ISSN 1070-4280, Russian Journal of Organic Chemistry, 2013, Vol. 49, No. 3, pp. 469–471. © Pleiades Publishing, Ltd., 2013. Original Russian Text © Yu.S. Kudyakova, D.N. Bazhin, Ya.V. Burgart, V.I. Saloutin, O.N. Chupakhin, 2013, published in Zhurnal Organicheskoi Khimii, 2013, Vol. 49, No. 3, pp. 481–482.

Dedicated to Full Member of the Russian Academy of Sciences I.P. Beletskaya on her jubilee

Perfluoroalkylation of Unsaturated Compounds in the Presence of Copper(II) Salen Complexes

Yu. S. Kudyakova, D. N. Bazhin, Ya. V. Burgart, V. I. Saloutin, and O. N. Chupakhin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, ul. Akademicheskaya/S. Kovalevskoi 22/20, Yekaterinburg, 620990 Russia e-mail: kud@ios.uran.ru

Received January 17, 2013

DOI: 10.1134/S1070428013030263

Introduction of perfluoroalkyl groups into molecules of organic compounds essentially changes their physicochemical properties and extends the scope of their practical applications [1–3]. Organometallic catalysis provides an important tool for performing perfluoroalkylation reactions, and variation of the reaction conditions and ligand nature is a significant factor affecting the yield and product structure [4–8]. For example, catalysis of reactions of alkenes with perfluoroalkylating agents by copper(I) and copper(II) salts in the presence of different ligands leads to the formation of functionalized trifluoromethyl-substituted compounds [4, 5].

We previously synthesized transition metal salen complexes, namely {ethyl 2-[2-(2-hydroxyphenylmethylideneamino)phenylaminatomethylidene]-3-oxo-3-(polyfluoroalkyl)propionato}copper(II) I and II [9]. In the present communication we report on the use of complexes I and II as catalysts in radical addition of perfluoroalkyl iodides to unsaturated compounds. In fact, copper(II) complexes I and II efficiently catalyzed reactions of perfluoroalkyl iodides IIIa and IIIb with alkenes IV–VI and with propargyl alcohol VII, and the corresponding addition products VIIIa, VIIIb, IXb, Xb, XIa, and XIb were obtained in good yields (70–91%) under mild conditions. No reaction occurred in the absence of a catalyst and/or radical initiator.

Presumably, complexes I and II promote decomposition of hydrogen peroxide to produce hydroxyl radicals HO' which initiate radical addition of perfluoroalkyl iodides to unsaturated compounds. Complex II ensured somewhat higher yields than did complex I, i.e., the catalyst with a longer fluorinated carbon chain is more efficient.

Perfluoroalkylation of unsaturated compounds (*genral procedure*). Complex I, 5 mol %, was added to a mixture of 0.10 mol of perfluoroalkyl iodide IIIa or IIIb and 0.10 mol of unsaturated compound IV–VII in 30 ml of acetonitrile, 20 ml of 38% hydrogen peroxide was then added dropwise, and the mixture was stirred

 $R_F = C_4F_9$ (a), $C_3F_7OCF(CF)_3CF_2OCF(CF_3)$ (b); IV, VIII, R = OH; V, IX, R = OAc; VI, X, $R = H(CH_2)_7$; I, $R' = CF_3$; II, $R = H(CF_2)_2$; *i*: MeCN, 38% H₂O₂, complex I or II (5 mol %), 25°C.

for 2 h. The product was extracted into chloroform $(3 \times 50 \text{ ml})$, the extract was washed with water and dried over sodium sulfate, and the solvent was distilled off.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-iodoheptan-1-ol (VIIIa). Yield 28.3 g (70%), reddish oily substance, bp 97–98°C (10 mm). ¹H NMR spectrum (CDCl₃), δ, ppm: 2.79 m and 3.08 m (1H each, CF₂CH₂), 3.76 m (2H, CH₂OH), 4.32 m (1H, CHI). ¹⁹F NMR spectrum (CDCl₃), $\delta_{\rm F}$, ppm: 35.95 q.t (2F, γ -F, ³ $J_{\rm FF}$ = 12.7, 3.8 Hz), 37.29 m (2F, β -F), 47.06 d.m and 49.86 d.m (1F each, CF₂CH₂, ² $J_{\rm FF}$ = 270.9 Hz), 80.79 t.t (3F, CF₃, ³ $J_{\rm FF}$ = 9.7, ⁴ $J_{\rm FF}$ = 3.2 Hz). Found, %: C 20.55; H 1.57; F 42.56. C₇H₆F₉IO. Calculated, %: C 20.81; H 1.50; F 42.32.

4,6,6,7,9,9,10,10,11,11,11-Undecafluoro-2-iodo-4,7-bis(trifluoromethyl)-5,8-dioxaundecan-1-ol (VIIIb). Yield 45.8 g (72%), yellow liquid, bp 85– 87°C (10 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.79 m and 3.08 m (1H each, CF₂CH₂), 3.76 m (2H, CH₂OH), 4.32 m (1H, CHI). ¹⁹F NMR spectrum (CDCl₃), δ_F , ppm: 17.02 m (1F, CF), 30.61 m (1F, CFCH₂), 32.27 m (2F, CF₃CF₂), 78.71 d.m (3F, CF₃, ³*J*_{FF} = 42.3 Hz), 80.50 m (6F, CF₃CF₂CF₂OCFCF₂), 81.61 m (3F, CF₃CFCF₂), 82.02 m (1F, CFCF₂). Found, %: C 20.70; H 1.03; F 50.66. C₁₁H₆F₁₇IO₃. Calculated, %: C 20.77; H 0.95; F 50.78.

