# Diversity-Oriented Enantioselective Synthesis of Highly Functionalized Cyclic and Bicyclic Alcohols 

Bin Mao, ${ }^{[a]}$ Martín Fañanás-Mastral, ${ }^{[a]}$ Martin Lutz, ${ }^{[b]}$ and Ben L. Feringa ${ }^{[a]}$


#### Abstract

The copper-catalyzed hetero-allylic asymmetric alkylation (h-AAA) of functionalized Grignard reagents that contain alkene or alkyne moieties has been achieved with excellent regio- and enantioselectivity. The corresponding alkylation products were further transformed into a variety of highly functionalized cyclic and bicyclic alcohols with excellent control over the chemo-, regio-, and stereoselectivity.


Keywords: alcohols • asymmetric synthesis • copper • cyclization • cycloaddition

## Introduction

Cyclic and bicyclic alcohols are present in a large number of natural products and pharmaceuticals (Figure 1). ${ }^{[1]}$ For in-


Tamiflu


Sesquiterpenoid


Dihydrocompactin

Figure 1. Bioactive compounds that contain various cyclic and bicyclic alcohol groups.
stance, these structural features are often found in the sesquiterpenoid family, which possess important biological activities, such as antitumor and antimicrobial properties. ${ }^{[2]}$ The rapid construction of highly functionalized ring structures and control over the regio- and stereochemistry of single- or fused-ring systems continue to offer important synthetic challenges. Methods for the asymmetric synthesis of cyclic alcohols, including chiral synthons, chiral auxiliaries, and Corey-Bakshi-Shibata (CBS) reduction, have been described; however, the formation of enantiopure bicyclic

[^0]alcohols in a concise and efficient manner is still highly challenging. ${ }^{[3]}$ The development of fully catalytic and highly stereoselective short synthetic procedures for cyclic and bicyclic alcohols is of particular interest in the context of the diversi-ty-oriented synthesis ${ }^{[4]}$ of stereochemically complex structures.

The copper-catalyzed asymmetric allylic alkylation (AAA) reaction represents a very powerful tool for the enantioselective construction of optically active molecules. ${ }^{[5]}$ Recently, a highly regio- and enantioselective synthesis of optically active allylic esters through copper-catalyzed hetero-allylic asymmetric alkylation ( $h$-AAA) with Grignard reagents has been developed by our group (Scheme 1). ${ }^{[6]}$ One of the major features of this method is that it provides access to protected chiral allyl alcohols, in combination with other functional groups, which allow for further transformations into a variety of important structures. ${ }^{[6,7]}$


Scheme 1. Cu-catalyzed hetero-allylic asymmetric alkylation.

We envisioned that the use of functionalized Grignard reagents that contain alkene or alkyne moieties in the Cu -catalyzed $h$-AAA reaction, in combination with several stereoselective cyclization and cycloaddition ${ }^{[8]}$ reactions, could provide easy access to highly functionalized cyclic or bicyclic protected alcohols in a concise and enantioselective manner. Although alkyl-Grignard reagents that contain alkene moieties have already been applied in Cu-catalyzed AAA/RCM reactions, ${ }^{[9]}$ to the best of our knowledge, there are no examples of the use of alkyl-Grignard reagents that contain alkyne moieties ${ }^{[10]}$ in this transformation.

Owing to the high affinity of copper for triple bonds, ${ }^{[11]}$ the presence of an alkyne moiety could present a problem for the regio- or stereocontrol of the Cu-catalyzed AAA reaction. However, a successful Cu-catalyzed $h$-AAA ${ }^{[6]}$ with these particular Grignard reagents would give rise to various enynes that contain a protected chiral alcohol motif, which could be further transformed into a wide range of highly functionalized ring systems (Scheme 2). Herein, we report a procedure for $h$-AAA reactions with this type of Grignard reagent.
Starting from vinyl ester 1, efficient Cu-catalyzed $h$-AAA with alkene-containing Grignard reagents, followed by ring-closing olefin metathesis, ${ }^{[12]}$ would provide cyclic benzoate esters, ${ }^{[13]}$ including the formation of five-, six-, and seven-membered-ring structures. Relying on the Cu -catalyzed $h$-AAA with alkyne-containing Grignard reagents, the resulted enynes could be transformed into optically active 2,4 -dienol esters ${ }^{[14]}$ with different ring sizes through enyne metathesis. ${ }^{[15]}$ In addition, the highly stereoselective synthesis of different fused-ring-functionalized carbobicycles from their corresponding 2,4-dienol esters or internal enyne esters is feasible through Diels-Alder ${ }^{[16]}$ or PausonKhand ${ }^{[17]}$ reactions. The distinctive features of this convergent strategy are the highly regio- and enantioselective synthesis of allylic esters and the potential for stereocontrol in later transformations to afford a variety of cyclic and bicyclic alcohols.

## Results and Discussion

as the catalytic system, the desired alkylation products $\mathbf{3}$ were obtained in high yields (up to $96 \%$ ) with excellent regio- ( $>99: 1$ ) and enantioselectivities ( $96-97 \% \quad e e$; Table 1).

With the isolated products $\mathbf{3}$ in hand, we attempted the synthesis of cyclic benzoate esters ${ }^{[13]}$ through ring-closing

Table 1. $h$-AAA/RCM of cinnamyl substrates. ${ }^{[a]}$


[a] General conditions for the $h$-AAA reaction: $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(5 \mathrm{~mol} \%),(R, R)-(+)-\mathrm{Ta}-$ niaphos ( $5.5 \mathrm{~mol} \%$ ), Grignard reagent 2 (2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-70^{\circ} \mathrm{C}$. [b] Regioselectivity was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude mixture. [c] Yield of isolated product. [d] Enantiomeric excess was determined by chiral HPLC analysis. [e] The absolute configuration was assigned by comparison of optical rotation with known compounds. ${ }^{[6 a]}$

Our initial studies were focused on the copper-catalyzed $h$-AAA reactions of substrates $\mathbf{1}$ with Grignard reagents that contain a terminal alkene moiety. Under the optimized conditions for the addition of simple alkyl-Grignard reagents, ${ }^{[6]}$ with $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ and $(R, R)-(+)$-Taniaphos (L1)


Scheme 2. Proposed routes to cyclic and bicyclic esters, with the $h$-AAA of functionalized Grignard reagents as the key step.
olefin metathesis. When compound 3a was treated with Grubbs 2nd-generation catalyst ( $5 \mathrm{~mol} \%$ ), five-membered carbocycle ( $S$ )-4a was obtained in $85 \%$ yield and excellent enantioselectivity ( $97 \% e e$ ). ${ }^{[6]]}$ The use of longer alkyl chains on the Grignard reagent did not affect the outcome of the reaction and allowed us to access the optically active six- and seven-membered ring structures $\mathbf{4 b}$ and $\mathbf{4 c}$ in high yields ( $85-89 \%$ ) with excellent enantioselectivity ( $95 \% \mathrm{ee}$; Table 1). It should be emphasized that high yields and excellent enantioselectivities were found in all cases under the optimized conditions. No significant loss of enantioselectivity took place during the ring-closing step. Unfortunately, efforts to cyclize 1,8 -diene esters to make their corresponding eight-membered carbocycles were not successful with Grubbs second-generation catalyst, thus leading to recovery of the starting material. ${ }^{[18]}$

Next, we turned our attention to the use of challenging Grignard reagents that contained an alkyne functional group in the Cu -catalyzed hetero-allylic asymmetric alkylation ( $h$-AAA) reaction (Table 2 ). To prevent competitive coordination between the terminal alkyne and the copper(I) species, ${ }^{[11]}$ trimethylsilyl-protected alkynes were employed. Under the same conditions as for the Cu-catalyzed $h$-AAA discussed above, product $\mathbf{6 b}$ was obtained with only modest

Table 2. Screening of the reaction condition for the copper-catalyzed $h$ AAA reaction with Grignard reagents that contain an alkyne moiety. ${ }^{[a]}$

