A Convenient and Highly Stereoselective Synthesis of 4α-Deuterio and -Tritio Steroids Catalyzed by Pd

Michael H. Rabinowitz[†]

Department of Chemistry, Stanford University, Stanford, CA 94305

Key Words: 4 α -Deuterio Steroid; 4 α -Tritio Steroid; 4 β -Tritio Steroid; π -Allylpalladium; Stereospecific Tritiation

Abstract: A simple and highly surreoselective synthesis of $[4\alpha^{-2}H]$ - and $[4\alpha^{-3}H]$ - Δ^5 -3 β -hydroxysteroids is presented. Palladium(0)-mediated borodeuteride reduction of readily-available cholest-5-en-3 β ,4 β -diol cyclic carbonate provides [4 $\alpha^{-2}H$]- Δ^5 -and Δ^4 -cholesterol in a 12:1 ratio. Reduction of $[4\alpha^{-3}H]$ -cholest-5-ene-3 β ,4 β -diol cyclic carbonate with NaB¹H4 and Pd(0) resulted in [4 β^3 H]-cholesterol.

Chemical studies of the biosynthesis of natural products have frequently relied upon the employment of regio- and stereospecifically isotopically-substituted natural compounds to aid in the elucidation of metabolic pathways.¹ The fate of a particular labile atom during the metabolism of a biological compound has often been ascertained in this way. In addition, isotopic substitution of atoms which are known to be non-labile also provides information on the metabolic fate of the molecule as a whole.

In the course of our studies on the biosynthesis of 19-nor sterols in the marine sponge Axinella polypoides, it became necessary to determine the fate of sterol hydrogen atoms in the 4α and 4β positions during the biological conversion of dietary cholesterol (2a) into 19-nor- 5α -cholestan- 3β -ol.²

4β-Deuterio-, and 4β-tritio-cholesterols are well known and are readily available from cholesterol through simple transformations.³ Their 4 α analogs (2b and 2c) have also been reported,⁴ but the synthesis used has subsequently been shown to be invalid.⁵ Indeed, we have independently verified that borohydride reduction of 4-ketocholesteryl benzoate gives less than 7% of the desired 4β-alcohol, the key intermediate in the reported preparation of 4 α -deuterio and -tritio steroids. The major product of the reduction, the 4 α alcohol, is not transformed to cholesterol under the reported conditions.⁴ Only one other protocol for the preparation of [4 α -nH]- Δ ⁵ steroids has been published,⁶ and it is not readily applicable for tritiation.

This paper reports a new procedure for the stereospecific introduction of deuterium or tritium into the 4α position of Δ^5 steroids based on the pioneering work of Hutchins et al.,^{7a} and Jones and Knox.^{7b}

Reduction of cholest-5-ene-3 β ,4 β -diol cyclic carbonate⁸ (1) with sodium borohydride in the presence of 10 mole% tetrakis(triphenylphosphine)palladium(0) provides 82% of a 25:1 mixture of cholesterol, **2a**, and Δ^4 -cholesterol, **3a** (Table, entry A). Also produced is cholesta-3,5-diene (4) in 3-16% yield (MS = 368.3(2.5%), 313.0(2.5), 256.3(12.5), 207.1(100), 185.1(25), 129.1(87.5), 109.1(35), 61.0(100), 55.1(82.5); ¹H nmr (200 MHz) δ 0.697 (s;3H), 0.858 (d;6H;J=6.6Hz), 0.914 (d,3H,J=6.5Hz), 0.946 (s;3H), 5.39 (bs;1H), 5.60 (m;1H), 5.924 (bd,1H,J=9.2Hz)) which presumably arises from carbonate elimination in the intermediate π -

allylpalladium species (submission of the other reaction products to the reaction conditions fails to produce this diene). The 3 β ,4 β -diol resulting from phosphine-promoted cleavage of the starting material was also present in the product mixture. The analogous reaction with sodium borodeuteride resulted in a 12:1 mixture of [4 α -2H]-cholesterol, ^{9a} 2b, and [6 α -2H]- Δ ⁴-cholesterol, **3b**^{9b} (Table, entry E). This protocol was also used for the 4 α -deuteration and tritiation of steroid carbonates 5^{10a} and 6^{10b} to provide Δ ⁵-sterols 7b^{9c} and 8b.^{9d}

Table, Reduction of Steroidal Carbonate 1.

