 1).""! Inspired by some of
the ligand-accelerated C—O bond-forming reactions

CF.
1 g\{o':s 0 [Cul/ligand =
R 3 ——————» RiL 2
(A O +F¢LR — R,/O/R
X =Br, Cl R®
Scheme 1. Synthesis of 4-trifluoromethylbenzoxepines.
@WILEY g 1

ONLINE LIBRARY

These are not the final page numbers! 77



COMMUNICATIONS

Lei-Lei Sun et al.

Table 1. Screening or the reaction conditions.”
CF3
)J\Ph ligand, base 0 /
3 Ph

1a
O O
PhM
L3

)’\/'k

T
SV NaTs

NH

Entry [Cu] Ligand Base Solvent Temp. Yield

cl [%]"
1 Cul - t-BuONa DMF 100 56
2 Cul L1 t-BuONa DMF 100 57
3 Cul L2 t-BuONa DMF 100 78
4 Cul L3 t-BuONa DMF 100 68
5 Cul L4 t-BuONa DMF 100 71
6 Cul L5 t-BuONa DMF 100 67
7 Cul L6 t-BuONa DMF 100 65
8 CuBr L2 t-BuONa DMF 100 80
9 CuCl L2 t-BuONa DMF 100 58
10 Cu,O L2 t-BuONa DMF 100 64
11 - L2 t-BuONa DMF 100 30
12 CuBr L2 KOH DMF 100 40
13 CuBr L2 Cs,CO;4 DMF 100 54
14 CuBr L2 K;PO, DMF 100 trace
15 CuBr L2 K,CO; DMF 100 trace
16 CuBr L2 t-BuONa DMSO 100 82
17 CuBr L2 t-BuONa NMP 100 <5
18 CuBr L2 t-BuONa toluene 100 0
19 CuBr L2 t-BuONa DMSO 80 51
20 CuBr L2 t-BuONa DMSO 120 70
21 CuBr L2 t-BuONa DMSO 100 trace

&l Reaction conditions: 1a (0.2 mmol), 2a (0.22 mmol), [Cu]
(10 mol%), ligand (20 mol%) and base (3 equiv.) in sol-
vent (2 mL) under an N, atmosphere for 4 h.

] Isolated yield.

[l 1-bromo-2-(2-chlorovinyl)benzene was used as substrate.

reported in the literature," we proceeded to investi-
gate some bidentate ligands with the aim of increasing
the yield of the reaction (entries 2-7). Pleasingly, all
of the ligands promoted the tandem reaction, with
2,2,6,6-tetramethylheptane-3,5-dione  (TMHD) L2
providing the best result with a yield of 78%
(entry 3). Subsequently, we proceeded to evaluate
a variety of different copper catalysts to optimize the
reaction conditions. CuBr was found to be superior to
Cul and the other copper salts tested, including CuCl
and Cu,O (entries 8-10). It is noteworthy that a 30%
yield of product was still obtained in the absence of
a copper catalyst, which suggested that the -BuONa
probably played a key role in the transformation
(entry 11). With this in mind, several different inor-
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Figure 1. X-ray crystallographic structure of compound 3

ganic bases were evaluated. The use of other strong
bases, such as KOH and Cs,CQO;, also worked well
and provided the product in moderate yields (en-
tries 12 and 13). The use of weaker bases, however,
such as K;PO, and K,CO; (entries 14 and 15) resulted
only in the isolation of trace amounts of the product.
Finally, the effect of the solvent was examined (en-
tries 16-18). DMSO provided the best results, with
the product being obtained in 82% yield (entry 16).
Lower yields were observed when the reaction was
conducted at 80 or 120°C (entries 19 and 20). It is
noteworthy that the trifluoromethyl group played an
important role in this annulation reaction, in that only
a trace amount of the product was detected when 1-
bromo-2-(2-chlorovinyl)benzene was used as the sub-
strate (entry 21). In addition, the yield of product 3
was independent of the E/Z ratio of 1a, with the same
yield being observed when either mixtures of la (Z/
E=282:18)* or 1a (Z/E=95:5)" were used.