[a] Reactions performed on a 0.32 mmol scale. Compound $\mathbf{5 b}$ ( 1.5 m in $\mathrm{Et}_{2} \mathrm{O}$ ) was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise. Complete conversion was achieved in all cases. [b] Regioselectivity was determined by ${ }^{1}$ H NMR spectroscopy of the crude mixture. [c] Enantiomeric excess was determined by chiral HPLC analysis.
enantioselectivity ( $36 \% e e$; Table 2, entry 1). Screening of different reaction parameters indicated that lower amounts ( 1.5 equiv) and slower addition ( 4 h ) of the Grignard reagent were essential for obtaining compound $\mathbf{6 b}$ in a fully enantioselective manner. ${ }^{[19]}$ It was particularly rewarding to find that the treatment of 3-bromopropenyl ester 1a with Grignard reagent 5a under the optimized conditions (Table 2, entry 5) provided the desired $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ product ( $\mathbf{6 a}$ ) with excellent regio- ( $>99: 1$ ) and enantioselectivity ( $98 \%$ $e e$; Scheme 3). Grignard reagent 5b, in combination with
cinnamyl ester $\mathbf{1 b}$, readily provided alkylation products $\mathbf{6 c}$ in good yields with excellent regio- and enantioselectivity ( $>99: 1,96 \% e e$; Scheme 3). Because ferrocenyl ligand L1 turned out not to be an effective ligand for the $h$-AAA reaction of $\beta$-substituted substrate $\mathbf{1 c}{ }^{[6 a]}$ we turned our attention to phosphoramidites ${ }^{[5 g]}$ as potential chiral ligands. When the reaction was carried out with ligand $\mathbf{L 2}$, which has been described as an optimal ligand for related transformations, ${ }^{[6 a, 20]}$ product $\mathbf{6 d}$ was obtained with high enantiocontrol ( $94 \% e e$ ) but poor regioselectivity ( $\gamma / \alpha 1: 2$; Scheme 3). However, ligand $\mathbf{L 3}$ afforded the desired product $\mathbf{6 d}$ with better regioselectivity (6:1) and similar enantioselectivity ( $92 \% e e$ ).

Optically enriched 2,4-dienols are key structural motifs in a variety of natural products. ${ }^{[14]}$ Despite the importance and versatility of these compounds, approaches for their enantioselective synthesis have thus far been limited to the lipasecatalyzed kinetic resolution of racemic dienols. ${ }^{[14 b-d]}$ To obtain their chiral dienol derivatives, trimethylsilyl-protected allylic ester 6 a was subjected to enyne metathesis ${ }^{[15]}$ with Grubbs 1st-generation catalyst. No reaction was observed during this process, presumably owing to the steric effects of the trimethylsilyl group. ${ }^{[15]}$ Because it is known that enyne metathesis proceeds better with terminal alkynes, ${ }^{[15 a]}$ allylic products 6 were transformed into their corresponding terminal enynes 7, without compromising their stereochemical integrity, by treatment with 2 equivalents of tetra- $n$-butylammonium fluoride (TBAF) in THF. Then, we investigated the ring-closing metathesis of enynes 7 in the presence of catalytic amounts of Grubbs 1stgeneration catalyst under an


1a $R=P h, R^{\prime}=H$
1b $\mathrm{R}=\mathrm{PhCH}=\mathrm{CH}, \mathrm{R}^{\prime}=\mathrm{H}$ 1c $R=P h R^{\prime}=M e$



5
5a $n=0$
5b $n=1$


6a
$74 \%$ yield
98\% ee

$\mathbf{6 b}$
$\gamma / \alpha>99: 1$
$\gamma / \alpha>99: 1$
84\% yield
97\% ee





L2 ( $\mathrm{R}=\mathrm{H}$ ): $\gamma / \alpha=1: 2,94 \%$ ee
L3 ( $\mathrm{R}=\mathrm{OMe}$ ): $\gamma / \alpha=6: 1,92 \%$ ee
Scheme 3. Cu-catalyzed $h$-AAA of Grignard reagents that contain an alkyne moiety. ethylene atmosphere (Table 3). The presence of ethylene was found to be essential for accelerating the reaction to access diene ester 8. ${ }^{[21]}$ The reaction of enyne 7a to form five-membered cyclic 2,4-dienol ester $\mathbf{8 a}$ proceeded smoothly and, again, no erosion of the enantioselectivity was observed during this transformation. ${ }^{[22]}$ Homologous six-membered dienol ester 8b was prepared in $87 \%$ yield and $96 \%$ ee under the same conditions (Table 3). Although enyne 7c, which contained a cinnamylester moiety, showed slightly lower reactivity, thus requiring a longer reaction time, the desired diene product $8 \mathbf{c}$ was obtained in $85 \%$ yield and $96 \%$ $e e$. These results indicate that this strategy of combining hetero-allylic asymmetric alkylation with ring-closing enyne metathesis is a highly versatile

Table 3. Deprotection of the TMS group, followed by enyne metathesis.

[a] Yield of isolated product. [b] Enantiomeric excess was determined by chiral HPLC analysis. [c] The absolute configuration was assigned by comparison of optical rotation with known compounds. ${ }^{[146]}$
the complete formation of diene ester $\mathbf{8}$. To our delight, chiral intermediate $\mathbf{8}$ underwent cycloaddition with dienophile at $160^{\circ} \mathrm{C}$ in each case to yield the corresponding cycloadduct $\mathbf{9}$ as a single diastereomer (Scheme 5).
The relative configuration of the products was assigned on the basis of ${ }^{1} \mathrm{H}$ NMR and NOESY analysis of the products ( $\mathbf{9 a}$ and $\mathbf{9 b}$; Figure 2). In each case, NOE correlations between the $\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}$ and $\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{d}}$ protons indicated an anti stereochemical relationship for $\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}$. This exclusive stereochemical outcome was attributed to the stereogenic center that was established in the Cu -catalyzed $h$ AAA reaction and the facial selectivity of the Diels-Alder reaction. ${ }^{[24]}$ It should be pointed out that the enantiomeric excess of the cycloaddition product was also not compromised during these reactions. This sequential stereoselective approach offers rapid access to enantiomerically pure complex bicyclic molecules.
To establish the synthetic compatibility of allylic esters 6 for the purposes of diversity-oriented synthesis, ${ }^{[4]}$ we also explored the intramolecular Pauson-Khand (PK) reactions of 1,5-enyne 6a and
method for the enantioselective synthesis of cyclic 2,4-dienol esters.

Unfortunately, when enyne $\mathbf{7 d}$, which was obtained after the removal of the TMS group on compound $\mathbf{6 d}$, was exposed to the same conditions as discussed above, an enyne-metathesis reaction with ethylene proceeded in an intermolecular fashion to afford the linear product (8d; Scheme 4). Although a variety of ruthenium catalysts and different reaction conditions ${ }^{[21 b]}$ were tested, the reaction did not result in the formation of the desired product.

Dienols 8 are suitable substrates for Diels-Alder reactions that would give rise to important bicyclic scaffolds 9 in a diastereoselective fashion. ${ }^{[23]}$ As outlined in Scheme 5, we have developed a one-pot consecutive enyne-metathesis/Diels-Alder reaction in the presence of diethyl acetylenedicarboxylate. Optically enriched terminal enynes 7a and 7b were subjected to the enyne-metathesis conditions described above; then, the dienophile was added after


Scheme 4. Further elaboration of enyne $\mathbf{6 d}$.


Scheme 5. One-pot consecutive sequence of enyne metathesis and Diels-Alder reactions.



9 a


9b

Figure 2. Relevant NOESY correlations in products $\mathbf{9 a}$ and $9 \mathbf{9 b}$.

1,6-enyne 6b to afford functionalized bicyclo[3.3.0]pentanones in a stereoselective manner (Scheme 6). The cobalt-promoted Pauson-Khand reactions of internal


Scheme 6. Intramolecular Pauson-Khand reaction of enynes $\mathbf{6 a}$ and $\mathbf{6 b}$.

TMS-substituted $\alpha, \beta$-unsaturated ketone. The synthetic diversity of this strategy was illustrated by the facile installation of an all-carbon quaternary stereogenic center ${ }^{[27]}$ on the bridgehead carbon atom (Scheme 7). Bicyclic pentanone 10a was treated with lithium dimethylcuprate in $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$. After deprotection of the TMS group, the final product $\mathbf{1 1}$ was obtained as a single isomer in $62 \%$ yield.