Conditions				Product Yields*				
Entry	Temp.	Ligand	Reducing Agent	2	3	4	3β,4β-Diol	Recovered Starting Material
A	RT	Ph ₃ P	NaB ¹ H4	79% (25)	3% (1)	9%	9%	0
B	RT	Ph ₃ P	NaB ² H4	19% (9)	2% (1)	6.8%	45%	27%
С	RT	dppe	NaB ¹ H₄	61% (6.5)	9% (1)	4%	26%	0
D	RT	dppe	NaB ² H4	64% (5.3)	12% (1)	8.2%	16%	0
E	70 ⁰ C	Ph ₃ P	NaB ² H4	58% (12)	5% (1)	16%	21%	0
F	70 ⁰ C	dppe	NaB ² H4	64% (3.9)	16% (1)	3%	16%	0

* As determined by 400 MHz ¹H nmr. Numbers in parenthesis refer to product ratios.

In a typical reaction,^{7a} 1⁸ (1 eq.) was added via syringe to a stirred solution of $(Ph_3P)_4Pd$ (0.1 eq.), and Ph_3P (0.7 eq.) in THF under argon (final concentration of substrate = 0.05 M). Sodium borodeuteride (2 eq) was added to the reaction mixture under argon then stirred at 75° C under Ar. Reaction was usually complete after 2-3 h. The Table shows product yields and $\Delta^5:\Delta^4$ product ratios for varying conditions of temperature, added ligand, and reducing agent.

The most notable finding is that there is a pronounced deuterium-isotope effect. With sodium borohydride as the reducing agent, the reaction is complete at room temperature in 2-3 hours. Upon reduction of 1 with 80 equivalents of a 1:1 mixture of $NaB^{1}H_{4}$ and $NaB^{2}H_{4}$, a 2.3:1 ratio of cholesterol to deuteriocholesterol was obtained. After reduction of 1 with sodium borotritide, steroidal alcohol 2c had a

specific activity of 120 mCi/mmole-³H whereas that of the reagent was 350 mCi/mmole-³H, indicating a tritium content that is almost one third that of the borotritide reagent. It is possible that the rate-limiting step for this reaction involves either the formation or reductive elimination of a π -allylpalladium(II) hydride intermediate.¹¹

This reaction could also be performed with the generation of (Ph₃P)₄Pd *in situ* through a premixing of Pd₂(dba)₃CHCl₃¹² and Ph₃P. While this method provides slighly higher yields it is incompatable for tritiation as the borotritide reagent is wasted on the reduction of dibenzylideneacetone.

That this reaction does not involve palladium-mediated oxidation¹³ at C-3 followed by borohydride reduction of the resulting ketone is suggested by the fact that no deuterium at C-3 was observed in the ²H nmr spectrum of **2b** and also because the ¹H nmr spectrum of the product mixture showed no evidence of the presence of 3α -hydroxy cholesterol.

Determination of Stereochemical Purity

Both 400 MHz ¹H nmr as well as ²H nmr fail to resolve the 4 α and 4 β protons in **2b** sufficiently to allow for quantitation of deuterium incorporation. Oxidation of the benzoate of [4 α -²H]-cholesterol (¹H nmr 400 MHz: δ = 2.22 ppm; m; 1.13 H; C-4 protons) with SeO₂, which has been shown to provide 4 β -hydroxy steroids without randomization of the hydrogen atoms at C-4,^{4b} provided [4 α -²H]-cholest-5-ene-3 β ,4 β -diol 3benzoate whose ¹H nmr spectrum showed a 4 α -proton resonance (δ = 4.39 ppm; bd; J = 2.3 Hz) with an area equal to 0.12 protons, indicating a stereospecificity of deterium introduction of at least 99%.

This procedure was also used for the synthesis of $[4\beta^{-3}H]$ -cholesterol. Oxidation of the benzoate of 2a (9, specific activity = 28 mCi/mmol) with SeO₂^{4b} resulted in $[4\alpha^{-3}H]$ -4 β -hydroxycholest-5-en-3 β -yl benzoate (specific activity = 26 mCi/mmol). Conversion to $[4\alpha^{-3}H]$ -cholest-5-ene-3 β ,4 β -diol cyclic carbonate (10) was accomplished by reduction with LAH and treatment with carbonyldiimidazole. Reduction of this carbonate with NaB¹H₄ in the presence of 10 mol% (Ph₃P)₄Pd, and Ph₃P at 70°C produced a 5:1 mixture of $[4\beta^{-3}H]$ -cholesterol (11) and $[4^{-3}H]$ - Δ^4 -cholesterol in 84% radiochemical yield which were readily purified by reverse phase HPLC. Oxidation of 11 with SeO₂^{4b} resulted in the complete loss of tritium.

 $[4\alpha$ -nH] Δ^5 -3 β -Hydroxy steroids can also be converted to their [4-nH]- Δ^4 -3-keto steroid analogs by oxidation with PCC followed by treatment with dilute ethereal HCl at 0°C without loss of the isotopic label.¹⁴ Due to the known lability of the steroidal 4 β hydrogen atom during many biological transformations that involve Δ^5 to Δ^4 isomerization (such as the biosynthesis of testosterone,¹⁵ progesterone,¹⁶ and corticosteroid¹⁶) this procedure may prove to be useful as a convenient general method for precursor labelling in isotope tracer experiments.