To explore the substrate scope of this tandem reac-
tion in greater detail, a variety of different o-bromo-
p-chlorostyrenes and ketones was examined under the
standard reaction conditions (Table 2). Firstly, the re-
actions between ketones and substrate 1a were evalu-
ated in the presence of CuBr, TMHD and #-BuONa.
The results indicated that both aromatic and aliphatic
ketones were suitable substrates for the tandem reac-
tions and could be converted successfully to the corre-
sponding products in moderate to good yields. In gen-
eral, aromatic ketones bearing electron-donation
groups, such as methyl and methoxy groups, provided
higher yields than those bearing electron-withdrawing
group, such as CF;, nitro and cyano groups. For exam-
ple, substrates bearing a 4-methoxyphenyl or 4-nitro-
phenyl group underwent the tandem reaction with
substrate la to afford the corresponding products 6
and 13 in 83 and 57% yields, respectively. In contrast,
products 5 and 7 were obtained in lower yields (53
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Table 2. CuBr-catalyzed tandem reaction of o-bromo-f3-
chlorostyrenes with ketones.!

o CFs _ CuBr2 = CFa
R‘m HL R tBuONa R R?
% Cl Pz /)

Br R2 DMSO, 100 °C o)
1a-1f 2b-2q RS

22, 53% 23, 79% 24, 50%

2] Reaction conditions: 1 (0.2 mmol), 2 (0.22 mmol), CuBr
(10 mol%), L2 (20 mol%), and -BuONa (3 equiv.) in
DMSO (2 mL) at 100°C under an N, atmosphere for 4 h.

] Tsolated yield.
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and 56% ), presumably as a consequence of the steric
hindrance provided by the ortho-methyl and methoxy
groups. Cyclization of the para-halogenated acetophe-
nones proceeded smoothly to give the corresponding
products in 55-81% yields (8-11). 1-(1H-Pyrrol-2-
yl)ethanone, which contained a heterocycle moiety,
was well tolerated under the standard reaction condi-
tions and provided product 15 in 70% yield. Similarly,
aliphatic ketones were successfully subjected to the
reaction conditions to provide the corresponding
products 16-19 in moderate yields. For example, cy-
clohexanone reacted with 1a under the standard con-
ditions to provide the corresponding product 19 in
70% vyield. Based on these results, we proceeded to
examine a variety of ortho-(2-chlorovinyl)bromobenz-
enes bearing different functional groups on their aryl
moieties. The results demonstrated that several sub-
stituents, including methyl, methoxy, chloro, fluoro,
and trifluoromethyl groups, were compatible with the
standard reaction conditions. For example, methyl-
substituted bromobenzene was treated with acetophe-
none (2a), CuBr, TMHD and +-BuONa to afford the
desired product 20 in 61% yield. Interestingly, a sub-
strate bearing a fluoro group also smoothly under-
went the tandem reaction with acetophenone (2a) to
give product 23 in 79% yield.

Pleasingly, the o-chloro-f-chlorostyrenes 1g-1i were
successfully subjected to this tandem reaction under

Table 3. CuBr-catalyzed tandem reaction of o-chloro-f-
chlorostyrenes with ketones.™

N (LL N
R tBuoNa R | )R
R2 DMSO, 100 °C o)
1g-1i R®

=

Reaction conditions: 1 (0.2 mmol), 2 (0.22 mmol), CuBr
(10 mol%), L2 (20 mol%), and -BuONa (3 equiv.) in
DMSO (2 mL) at 100°C under an N, atmosphere for 4 h.
] Tsolated yield.
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10 mol% CuBr

CF
20 mol% L2 X 3 )
ph 3 equiv. +tBuONa cl Ph
DMSO, r.t, 10 min
27 ©
65% yield
CF3
= _tBUONa X CFs CuBr/L2 =
DMSO 100 °C ol Ph  tBuONa // 2
DMSO, 100 °C o
3 Ph
27
16% yield 52% yield
Scheme 2. Control experiments.
2
JtBuONa
e I
Cu—Cl RS
wo e O @(* £,
A (e}
3-26
CuX
CF3 CF3
= R2 - o® CuX/t-BuONa - CFs o
| = -
vy R2, R
Cu-0 R3 " (IDU—X R x R2 R3
\ X
E D c

Scheme 3. Possible mechanism.

the standard reaction conditions (Table 3). The results
demonstrated that the reaction between substrate 1g
and aromatic ketones containing either electron-with-
drawing or electron-donating groups proceeded
smoothly to give the corresponding products in 43—
68% yields. For example, acetophenones bearing a 4-
methylphenyl or 4-cyanophenyl group were well toler-
ated to provide the desired products in 68 and 61%
yields. As expected, the aliphatic ketone pentan-2-one
was also well tolerated by the reaction conditions and
was transformed to the desired product 18 in 43%
yield. Moreover, several trisubstituted chlorobenzenes
were also compatible with the standard tandem reac-
tion conditions. For instance, dimethoxy-substituted
chlorobenzene reacted with acetophenone (2a) to
afford the corresponding product 25 in 61% yield.