## Conclusion

In summary, we have developed a highly regio- (>99:1) and enantioselective (up to $98 \%$ ee) Cu-catalyzed hetero-allylic asymmetric alkylation ( $h$-AAA) reaction with functionalized Grignard reagents that contain alkene or alkyne moieties. A new strategy that was based on the $h$-AAA reaction, in combination with ring-closing metathesis (RCM), of dienes and enynes has been applied for the catalytic enantioselective synthesis of cyclic allylic esters. In addition, we have shown the diversity-oriented synthesis of four different ringfused [5,6], [6,6], [5,5], and [6,5] bicyclic structures through Diels-Alder reactions on 2,4-dienol esters or Pauson-Khand reactions on enyne substrates. The synthetic versatility of this method was illustrated by the stereocontrolled installation of an all-carbon quaternary center on the bridgehead carbon atom of a carbon [5,5] bicyclic structure. The result-
enynes 6, with 1.1 equivalents of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, generated the corresponding hexacarbonyldicobalt complexes. Subsequently, the resulting complexes were transformed into their corresponding substituted cyclopentenones 10 in 55-64\% yield with complete diastereoselectivity and almost-complete enantioselectivity ( $97-98 \% e e$ ).
The relative stereochemistry of the two adjacent stereogenic centers in compounds $\mathbf{1 0}$ a and $\mathbf{1 0 b}$ was determined by ${ }^{1} \mathrm{H}$ NMR and NOESY analysis. The observed exo configuration was expected for an intramolecular PK reaction. ${ }^{[25]}$ Single-crystal X-ray structure determination of compound $\mathbf{1 0 a}$ confirmed this relative configuration (Figure 3). The absolute stereochemistry was established unequivocally by the Flack parameters (see the Supporting Information).
The resulting bicyclic compounds $\mathbf{1 0}$ possess a high degree of functionalization, including an ester group and an $\alpha$ -



Figure 3. Molecular structure of compound 10a in the crystal. ${ }^{[26]}$
ing compounds are suitable synthons for the synthesis of multiscaffold libraries.

## Experimental Section

General: All of the experiments were carried out in flame-dried or ovendried glassware under an atmosphere of nitrogen (unless otherwise specified) by using standard Schlenk techniques. Schlenk tubes with screw caps were equipped with a Teflon-coated magnetic stirrer bar, flame dried under vacuum, and allowed to return to RT prior to being charged with the reactants. A manifold that permitted alternation between a nitrogen atmosphere and a vacuum was used to control the atmosphere in the reaction vessel. Column chromatography was performed on silica gel (Silica-P flash silica gel from Silicycle, size $40-63 \mu \mathrm{~m}$ ). TLC was performed on silica gel $60 /$ Kieselguhr F254; the components were visualized by using UV light and by staining with a solution of $\mathrm{KMnO}_{4}(10 \mathrm{~g})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~g})$ in water $(500 \mathrm{~mL})$. Mass spectra were recorded on a LTQ Orbitrap XL mass spectrometer (ESI+/APCI+/APPI+) or a Xevo ${ }^{\circledR}$ G2 QTof mass spectrometer with DART ionization. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian AMX400 ( 400 and 100.59 MHz , respectively) or Varian Unity Plus Varian-500 spectrometers ( 500 and 125 MHz , respectively) by using $\mathrm{CDCl}_{3}$ as the solvent. Chemical shifts are reported in
ppm by using the solvent resonance as an internal standard $\left({ }^{1} \mathrm{H}: \delta=\right.$ $\left.7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta=77.0 \mathrm{ppm}\right)$; the data are reported as follows: chemical shift, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constant(s) [Hz], and integration. Optical rotations were measured in $\mathrm{CHCl}_{3}$ on a Schmidt+Haensch polarimeter (Polartronic MH8) with a 10 cm cell ( $c$, given in $\mathrm{g} / 100 \mathrm{~mL}$ ). Conversion of the reactants was determined by GC (GC, HP6890: MS HP5973) with an HP5 column (Agilent Technologies, Palo Alto, CA). The regioselectivity of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude mixture. Enantioselectivities were determined by HPLC analysis on a Shimadzu LC-10ADVP HPLC that was equipped with a Shimadzu SPDM10AVP diode-array detector. All of the reactions were carried out under a nitrogen atmosphere by using oven-dried glassware and standard Schlenk techniques. All solvents were of reagent grade and were dried and distilled prior to use (if necessary). THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled over Na /benzophenone. Toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled over calcium hydride. All of the ligands and $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ were purchased from Aldrich and used without further purification. Alkyl bromides, except for 4-bromo-1-trimethylsilyl-1-butyne ${ }^{[28]}$ and 5-bromo-1-trimethylsilyl-1-pentyne, ${ }^{[28]}$ which were synthesized according to literature procedures, were purchased from Aldrich. All other commercially available reagents were used as received. Starting materials $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{1 c}$ were synthesized according to the procedure reported by Trombini, Lombardo, and co-workers. ${ }^{[29]}$ Grignard reagents were prepared from their corresponding alkyl bromides and magnesium turnings in $\mathrm{Et}_{2} \mathrm{O}$ by following standard procedures. Grignard reagents were titrated by using $\sec -\mathrm{BuOH}$ and catalytic amounts of 1,10 -phenanthroline. Compounds $\mathbf{3 a}$ and $4 \mathbf{a}$ have been reported in our previous paper. ${ }^{[6]}$
General procedure for the copper catalyzed hetero-allylic asymmetric alkylation ${ }^{[6]}$ with Grignard reagents that contain terminal alkene groups: A solution of Grignard reagent 2 ( $0.64 \mathrm{mmol}, 2$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise over 5 min to a homogeneous, stirring solution of the allylic bromide ( 0.32 mmol ), $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(5.0 \mathrm{~mol} \%)$, and $\mathbf{L 1}(5.5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was stirred at the indicated temperature until it had gone to completion (typically overnight) and was then quenched with MeOH $(5 \mathrm{~mL})$. The reaction mixture was allow to warm to RT and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and water. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent was evaporated under vacuum. Purification by flash column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $1 \%$ to $2 \%$ ) afforded pure product $\mathbf{3}$ as a colorless oil.
(+)-(S)-Octa-1,7-dien-3-yl benzoate (3b): According to the general procedure, compound 3b was obtained as a colorless oil ( $95 \%$ yield, $97 \%$ $e e) .[\alpha]_{\mathrm{D}}^{20}=+33.2\left(c=3.6\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 8.07 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.99-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.62-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.00-4.88(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.90-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.52 \mathrm{ppm}(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.1,138.5,136.7,133.1,130.0,129.8(2 \times C)$, $128.6(2 \times C), 116.9,115.1,75.4,34.0,33.7,24.6 \mathrm{ppm}$; HRMS (ESI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ : $253.11990[M+\mathrm{Na}]^{+}$; found: 253.12015; enantiomeric excess was determined by chiral HPLC (Chiralpak OB-H; n-hep-tane/2-propanol, 99:1; $0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 224 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}}($ major $)=9.94 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.54 \mathrm{~min}$.
(+)-(S)-Nona-1,8-dien-3-yl benzoate (3c): According to the general procedure, compound $\mathbf{3 c}$ was obtained as a colorless oil $(83 \%$ yield, $96 \%$ $e e) .[\alpha]_{\mathrm{D}}^{20}=+21.4\left(c=3.4\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ $8.10-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{ddd}, J=14.4$, $10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.49$ (ddd, $J=12.2,6.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.38-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dt}, J=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.87(\mathrm{~m}, 2 \mathrm{H})$, $2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.34 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.1,138.9,136.8,133.1,130.8,129.8,128.6$, 116.9, 114.7, 75.5, 34.4, 33.8, 28.9, 24.8 ppm ; HRMS (ESI+): $m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}$ : $267.13555[M+\mathrm{Na}]^{+}$; found: 267.13507; enantiomeric excess was determined by chiral HPLC (Chiralpak OB-H; $n$-heptane/2propanol, $98: 2 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $\left.40^{\circ} \mathrm{C}\right): t_{\mathrm{R}}$ $($ major $)=8.68 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.00 \mathrm{~min}$.