Acknowledgements: Financial support was provided by NIH Grant No. GM-06840. I would like to thank Professor Carl Djerassi for support for this work; the University of California, San Francisco, Mass Spectrometry Facility (Dr. A.L. Burlingame, Director, NIH Grant No. NIH P-41 RR01614) for high resolution mass spectra; and Professor Barry M. Trost for helpful discussions regarding this work.

REFERENCES AND NOTES

- Present address: Department of Chemistry, University of California, Irvine, CA 92717.
- Wang, C.H.; Willis, D.L.; Loveland, W.D. Radiotracer Methodology in the Biological, Environmental and Physical Sciences; 1. Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 1975.
- 2. Minale, L.; Persico, D.; Sodano, G. Experientia, 1979, 35, 296.
- 3.
- Ireland, R.E.; Wrigley, T.I.; Young, W.G. J. Am. Chem. Soc. 1959, 81, 2818. a. Smith, A.G.; Brooks, C.J.W. Biochem. J. 1977, 167, 121. b. Lockley, W.J.S.; Rees, H.H.; Goodwin, T.W.; J. Lab. 4 Compounds Radiopharm. 1978, 15, 413. c. Akhtar, M.; Calder, M.; Smith, T.; Wright, J.N. Biochem. J. 1980, 185, 411. d. Achmatowicz, S.; Barton, D.H.R.; Magnus, P.D.; Poulton, G.A.; West, P.J. J. Chem, Soc. Perkin Trans. 1. 1973, 1567.
- 5 Viger, A.; Marquet, A.; Barton, D.H.R.; Motherwell, W.B.; Zard, S.Z. J. Chem. Soc. Perkin Trans. 1, 1982, 1937.
- Viger, A.; Coustal, S.; Marquet, A. Tetrahedron, 1978, 34, 3285. 6.
- 7. a. Hutchins, R.O.; Learn, K.; Fulton, R.P. Tetrahedron Lett. 1980, 21, 27. b. Jones, D.N.; Knox, S.D. J. Chem. Soc. Chem. Comm. 1975, 165.
- 8. Sholtissek, C. Chem. Ber. 1956, 89, 2562.
- 9. a. 2b: ¹H nmr (400 MHz) δ 0.67 (s,3H), 1.00 (s,3H), 2.21 (bd,J=10.4Hz,1H), 3.52 (ddd,J-11.2,11.2,4.1Hz,1H), 5.35 (dd J=3.2,2.0Hz,1H); HRMS calcd for C27H45O²H 387.3611, found 387.3630; ²H nmr (61.4 MHz) & 2.27 ppm, (cf. [4B-²H]-cholesterol³ δ 2.22 ppm).

b. 3b: ¹H nmr (400 MHz) δ 0.673 (s,3H), 0.853 (d,3HJ=9.2Hz), 0.861 (d,3HJ=6.4Hz), 0.897 (d,3HJ=6.4Hz), 1.045 (s,3H), 2.17 (bd,1H,J=18Hz), 4.15 (m,1H); 5.269 (d,1H,J=1.6Hz); HRMS caled 387.3611, found 387.3597. MS: 387(9.6%), 369(31.2), 317(24.1), 204(19.5), 162(21.9), 161(21.2), 147(45.8), 135(40.2), 107(100).

c. 7b: ¹H nmr (200 MHz) δ -0.001 (s,3H), 0.007 (s,3H), 0.710(s,3H), 0.873 (s,9H), 1.011(s,3H), 2.214 (bd,1H,J=12.8Hz), 3.52 (m,1H), 3.546 (tJ=8,2Hz), 5.34 (m,1H); HRMS calcd for C25H43O2²HSi 405,3174, found 405,3133.

d. 8b: ¹H nmr (400 MHz) 8 0.072 (s, 9H, Me3Si), 0.699 (s, 3H, 18-Mc), 0.857 (d, 3H, J=6.6, 26-Mc), 0.861 (d, 3H, J=6.6, 27-Me), 0.909 (d, 3H, J=6.5, 21-Me), 2.19 (m, 1.10H, 4-H2), 3.521 (d, 1H, J=10.6, 19-H), 3.55 (m, 1H, 3-H), 3.761 (d, 1H, J=10.6, 19-H'), 5.58 (m, 1H, 6-H); HRMS calcd for C30H51²HOSi (M⁺-H₂O) 457.3850, found 457.3849,