To elucidate the mechanism of the transformation,
a control reaction was conducted between substrate
1g and acetophenone (2a) in the presence of CuBr,
TMHD and -BuONa at room temperature for 10 min
[Scheme 2, Eq. (1)]. The a-alkenylation product 27
was isolated in 65% yield. This result indicated that
the a-alkenylation occurred prior to the C—O bond
forming reaction under the standard conditions. Sub-
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sequent treatment of compound 27 with ~-BuONa,
CuBr and L2 under the standard conditions provided
the target product 3 in a 52% yield. In contrast, only
16% yield was obtained in the absence of copper cat-
alyst and ligand [Eq. (2)].

Based on the present results and another mecha-
nism reported in the literature,'®!”) we have proposed
a possible mechanism, as outlined in Scheme 3. Oxi-
dative addition of CuX to substrate 1 would afford in-
termediate A, which could be converted to intermedi-
ate B following a ligand exchange process with the
ketone enolate. Following a reductive elimination
process, intermediate C could be formed with the con-
comitant regeneration of CuX. Subsequent keto-enol
tautomerism could then occur in the presence of t-
BuONa and the occurrence of another oxidative addi-
tion of CuX to bromobenzene or chlorobenzene
would give intermediate D. Following the E/Z-isomer-
ization of complex D at high temperature, an intra-
molecular ligand exchange could occur to provide
copper complex E. Finally, reductive elimination of E
would afford product 3-26 and regenerate the active
CuX. A detailed study of this mechanism is in cur-
rently in progress.
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In conclusion, we have successfully developed
a copper-catalyzed tandem C—C/C—O bond forming
reaction. In the presence of CuBr, TMHD, and -
BuONa, a broad range of trifluoromethyl-containing
ortho-halo-f3-chlorostyrenes underwent the cyclization
reaction with ketones to give the corresponding ben-
zo[b]oxepines in moderate to good yields. The annu-
lation involved the direct a-alkenylation of ketones
with a subsequent intramolecular O-arylation process.
This protocol could be used for the synthesis of tri-
fluoromethyl-containing building blocks, and could
also provide a new strategy for the construction of
benzo[b]oxepine rings.

Experimental Section

General Procedure for the Copper-Catalyzed Tandem
C—C/C—O Bond-Forming Reaction

A flask containing a mixture of ortho-halo-B-chlorostyrene
1 (0.2mmol), ketone 2 (0.22mmol), CuBr (2.9 mg,
10 mol%), TMHD (7.4 mg, 20 mol%), -BuONa (57.6 mg,
3 equiv.), in DMSO (2 mL) was evacuated and backfilled
with nitrogen (3 cycles) and then the mixture was stirred at
100°C for 4 h or until complete consumption of starting ma-
terial was indicated by TLC or GC-MS analysis. After the
reaction was completed, the mixture was filtered through
a glass filter and washed with ethyl acetate. The mixture was
washed with brine and extracted with ethyl acetate. The or-
ganic layers were dried with anhydrous Na,SO, and evapo-
rated under vacuum, and the residue was purified by flash
column chromatography (hexane/ethyl acetate) to give
products 3-26.

2-Phenyl-4-(trifluoromethyl)benzo[ b]oxepine (3): Yellow
solid; yield: 47.1mg (82%); mp 55.3-56.7°C; 'H NMR
(500 MHz, CDCL): 6=7.85-7.83 (m, 2H), 7.44-7.37 (m,
4H), 7.27-726 (m, 2H), 7.20-7.17 (m, 1H), 7.11 (d, J=
8.0 Hz, 1H), 6.33 (s, 1H); *C NMR (125 MHz, CDCL,): 6 =
1572, 155.4, 134.0, 1323, 1312 (q, Jcp=5.8Hz), 130.1,
129.6, 129.3, 1289 (q, Jcr=30.1Hz), 128.7, 125.8, 125.3,
1234 (q, Jcp=271.6Hz), 121.5, 105.1 (q, Jcg=2.3 Hz);
“FNMR (470 MHz, CDCL;): §= —66.8 (s, 3F); IR (neat):
v=3080, 1646, 1588, 1494, 1394, 753 cm™'; LR-MS (EI,
70 eV): m/z (%)=288 (M, 88), 105 (100), 186 (22), 165 (7),
77 (29); HR-MS (ESI): m/z=289.0829, calcd. for
C,/H,F;0" (IM+H]*): 289.0835.
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