General procedure for the Ru-catalyzed ring-closing metathesis (RCM) reaction: ${ }^{[6]}$ Allylic ester $\mathbf{3}(0.6 \mathrm{mmol})$ was dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(12 \mathrm{~mL})$ under a $\mathrm{N}_{2}$ atmosphere. Grubbs 2nd-generation catalyst $(0.03 \mathrm{mmol})$ was tipped into the solution and the mixture was heated at reflux $\left(40^{\circ} \mathrm{C}\right)$ for 18 h . Then, the mixture was cooled to RT and the solvents were removed under reduced pressure. Purification by column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $1 \%$ to $\left.2 \%\right)$ afforded the desired product 4.
(-)-(S)-Cyclohex-2-en-1-yl benzoate (4b): According to the general procedure, compound $\mathbf{4 b}$ was obtained as a colorless oil ( $89 \%$ yield, $95 \%$ $e e) .[\alpha]_{\mathrm{D}}^{20}=-187.3\left(c=3.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;\left[\right.$ lit. ${ }^{[13 e]}(S$ isomer, $90 \% e e):[\alpha]_{\mathrm{D}}^{20}=$ $-164\left(c=0.96\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.31-7.83(\mathrm{~m}$, $2 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.11-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.80$ $(\mathrm{m}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.65 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=166.4,133.1,133.0,131.0,129.8,128.5,125.9,68.8,28.6,25.2$, 19.2 ppm ; HRMS (ESI + ): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$ : 225.08860 $[M+\mathrm{Na}]^{+}$; found: 225.04333; enantiomeric excess was determined by chiral HPLC (Chiralpak AD-H; $n$-heptane/2-propanol, 99.9:0.1; $0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}} \quad$ (major) $=$ $19.55 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.66 \mathrm{~min}$.
(-)-(S)-Cyclohept-2-en-1-yl benzoate (4c): According to the general procedure, compound $\mathbf{4 c}$ was obtained as a colorless oil ( $85 \%$ yield, $95 \%$ $e e) .[\alpha]_{\mathrm{D}}^{20}=-37.4\left(c=2.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\left[\right.$ lit., ${ }^{[13 \mathrm{e}]}$ ( $S$ isomer, $\left.97 \% e e\right):[\alpha]_{\mathrm{D}}^{20}=$ $-52\left(c=0.85\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.15-8.00(\mathrm{~m}$, $2 \mathrm{H}), 7.64-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.95-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.76$ $(\mathrm{m}, 1 \mathrm{H}), 5.71-5.63(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.07-$ $1.93(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.45 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=166.1,133.7,133.0,132.2,130.9,129.8,128.5,74.9$, 33.1, 28.8, 26.9, 26.8 ppm ; HRMS (ESI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$ : $337.12304[M+\mathrm{Na}]^{+}$; found: 337.12205; enantiomeric excess was determined by chiral HPLC (Chiralpak AS-H; $n$-heptane/2-propanol, 99.9:0.1; $0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}} \quad$ (major) $=$ $11.60 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.50 \mathrm{~min}$.
General procedure for the copper-catalyzed hetero-allylic asymmetric alkylation ${ }^{[6]}$ with Grignard reagents that contain alkyne groups: Method $\mathbf{A}$. A solution of Grignard reagent 5 ( 0.48 mmol , 1.5 equiv) in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{M}$ and 1.6 m for $\mathbf{5 a}$ and $\mathbf{5 b}$, respectively) was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (combined volume of 1 mL ) and added dropwise over 4 h to a homogeneous, stirring solution of the allylic bromide ( 0.32 mmol ), $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(5.0 \mathrm{~mol} \%)$, and $\mathbf{L 1}(5.5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was stirred at the indicated temperature until it had gone to completion (typically overnight) and was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$. The mixture was allowed to warm to RT and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was dried over $\mathrm{MgSO}_{4}$, filtered, and the solvent was evaporated under vacuum. Purification by flash column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $1 \%$ to $2 \%$ ) to afford the product ( $\mathbf{6}$ ) as a colorless oil.
Method B. A solution of Grignard reagent 5b ( $0.38 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(1.6 \mathrm{~m})$ was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (combined volume of 1 mL ) and added dropwise over 4 h to a homogeneous, stirring solution of allylic bromide 1c $(0.32 \mathrm{mmol})$, copper $(\mathrm{I})$ thiophene-2-carboxylate (CuTC, $3.0 \mathrm{~mol} \%$ ), and $\mathbf{L} 2(3.3 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The remaining steps were the same as those described in Method A.
(+)-(S)-7-(Trimethylsilyl)hept-1-en-6-yn-3-yl benzoate (6a): According to the general procedure Method A, compound $\mathbf{6 a}$ was obtained as a colorless oil ( $74 \%$ yield, $98 \% e e$ ). $[\alpha]_{\mathrm{D}}^{20}=+14.2\left(c=1.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{dd}, J=9.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 1 \mathrm{H})$, $7.44(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{dd}, J=12.4,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.87(\mathrm{~m}, 1 \mathrm{H}), 0.13 \mathrm{ppm}(\mathrm{s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=165.6,135.7,132.9,130.3,129.6,129.6,128.3,117.2,105.9$, 85.3, 74.1, 33.3, 16.0, 0.0 ppm ; HRMS (ESI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}: 309.12813[M+\mathrm{Na}]^{+}$; found: 309.12846; enantiomeric excess was determined by chiral HPLC (Chiralpak AS-H; $n$-heptane/2-
propanol, 99.9:0.1; $0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}}$ $($ major $)=11.60 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.50 \mathrm{~min}$.
(+)-(S)-8-(Trimethylsilyl)oct-1-en-7-yn-3-yl benzoate (6b): According to the general procedure Method A, compound $\mathbf{6 b}$ was obtained as a colorless oil ( $84 \%$ yield, $97 \% e e$ ). $[\alpha]_{\mathrm{D}}^{20}=+10.1\left(c=5.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.20-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.32$ (m, 2H), 6.11-5.77 (m, 1H), $5.53(\mathrm{dd}, J=12.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.81$ $(\mathrm{m}, 2 \mathrm{H}), 1.75-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.14 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=165.8,136.3,132.9,130.4,129.6,128.3,116.8,106.7,85.0,74.7$, 33.3, 24.2, 19.7, 0.1 ppm ; HRMS (ESI+): $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}$ : $323.14378[M+\mathrm{Na}]^{+}$; found: 323.14404 ; enantiomeric excess was determined by chiral HPLC (Chiralpak AD-H; $n$-heptane/2-propanol, 99.9:0.1; $0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}}$ (major) $=$ $13.80 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.98 \mathrm{~min}$.
(+)-(S)-8-(Trimethylsilyl)oct-1-en-7-yn-3-yl cinnamate (6c): According to the general procedure Method A, compound $\mathbf{6 c}$ was obtained as a colorless oil ( $75 \%$ yield, $96 \% e e$ ). $[\alpha]_{D}^{20}=+16.0\left(c=0.4\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.41$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 2 \mathrm{H}), 0.13 \mathrm{ppm}(\mathrm{s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=166.8,144.8,136.3,134.4,130.3$, $128.9,128.1,118.3,116.8,106.7,85.0,74.3,33.3,24.2,19.6,0.1 \mathrm{ppm} ;$ HRMS (ESI + ): $m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}: 349.15943[M+\mathrm{Na}]^{+}$; found: 349.15943; enantiomeric excess was determined by chiral HPLC (Chiralpak AD-H; $n$-heptane/2-propanol, $99 / 1 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 270 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}}$ (major) $=14.48 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.64 \mathrm{~min}$.
(+)-(S)-2-Methyl-8-(trimethylsilyl)oct-1-en-7-yn-3-yl benzoate (6d): According to the general procedure Method B , compound $\mathbf{6 d}$ was obtained as a colorless oil ( $72 \%$ yield, $92 \% e e$ ). $[\alpha]_{\mathrm{D}}^{20}=+13.0\left(c=1.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.07$ (dd, $J=8.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.64-7.52$ $(\mathrm{m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.91$ (dt, $J=14.4,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.81$ (s, 3H), 1.70-1.52 (m, 2H), $0.14 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ): $\delta=165.71,142.9,132.9,130.5,129.6,128.3,112.8,106.7,85.1$, 77.3, 31.7, 24.3, 19.6, 18.2, 0.1 ppm ; HRMS (APCI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$ : $315.17748[M+\mathrm{H}]^{+}$; found: 315.17749 ; enantiomeric excess was determined by chiral HPLC (Chiralpak AD-H; $n$-heptane/2-propanol, 99.9:0.1; $0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $\left.40^{\circ} \mathrm{C}\right): t_{\mathrm{R}}$ $($ major $)=14.62 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.83 \mathrm{~min}$.
General procedure for the deprotection of the trimethylsilyl (TMS) alkynes: In a round-bottomed flask, TBAF ( 1.0 m in THF, 2.0 equiv) was added dropwise to a solution of allylic ester 6 (1.0 equiv) in dry THF $(0.05 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to RT over 1 h . The reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under vacuum. The crude material was purified by column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $1 \%$ to $\left.2 \%\right)$ to yield the desired product (7).
(+)-(S)-Hept-1-en-6-yn-3-yl benzoate (7a): According to the general procedure, compound 7a was obtained as a colorless oil ( $74 \%$ yield, $98 \%$ $e e) .[\alpha]_{\mathrm{D}}^{20}=+15.6\left(c=0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ 8.16-7.99 (m, 2H), 7.59-7.54 (m, 1H), 7.46-7.43 (m, 2H), 6.01-5.80 (m, $1 \mathrm{H}), 5.61(\mathrm{dd}, J=12.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{td}, J=7.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-1.85 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=165.7,135.6,133.0,130.3,129.6,128.4$, 117.3, 83.1, 73.9, 69.0, 33.1, 14.6 ppm ; HRMS (ESI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}: 237.08860[M+\mathrm{Na}]^{+}$; found: 237.08813; enantiomeric excess was determined by chiral HPLC (Chiralpak AD-H; $n$-heptane/2-propanol, $99: 1 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}}$ $($ major $)=17.15 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.71 \mathrm{~min}$.
(+)-(S)-Oct-1-en-7-yn-3-yl benzoate (7b): According to the general procedure, compound 7b was obtained as a colorless oil ( $85 \%$ yield, $97 \%$ $e e) .[\alpha]_{\mathrm{D}}^{20}=+18.7\left(c=3.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.15-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.90$ (ddd, $J=16.9,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (d, $J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H})$,
1.78-1.52 ppm (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=165.7,136.2$, 132.9, 130.4, 129.6, 128.3, 116.9, 83.8, 74.7, 68.8, 33.3, 24.0, 18.2 ppm ; HRMS (ESI+): $m / z$ calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}: 251.10425[M+\mathrm{Na}]^{+}$; found: 251.10459; enantiomeric excess was determined by chiral HPLC (Chiralpak OB-H; $n$-heptane/2-propanol, $98: 2 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $\left.40^{\circ} \mathrm{C}\right): t_{\mathrm{R}}($ major $)=13.95 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.48 \mathrm{~min}$.
(+)-(S)-Oct-1-en-7-yn-3-yl cinnamate (7c): According to the general procedure, compound $\mathbf{7 c}$ was obtained as a colorless oil $(83 \%$ yield, $96 \%$ $e e) .[\alpha]_{\mathrm{D}}^{20}=+33\left(c=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.85 (ddd, $J=17.0,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.41 (dd, $J=13.0$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dt}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.25 (td, $J=7.0,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$ (s, 1H), 1.88-1.78 (m, 2H), 1.70$1.57 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=166.2,144.9,136.3$, $134.4,130.3,128.9,128.1,118.2,116.9,83.9,74.3,68.7,33.2,24.0$, 18.2 ppm ; HRMS (ESI+): $m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ : 277.11990 $[M+\mathrm{Na}]^{+}$; found: 277.12027; enantiomeric excess was determined by chiral HPLC (Chiralpak OJ-H; $n$-heptane/2-propanol, 99:1; $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$; 270 nm ; column temperature: $\left.40^{\circ} \mathrm{C}\right): t_{\mathrm{R}}($ major $)=31.19 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ 35.12 min .