- 10. a. Compound 5 was prepared from androst-5-ene-38,178-diol 17-1-butyldimethylsilyl ether 3-benzoate by SeO2 oxidation to provide androst-5-ene-3B,4B,17B-triol 17-t-butyldimethylsilyl ether 3-benzoate (mp=173-174°C) in 52% yield which was reduced with LAH to give a diol. Heating in toluene with carbonyldiimidazole provided androst-5-ene-38,48,178-triol 17-tbutyldimethylsilyl ether 3.4-cyclic carbonate in 75% yield for the two steps (mp = 205-206°C): ¹H nmr 400 MHz: δ -0.002 (s,5H), 0.004 (s,3H), 0.730 (s,3H), 0.872 (s,9H), 1.123(s,3H), 2.199 (dt,1H,J=18,4.8Hz), 3.553 (t,1H,J=8.2), 4.688(q,1H,J=13,7.0Hz), 4.937 (dd,1H,J=7.1,1.8Hz), 5.912 (dd,1H,J=4.5,2.3Hz); ¹³C nmr (75 MHz): 8 -5.1, -4.8, 11.0, 17.8, 20.3, 21.7, 23.2, 24.3, 25.6, 30.3, 30.7, 31.3, 31.5, 35.9, 36.8, 43.1, 48.0, 51.1, 76.3, 81.6, 82.7, 134.8, 135.5, 201.0; HRMS calcd for C22H33O4Si (M+ -C4H9) 389.2148, found 389.2136.
 - b. Compound 6 was prepared from 19-hydroxycholesterol by SeO2 oxidation to provide cholest-5-ene-3β,4β,19-triol in 42% yield (mp 182-183°C): ¹H nmr (400 MHz) δ 0.694 (s,3H), 0.853 (d,3H,J=6.6Hz), 0.858 (d,3H,J=6.6Hz), 0.899 (d,3H,J=6.5Hz), 2.162 (ddd,1H,J=18.6,5.8,4.7Hz), 3.62 (m,1H), 3.693 (d,1H,J=10.8Hz), 3.817 (d,1H, J=10.8Hz), 4.12 (dd,1H,J=3.4,1.1Hz), 5.952 (dd,1H, J=4.7,2.6Hz); ¹³C nmr (100 MHz): δ 12.0, 18.7, 21.2, 22.5, 22.8, 23.8, 24.1, 26.2, 26.2, 27.8, 27 28.0, 28.2, 31.8, 32.5, 33.9, 35.7, 36.1, 39.5, 39.8, 40.7, 42.3, 50.4, 56.0, 57.6, 66.1, 71.9, 76.5, 133.1, 137.9; HRMS calcd for C27H44O2 (M⁺-H2O) 400.3341, found 400.3349. The triol was converted to 6 by reaction with carbonyldiimidazole followed by mild aqueous hydrolysis with dilute KOH to provide cholest-5-ene-3β,4β,19-triol 3,4-cyclic carbonate in 94% yield from the triol: ¹H nmr (200 MHz) & 0.743 (s,1H), 0.851 (d,6H,J=6,6Hz), 0.904 (d,3H,J=6.5Hz), 3.708 (d,2H,J=2.3Hz), 4.80 (m,1H), 5.025(d,1H,J= 7.7Hz), 6.191 (dd,1H,J=4.1,2.8Hz); HRMS calcd for C28H44O4 444.3240, found 444.3255. Silylation with N,O-bis(trimethylsilyl)acetamide in refluxing CHCl3 produced 6 in 90% isolated yield: ¹H nmr (200 MHz) δ 0.072 (s,9H), 0.719 (s,3H), 0.855 (d,6H,J=6.6Hz), 0.907 (d,3H,J=6.4Hz), 3.623 (dd,2H,J=14.7,10.7), 4.75 (m,1H), 5.485 (d,1H,J=7.6Hz), 6.06 (m,1H); ¹³C nmr (50 MHz) 8 -0.09, 11.8, 18.4, 21.3, 22.4, 22.6, 23.6, 23.9, 24.3, 24.7, 27.8, 28.1, 31.3, 31.8, 35.6, 36.0, 39.4, 39.9, 40.8, 42.5, 47.5, 55.9, 57.4, 64.9, 76.5, 82.7, 131.3, 137.7 (OCO-O unobserved)
- 11. Such a species is postulated in the analogous reduction with formate: Tsuji, J.; Yamakawa, T. Tetrahedron Lett. 1979, 7, 613.
- 12. Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J.J.; Ibers, J.A. J. Organomet. Chem. 1974, 65, 253.
- Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1984, 25, 2791. 13.
- de la Mare, P.D.B.; Wilson, R.D. J. Chem. Soc. Perkin Trans. II, 1977, 157. 14
- 15. Weintraub, H.; Vincent, F.; Baulieu, E.E.; Alsen, A. Biochemistry, 1977, 16, 5045.
- 16. Werbin, H.; Chaikoff, L.L. Biochim. Biophys. Acta, 1964, 82, 581.

(Received in USA 24 May 1991; accepted 27 August 1991)