General procedure for the Ru-catalyzed eneyne-metathesis reaction: ${ }^{[7 a]}$ Compound 7 was dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{~m})$ and Grubbs 1stgeneration catalyst ( $10 \mathrm{~mol} \%$ ) was added to the solution in two portions. The reaction mixture was heated at reflux under an ethylene atmosphere ( 1 atm , balloon) until it had gone to completion ( $24-48 \mathrm{~h}$ ), as indicated by GCMS. The mixture was filtered through a pad of silica, concentrated under vacuum, and purified by column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $1 \%$ to $\left.2 \%\right)$ to yield the desired product $(\mathbf{8})$ as a colorless oil.
(-)-(S)-3-Vinylcyclopent-2-en-1-yl benzoate (8a): According to the general procedure, compound $\mathbf{8} \mathbf{a}$ was obtained as a colorless oil ( $43 \%$ yield, $98 \% e e) .[\alpha]_{\mathrm{D}}^{20}=-145.4\left(c=3.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.06-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 2 \mathrm{H})$, $6.62(\mathrm{dd}, J=17.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}$, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.55$ (m, 2H), $2.07 \mathrm{ppm}(\mathrm{ddd}, J=8.7,6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=166.4,148.2,132.8,132.7,130.7,129.6,128.2,127.8,117.5$, 81.0, 30.1, 29.2 ppm ; MS (TOF, DART): $m / z$ calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}: 215.1028$ $[M+\mathrm{H}]^{+}$; found: 215.0989; enantiomeric excess was determined by chiral HPLC (Chiralpak OB-H; $n$-heptane/2-propanol, $99: 1 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1}$; 226 nm ; column temperature: $\left.40^{\circ} \mathrm{C}\right): t_{\mathrm{R}}($ major $)=17.73 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ 11.67 min.
(-)-(S)-3-Vinylcyclohex-2-en-1-yl benzoate (8b): According to the general procedure, compound $\mathbf{8 b}$ was obtained as a colorless oil ( $87 \%$ yield, $96 \% e e) .[\alpha]_{\mathrm{D}}^{20}=-204\left(c=5.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.38$ (dd, $J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.09 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (dt, $J=17.3$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.70 \mathrm{ppm}(\mathrm{m}$, 2 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=166.2,140.7,139.0,132.8,130.7$, $130.5,129.6,128.3,126.4,113.5,69.5,28.4,23.6,19.1 \mathrm{ppm}$; HRMS (ESI+): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$ : 251.10425 [ $\left.M+\mathrm{Na}\right]^{+}$; found: 251.10461; enantiomeric excess was determined by chiral HPLC (Chiralpak OB-H; $n$-heptane $/ 2$-propanol, $99: 1 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 226 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}}$ (major) $=15.08 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=10.45 \mathrm{~min}$.
(-)-(S)-3-Vinylcyclohex-2-en-1-yl benzoate (8c): According to the general procedure, compound $\mathbf{8 c}$ was obtained as a colorless oil ( $85 \%$ yield, $96 \% e e) .[\alpha]_{\mathrm{D}}^{20}=-197\left(c=3.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=6.7,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}$, $3 \mathrm{H}), 6.47$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (dd, $J=17.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=17.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H})$, 2.03-1.70 ppm (m, 4H); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=169.3,147.3$, 143.4, 141.7, 137.2, 132.9, 131.6, 130.7, 129.1, 121.2, 116.2, 71.6, 31.2, 26.4, 21.5 ppm ; HRMS (ESI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ : 277.11990 [ $M+\mathrm{Na}]^{+}$; found: 277.12029; enantiomeric excess was determined by chiral HPLC (Chiralpak AS-H; $n$-heptane/2-propanol, 99:1;
$0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 221 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}} \quad$ (major) $=$ $10.54 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.00 \mathrm{~min}$.
(+)-(S)-2-Methyl-7-methylenenona-1,8-dien-3-yl benzoate (8d): In a round-bottomed flask, TBAF ( 1.0 m in THF, 2.0 equiv) was added dropwise to a 0.05 m solution of allylic ester $\mathbf{6 d}$ ( 1.0 equiv) in dry THF at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to RT over 1 h . The reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under vacuum. Then, the corresponding intermediate ( $\mathbf{7 d}$ ) was dissolved in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{~m})$ and Grubbs 1st-generation catalyst ( $10 \mathrm{~mol} \%$ ) was added to the solution in two portions. The reaction mixture was heated at refluxed under an ethylene atmosphere ( 1 atm , balloon) until it had gone to completion ( 20 h ), as indicated by GCMS. The mixture was filtered through a pad of silica, concentrated under vacuum, and purified by column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $1 \%$ to $2 \%$ ) to yield the desired product ( $\mathbf{8 d}$ ) as a colorless oil ( $66 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+11\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.59-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $4.92(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.40 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.8,152.9,151.2,143.2,132.8,130.6,129.6$, $128.3,125.3,112.7,111.5,77.8,35.2,32.3,23.6,18.2 \mathrm{ppm}$; HRMS (APCI+): $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}: 271.16926[M+\mathrm{H}]^{+}$; found: 271.16884.
General procedure for one-pot consecutive enyne-metathesis/DielsAlder reactions: The substrate ( $\mathbf{7 a} / \mathbf{7 b}$ ) was dissolved in dry toluene $(0.05 \mathrm{~m})$ and Grubbs 1st-generation catalyst ( $10 \mathrm{~mol} \%$ ) was added to the solution in two portions ( $5 \mathrm{~mol} \%$ at the start and $5 \mathrm{~mol} \%$ after 6 h ). The mixture was heated at reflux in toluene $\left(80^{\circ} \mathrm{C}\right)$ under an ethylene atmosphere ( 1 atm , balloon) until complete conversion into dienol ester ( $\mathbf{8} \mathbf{a} /$ $\mathbf{8 b}$ ) had been achieved, as indicated by TLC. Then, diethyl acetylenedicarboxylate ( 10 equiv) was added dropwise and the resulting solution was heated at $160^{\circ} \mathrm{C}$ in a sealed tube until TLC analysis indicated the complete consumption of the diene. Then, the reaction mixture was filtered through a plug of silica and concentrated under vacuum. The residue was purified by column chromatography on silica gel ( $\mathrm{EtOAc} / n$-pentane, $10 \%$ to $20 \%$ ) to yield the desired product ( $\mathbf{9} \mathbf{a} / \mathbf{9 b}$ ). The stereochemistry of the product was determined by ${ }^{1} \mathrm{H}$ NMR and NOESY analysis.
(+)-(3S,3aR)-Diethyl-3-(benzoyloxy)-2,3,3 a,6-tetrahydro-1 $\boldsymbol{H}$-indene-4,5dicarboxylate (9a): According to the general procedure, compound 9 a was obtained as a colorless oil ( $54 \%$ yield, $97 \% e e) \cdot[\alpha]_{D}^{20}=+70.2(c=0.7$ in $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.08(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=$ $16.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.24$ (m, 4H), 3.96-4.01 (m, 1H), 3.83-3.89 (m, $1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=22.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=$ $22.5,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74$ $(\mathrm{m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.10 \mathrm{ppm}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.4,168.5,168.4,141.8,138.1,135.8,132.6$, $132.3,131.1,130.5,119.1,64.0,63.8,48.9,32.4,32.3,30.6,29.5,16.7$, 16.3 ppm ; HRMS (ESI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{6}: 385.16456[\mathrm{M}+\mathrm{H}]^{+}$; found: 385.16560; enantiomeric excess was determined by chiral HPLC (Chiralpak OJ-H; $n$-heptane/2-propanol, $97: 3 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 232 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}} \quad$ (major) $=10.54 \mathrm{~min}, \quad t_{\mathrm{R}} \quad($ minor $)=$ 14.00 min .
(+)-(8S,8 aR)-Diethyl-8-(benzoyloxy)-3,5,6,7,8,8 a-hexahydronaphthalene1,2 dicarboxylate (9b): According to the general procedure, compound 9a was obtained as a colorless oil ( $68 \%$ yield, $96 \% e e$ ). $[\alpha]_{\mathrm{D}}^{20}=+87(c=$ 2.4 in $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.05$ (dd, $J=8.2,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H})$, 4.90 (td, $J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J=10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (dq, $J=10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=11.2$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=23.2,7.3 \mathrm{~Hz}$, 1 H ), 2.85 (dddd, $J=23.2,6.1,3.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27 (dd, $J=12.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.78 \mathrm{ppm}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ 169.4, 167.3, 165.5, 135.0, 134.6, 133.2, 131.7, 130.2, 129.9, 128.4, 117.5, 77.1, 61.3, 61.2, 45.0, 34.7, 32.9, 28.0, 25.1, 14.2, 13.2 ppm ; HRMS (ESI + ):
$m / z$ calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{Na}$ : $421.16216[M+\mathrm{Na}]^{+}$; found: 421.16245; enantiomeric excess was determined by chiral HPLC (Chiralpak OJ-H; $n$-hep-tane/2-propanol, $99: 1 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 233 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}}($ major $)=32.440 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=28.68 \mathrm{~min}$.
General procedure for the Pauson-Khand reaction: ${ }^{[25]} \mathrm{A}$ solution of enyne 6 ( 1.0 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{~m})$ was added to a flask that contained $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ (1.1 equiv) under a $\mathrm{N}_{2}$ atmosphere. The resulting solution was stirred at RT for 2 h until the formation of the cobalt complex was complete (TLC). The solvent was removed under vacuum, the residue was diluted with $\mathrm{MeCN}(0.025 \mathrm{~m})$, and the resulting solution was heated at $80^{\circ} \mathrm{C}$ until complete consumption of the cobalt complex (purple color) was observed. The reaction mixture was filtered through a plug of silica and washed with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic solvents were evaporated and the residue was purified by column chromatography on silica gel (EtOAc/n-pentane, $5 \%$ to $20 \%$ ) to yield the desired product (10).
(-)-(1S,6aS)-5-Oxo-4-(trimethylsilyl)-1,2,3,5,6,6a-hexahydropentalen-1-yl benzoate (10a): According to the general procedure, compound 10 a was obtained as colorless crystals ( $64 \%$ yield, $98 \% e e$ ). M.p. $85-91^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=$ $-19\left(c=0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.08(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{dd}, J=$ $17.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.32-3.18$ (m, 1H), 2.94 (ddd, $J=18.4,11.7,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.67$ (dd, $J=17.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}$, $1 \mathrm{H}), 2.42(\mathrm{dd}, J=17.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{tt}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $0.24 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=215.9,193.9,169.1$, 141.2, 135.8, 132.6, 132.3, 131.1, 55.3, 44.7, 34.3, 29.3, 1.5 ppm ; HRMS (ESI+): $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiNa}$ : $337.12304[M+\mathrm{Na}]^{+}$; found: 337.12205; enantiomeric excess was determined by chiral HPLC (Chiralpak AS-H; $n$-heptane/2-propanol, $99: 1 ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 229 \mathrm{~nm}$; column temperature: $\left.40^{\circ} \mathrm{C}\right): t_{\mathrm{R}}($ major $)=12.56 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.75 \mathrm{~min}$.
(+)-(7S,7 aS)-2-Oxo-3-(trimethylsilyl)-2,4,5,6,7,7 a-hexahydro-1 $\boldsymbol{H}$-inden-7yl benzoate (10b): According to the general procedure, compound 10b was obtained as colorless crystals ( $55 \%$ yield, $97 \%$ ee). M.p. $79-82^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}=+166.2\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06$ (dd, $J=8.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.78$ (td, $J=10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=18.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H})$, 2.30-2.17 (m, 1H), 2.16-2.07 (m, 1H), 1.85-1.64 (m, 1H), 1.65-1.47 (m, $1 \mathrm{H}), 0.34-0.02 \mathrm{ppm}(\mathrm{m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=211.7$, $185.5,165.9,139.5,133.1,130.2,129.6,128.4,78.5,49.0,40.1,31.2,30.3$, 23.8, -0.4 ppm ; HRMS (ESI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}$ : 351.13869 [ $M+\mathrm{Na}]^{+}$; found: 351.13911; enantiomeric excess was determined by chiral HPLC (Chiralpak AD-H; $n$-heptane/2-propanol, 95:5; $0.5 \mathrm{~mL}^{2} \mathrm{~min}^{-1} ; 228 \mathrm{~nm}$; column temperature: $40^{\circ} \mathrm{C}$ ): $t_{\mathrm{R}} \quad$ (major) $=$ $14.14 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=11.34 \mathrm{~min}$.
(+)-(1S,3 aR,6 aS)-3 a-Methyl-5-oxooctahydropentalen-1-yl benzoate (11): A solution of methyl lithium $(1.6 \mathrm{~m})$ in dry $\mathrm{Et}_{2} \mathrm{O}(0.62 \mathrm{~mL}, 1 \mathrm{mmol})$ was slowly added to a suspension of $\mathrm{CuI}(95.2 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a $\mathrm{N}_{2}$ atmosphere. The resulting mixture was cooled to $-20^{\circ} \mathrm{C}$ and a solution of substrate $10 \mathrm{a}(15.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(1 \mathrm{~mL})$ was added dropwise. After stirring at $-20^{\circ} \mathrm{C}$ for 4 h , the reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ ( 4 mL ). Then, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were concentrated under vacuum. The crude mixture was dissolved in dry THF, TBAF ( 1 m in THF, $0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$ ) was added dropwise to the solution at $0^{\circ} \mathrm{C}$, and the mixture was allowed to warm to RT over 1 h . The organic solvent was removed under vacuum. The crude material was purified by column chromatography on silica gel ( $\mathrm{Et}_{2} \mathrm{O} / n$-pentane, $10 \%$ to $20 \%$ ) to afford the desired product (11) as a colorless oil ( $62 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+23.8\left(c=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{dt}$, $J=6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (ddd, $J=11.4,10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46$ (m, $1 \mathrm{H}), 2.42-2.21(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dt}, J=13.3,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80$ (ddd, $J=13.5,8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=220.9,168.8,135.5,133.0,132.0,131.0,85.6,55.8$, 54.8, 48.7, 45.2, 40.9, 34.1, 31.1 ppm ; HRMS (APPI+): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}: 259.13287[M+\mathrm{H}]^{+}$; found: 259.13288 .

## Acknowledgements

Financial support from The Netherlands Organization for Scientific Research (NWO-CW) and the Dutch National Research School Combination Catalysis Controlled by Chemical Design (NRSC-Catalysis) is gratefully acknowledged. B.M. thanks the China Scholarship Council for financial support (No. 2008618001). We thank Prof. Dr. A. J. Minnaard for fruitful discussions and M. Smith (GC and HPLC) and T. D. TiemersmaWegman (HRMS) for providing technical assistance.
[1] For a review on the synthesis of cyclic alcohols, see: a) A. R. Burns, R. J. K. Taylor, Synthesis 2011, 5, 681-707. For representative examples of the synthesis of cyclic and bicyclic alcohols, see: b) S. D. Burke, D. N. Deaton, Tetrahedron Lett. 1991, 32, 4651-4654; c) T. Sammakia, D. M. Johns, G. Kim, M. A. Berliner, J. Am. Chem. Soc. 2005, 127, 6504-6505; d) Y. Zheng, Y. Shen, Org. Lett. 2009, 11, 109-112; e) Y. Shiina, Y. Tomato, M. Miyashita, K. Tanino, Chem. Lett. 2010, 39, 835-837; f) K. Tanino, M. Takahashi, Y. Tomata, H. Tokura, T. Uehara, T. Narabu, M. Miyashita, Nat. Chem. 2011, 3, 484-488; g) V. Sikervar, P. L. Fuchs, Org. Lett. 2012, 14, 2922-2924.
[2] For selected reviews of sesquiterpenoids, see: a) A. C. Spivey, M. Weston, S. Woodhead, Chem. Soc. Rev. 2002, 31, 43-59; b) Z. J. Zhan, Y. M. Ying, L. F. Ma, W. G. Shan, Nat. Prod. Rep. 2011, 28, 594-629.
[3] For selected examples on the asymmetric synthesis of cyclic alcohols starting from the chiral pool, see: a) B. M. Trost, P. Seoane, S. Mignani, M. Acemoglu, J. Am. Chem. Soc. 1989, 111, 7487-7500; b) Y. Chen, J. B. Evarts, E. Torres, P. L. Fuchs, Org. Lett. 2002, 4, 3571-3574. For an example on the synthesis of cyclic alcohols from chiral auxiliaries, see: c) M. C. Carreño, J. L. García Ruano, M. Garrido, M. P. Ruiz, G. Solladié, Tetrahedron Lett. 1990, 31, 6653-6656; for a representative example of the CBS reduction of cyclohexenones, see: d) S. B. Herzon, A. G. Meyers, J. Am. Chem. Soc. 2005, 127, 5342-5344.
[4] For reviews on diversity-oriented synthesis, see: a) M. D. Burke, S. L. Schreiber, Angew. Chem. 2004, 116, 48-60; Angew. Chem. Int. Ed. 2004, 43, 46-58; b) T. E. Nielsen, S. L. Schreiber, Angew. Chem. 2008, 120, 52-61; Angew. Chem. Int. Ed. 2008, 47, 48-56.
[5] For reviews on the copper-catalyzed allylic asymmetric alkylation reaction, see: a) Modern Organocopper Chemistry, (Eds.: N. Krause), Wiley-VCH, Weinheim, 2002; b) H. Yorimitsu, K. Oshima, Angew. Chem. 2005, 117, 4509-4513; Angew. Chem. Int. Ed. 2005, 44, 44354439 ; c) C. A. Falciola, A. Alexakis, Eur. J. Org. Chem. 2008, 37653780; d) S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008, 108, 2824-2852; e) A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 2008, 108, 2796-2823; f) Z. Lu, S. M. Ma, Angew. Chem. 2008, 120, 264-303; Angew. Chem. Int. Ed. 2008, 47, 258-297; g) J. F. Teichert, B. L. Feringa, Angew. Chem. 2010, 122, 2538-2582; Angew. Chem. Int. Ed. 2010, 49, 2486-2528. For recent examples, see: h) K. B. Selim, Y. Matsumoto, K. Yamada, K. Tomioka, Angew. Chem. 2009, 121, 8889-8891; Angew. Chem. Int. Ed. 2009, 48, 8733-8735; i) K. Akiyama, F. Gao, A. H. Hoveyda, Angew. Chem. 2010, 122, 429433; Angew. Chem. Int. Ed. 2010, 49, 419-423; j) J.-B. Langlois, A. Alexakis, Angew. Chem. 2011, 123, 1917-1921; Angew. Chem. Int. Ed. 2011, 50, 1877-1881; k) M. Fañanás-Mastral, B. ter Horst, A. J. Minnaard, B. L. Feringa, Chem. Commun. 2011, 47, 5843-5845; 1) M. Giannerini, M. Fañanás-Mastral, B. L. Feringa, J. Am. Chem. Soc. 2012, 134, 4108-4111.
[6] a) K. Geurts, S. P. Fletcher, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 15572-15573; b) B. Mao, K. Geurts, M. Fañanás-Mastral, A. W. van Zijl, S. P. Fletcher, A. J. Minnaard, B. L. Feringa, Org. Lett. 2011, 13, 948-951.
[7] For related transformations on other types of allyl substrates, see: a) J. F. Teichert, S. Zhang, A. W. van Zijl, J. W. Slaa, A. J. Minnaard, B. L. Feringa, Org. Lett. 2010, 12, 4658-4660; b) V. Hornillos, A. W. van Zijl , B. L. Feringa, Chem. Commun. 2012, 48, 3712-3714
[8] For selected reviews on metal-mediated or -catalyzed cyclization reactions, see: a) Handbook of Cyclization Reactions (Ed.: S. Ma), Wiley-VCH, Weinheim, 2009; b) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49-92; c) L. Yet, Chem. Rev. 2000, 100, $2963-$ 3007. For a review on organocatalytic cyclization reactions, see: A. Moyano, R. Rios, Chem. Rev. 2011, 111, 4703-4832.
[9] a) A. Alexakis, K. Croset, Org. Lett. 2002, 4, 4147-4149; b) F. Giacomina, D. Riat, A. Alexakis, Org. Lett. 2010, 12, 1156-1159.
[10] For an example of copper-catalyzed AAA with alkynyl-aluminum reagents, see: a) J. A. Dabrowski, F. Gao, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 4778-4781. For examples that use stoichiometric amounts of cuprates, see: b) Y. Kiyotsuka, Y. Kobayashi, J. Org. Chem. 2009, 74, 7489-7495; c) Q. Wang, Y. Kobayashi, Org. Lett. 2011, 13, 6252-6255.
[11] For recent examples of the copper-catalyzed reactions of alkynes, see: a) H. Ohmiya, U. Yokobori, Y. Makida, M. Sawamura, Org. Lett. 2011, 13, 6312-6315; b) A. L. Moure, R. Gómez Arrayás, D. J. Cárdenas, I. Alonso, J. C. Carretero, J. Am. Chem. Soc. 2012, 134, 7219-7222; c) R. Kazem Shiroodi, A. S. Dudnik, V. Gevorgyan, J. Am. Chem. Soc. 2012, 134, 6928-6931.
[12] For selected reviews on ring-closing olefin metathesis, see: a) M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124-2144; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056; b) R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413-4450; c) A. Fürstner, Angew. Chem. 2000, 112, 3140-3172; Angew. Chem. Int. Ed. 2000, 39, $3012-$ 3043 ; d) T. Gaich, J. Mulzer, Curr. Top. Med. Chem. 2005, 5, $1473-$ 1494; e) S. K. Chattopadhyay, S. Karmakar, T. Biswas, K. C. Majumdar, H. Rahaman, B. Roy, Tetrahedron 2007, 63, 3919-3952; f) A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243-251; g) C. Samojlowicz, M. Bieniek, K. Grela, Chem. Rev. 2009, 109, 3708-3742; h) G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 17461787.
[13] For selected examples of the enantioselective synthesis of cyclic benzoate esters, see: a) M. B. Andrus, Z. Zhou, J. Am. Chem. Soc. 2002, 124, 8806-8807; b) S. K. Ginotra, V. K. Singh, Org. Biomol. Chem. 2006, 4, 4370-4374; c) M. P. A. Lyle, P. Wilson, Org. Biomol. Chem. 2006, 4, 41-43; d) Y. Demizu, K. Matsumoto, O. Onomura, Y. Matsumura, Tetrahedron Lett. 2007, 48, 7605-7609; e) D. R. Boyd, N. D. Sharma, L. Sbircea, D. Murphy, T. Belhocine, J. F. Malone, S. L. James, C. C. R. Allen, J. T. G. Hamilton, Chem. Commun. 2008, 5535-5537.
[14] a) K. Hayakawa, K. Aso, M. Shiro, K. Kanematsu, J. Am. Chem. Soc. 1989, 111, 5312-5320; b) S. Akai, K. Tanimoto, Y. Kita, Angew. Chem. 2004, 116, 1431-1434; Angew. Chem. Int. Ed. 2004, 43, $1407-$ 1410; c) J. Ramharter, J. Mulzer, Org. Lett. 2009, 11, 1151-1153; d) J. Ramharter, J. Mulzer, Org. Lett. 2011, 13, 5310-5313; e) J. Ramharter, J. Mulzer, Eur. J. Org. Chem. 2012, 2041-2053.
[15] For reviews on ring-closing enyne metathesis, see: a) S. T. Diver, A. J. Giessert, Chem. Rev. 2004, 104, 1317-1382; b) S. T. Diver, J. Mol. Catal. A 2006, 254, 29-42; c) H. Villar, M. Frings, C. Bolm, Chem. Soc. Rev. 2007, 36, 55-66; d) S. P. Nolan, H. Clavier, Chem. Soc. Rev. 2010, 39, 3305-3316; e) M. Tori, R. Mizutani, Molecules 2010, 15, 4242-4260.
[16] For selected reviews on the Diels-Alder reaction, see: a) H. B. Kagan, O. Riant, Chem. Rev. 1992, 92, 1007-1019; b) B. R. Bear, S. M. Sparks, K. J. Shea, Angew. Chem. Int. Ed. 2001, 40, 820 ; c) K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem. 2002, 114, 1742-1773; Angew. Chem. Int. Ed. 2002, 41, 1668-1698; d) K. Takao, R. Munakata, K. Tadano, Chem. Rev. 2005, 105, 4779-4807; e) S. B. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359-5406. For representative examples of the stereoselective synthesis of complex molecules that rely on the combination of allylic asymmetric alkylation and Diels-Alder reactions, see: f) M. Schelwies, A. Farwick, F. Rominger, G. Helmchen, J. Org. Chem. 2010, 75, 7917-7919; g) M. Gärtner, D. Kossler, D. Pflästerer, G. Helmchen, J. Org. Chem. 2012, 77, 4491-4495.
[17] For reviews on the Pauson-Khand reaction, see: a) O. Geis, H.-G. Schmalz, Angew. Chem. 1998, 110, 955-958; Angew. Chem. Int. Ed. 1998, 37, 911-914; b) K. M. Brummond, J. L. Kent, Tetrahedron

2000, 56, 3263-3283; c) J. Fletcher, S. R. D. Christie, J. Chem. Soc. Perkin Trans. 1 2001, 1-13; d) S. E. Gibson, A. Stevenazzi, Angew. Chem. 2003, 115, 1844-1854; Angew. Chem. Int. Ed. 2003, 42, 18001810; e) J. Blanco-Urgoiti, L. Añorbe, L. Pérez-Serrano, G. Domínguez, J. Pérez-Castells, Chem. Soc. Rev. 2004, 33, 32-42; f) T. Shibata, Adv. Synth. Catal. 2006, 348, 2328-2336. For representative examples of the stereoselective synthesis of complex molecules based on the combination of allylic asymmetric alkylation and PausonKhand reactions, see: g) A. Farwick, J. U. Engelhart, O. Tverskoy, C. Welter, Q. A. Umlauf, F. Rominger, W. J. Kerr, G. Helmchen, Adv. Synth. Catal. 2011, 353, 349-370.
[18] For the construction of eight-membered carbocyclic rings by ringclosing metathesis, see: a) S. J. Miller, S. H. Kim, Z. R. Chen, R. H. Grubbs, J. Am. Chem. Soc. 1995, 117, 2108-2109. For a review, see: b) A. Michaut, J. Rodriguez, Angew. Chem. 2006, 118, 5870-5881; Angew. Chem. Int. Ed. 2006, 45, 5740-5750.
[19] This effect on the enantioselectivity of the reaction could be attributed to a possible intermolecular coordination of the alkyne group that is present on the Grignard reagent to the copper complex. A faster addition would provide a greater amount of the alkyne in the reaction solution, which would facilitate the intermolecular coordination. On the other hand, the slow addition avoids the accumulation of the alkyne-bearing Grignard reagent, because it is consumed by the catalytic reaction.
[20] C. A. Falciola, K. Tissot-Croset, A. Alexakis, Angew. Chem. 2006, 118, 6141-6144; Angew. Chem. Int. Ed. 2006, 45, 5995-5998.
[21] a) M. Mori, N. Sakakibara, A. Kinoshita, J. Org. Chem. 1998, 63, $6082-6083$; b) T. Kitamura, Y. Sato, M. Mori, Adv. Synth. Catal. 2002, 344, 678-693.
[22] The moderate yield ( $43 \%$ ) of isolated product $\mathbf{8} \mathbf{a}$ is possibly due to volatility problems.
[23] a) S. J. Hecker, C. H. Heathcock, J. Org. Chem. 1985, 50, 51595166 ; b) R. L. Beingessner, J. A. Farand, L. Barriault, J. Org. Chem. 2010, 75, 6337-6346; c) M. C. Carreno, A. Urbano, J. Fischer, Angew. Chem. 1997, 109, 1695-1697; Angew. Chem. Int. Ed. Engl. 1997, 36, 1621-1623.
[24] M. J. Fisher, W. J. Hehre, S. D. Kahn, L. E. Overman, J. Am. Chem. Soc. 1988, 110, 4625-4633.
[25] a) J. Adrio, M. Rodríguez Rivero, J. C. Carretero, Angew. Chem. 2000, 112, 3028-3031; Angew. Chem. Int. Ed. 2000, 39, 2906-2909; b) J. Adrio, M. Rodríguez Rivero, J. C. Carretero, Chem. Eur. J. 2001, 7, 2435-2448.
[26] CCDC-889474 (10a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[27] For a review on the formation of quaternary centers by metal-catalyzed asymmetric conjugate addition, see: a) C. Hawner, A. Alexakis, Chem. Commun. 2010, 46, 7295-7306. For a selected example of a conjugate addition that involves cuprate reagents to generate all-carbon quaternary centers on the bridgehead carbon atom, see: b) L. A. Paquette, P. G. Meister, D. Friedrich, D. R. Sauer, J. Am. Chem. Soc. 1993, 115, 49-56.
[28] Y. Nishimoto, M. Kajioka, T. Saito, M. Yasuda, A. Baba, Chem. Coтmии. 2008, 6396-6398.
[29] a) M. Lombardo, S. Morganti, C. Trombini, J. Org. Chem. 2003, 68, 997-1006; b) M. Lombardo, R. Girotti, S. Morganti, C. Trombini, Chem. Commun. 2001, 2310-2311.

Received: August 9, 2012
Revised: October 25, 2012
Published online: November 29, 2012


[^0]:    [a] B. Mao, Dr. M. Fañanás-Mastral, Prof. Dr. B. L. Feringa Stratingh Institute for Chemistry
    University of Groningen
    Nijenborgh 4, 9747 AG Groningen (The Netherlands)
    Fax: (+31) 50-363-4296
    E-mail: b.l.feringa@rug.nl
    [b] Dr. M. Lutz
    Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht (The Netherlands)Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem. 201202859.