4,6,6,7,9,9,10,10,11,11,11-Undecafluoro-2-iodo-4,7-bis(trifluoromethyl)-5,8-dioxaundecyl acetate (IXb). Yield 54.2 g (80%), colorless liquid. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.10 s (3H, CH₃), 2.83 m and 2.99 m (1H each, CFCH₂), 4.31 m (3H, CHICH₂O). ¹⁹F NMR spectrum (CDCl₃), δ_F , ppm: 17.10 m (1F, CF), 30.59 m (1F, CFCH₂), 32.33 m (2F, CF₃CF₂), 78.75 d.m (3F, CF₃, ³*J*_{FF} = 42.3 Hz), 80.45 m (6F, CF₃CF₂CF₂OCFCF₂), 80.57 m (3F, CF₃CFCF₂), 82.09 m (1F, CFCF₂). Found, %: C 29.95; H 1.13; F 47.77. C₁₃H₈F₁₇IO₄. Calculated, %: C 23.03; H 1.19; F 47.63.

1,1,2,2,3,3,5,6,6,8-Undecafluoro-10-iodo-5,8bis(trifluoromethyl)-4,7-dioxaoctadecane (Xb). Yield 58.9 g (82%), colorless liquid, bp 115–119°C (3 mm). ¹H NMR spectrum (CDCl₃), δ, ppm: 0.92 t (3H, Me, = J 7.1 Hz), 1.28–1.62 m [14H, (CH₂)₇], 2.56–2.63 m (2H, CH₂CI), 6.52 m, 6.72 m (1H, CFCH). ¹⁹F NMR spectrum (CDCl₃), δ_F, ppm: 17.10 m (1F, CF), 30.59 m (1F, CFCH₂), 32.33 m (2F, CF₃CF₂), 78.75 d.m (3F, CF₃, ³ J_{FF} = 42.3 Hz), 80.45 m (6F, CF₃CF₂CCF₂OCFCF₂), 80.57 m (3F, CF₃CFCF₂), 82.09 m (1F, CFCF₂). Found, %: C 30.01; H 2.83; F 45.07. C₁₈H₂₀F₁₇IO₂. Calculated, %: C 30.10; H 2.81; F 44.97.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-iodohept-2-en-1-ol (**XIa**). Yield 33.4 g (83%), reddish liquid, bp 105– 107°C (10 mm). ¹H NMR spectrum (CDCl₃), δ, ppm: 2.28–2.54 br.s (1H, OH), 4.35–4.37 m (2H, CH₂OH), 6.54 m, 6.77 m (1H, CH=). ¹⁹F NMR spectrum (CDCl₃), $\delta_{\rm F}$, ppm: 36.17 m (2F, γ-F, Z), 36.44 m (2F, γ-F, E), 37.56 m (2F, β-F, Z), 37.95 m (2F, β-F, E), 50.25 m (2F, α-F, E), 54.11 m (2F, α-F, Z), 81.03 t.t (3F, CF₃, E/Z, ⁴ $J_{\rm FF}$ = 9.7, ³ $J_{\rm FF}$ = 3.3 Hz). Found, %: C 20.95; H 1.07; F 42.46. C₇H₄F₉IO. Calculated, %: C 20.91; H 1.00; F 42.53.

4,6,6,7,9,9,10,10,11,11,11-Undecafluoro-2-iodo-4,7-bis(trifluoromethyl)-5,8-dioxaundec-2-en-1-ol (XIb). Yield 50.1 g (79%), colorless liquid, bp 101– 103°C (10 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.28–2.54 br.s (1H, OH), 4.35–4.37 m (2H, CH₂OH), 6.54 m and 6.77 m (1H, CH=). ¹⁹F NMR spectrum (CDCl₃), δ_F , ppm: 16.58 m (1F, CF), 32.09 s (2F, CF₃CF₂), 32.62 m (1F, CFCH), 76.68 m (3F, CF₃), 79.43 m (3F, CF₂OCFCF₂), 80.49 m (3F, CF₃CF₂), 81.78 m (3F, CF₃CFCF₂), 83.26 m (1F, OCFCF₂). Found, %: C 20.79; H 0.70; F 50.86. C₁₁H₄F₁₇IO₃. Calculated, %: C 20.84; H 0.64; F 50.94.

The reactions of perfluoroalkyl iodides IIIa and IIIb with alkenes IV–VI and propargyl alcohol (VII) in the presence of complex II were carried out in a similar way. Yield, %: 73 (VIIIa), 74 (VIIIb), 87 (IXb), 91 (Xb), 87 (XIa), 85 (XIb).

The ¹H and ¹⁹F NMR spectra were recorded on a Bruker DRX-400 spectrometer at 400 and 376 MHz, respectively, using tetramethylsilane (¹H) and hexafluorobenzene (¹⁹F) as references. The elemental compositions were determined on a Perkin Elmer CHN PE 2400 analyzer. Initial perfluoroalkyl iodides **IIIa** and **IIIb** were synthesized as described in [3, 10].

This study was performed under financial support by the Ural Branch of the Russian Academy of Sciences, program of the Presidium of the Russian Academy of Sciences "Development of Methods for the Synthesis of Chemical Compounds and Design of New Materials" (project no. 12-P-1020).

REFERENCES

- 1. Modern Fluoroorganic Chemistry, Kirsch, P., Ed., Weinheim: Wiley-VCH, 2004, p. 308.
- Murphy, P.M., Baldwin, C.S., and Buck, R.C., J. Fluorine Chem., 2012, vol. 138, p. 3.

471

- 3. Bazhin, D.N., Gorbunova, T.I., Zapevalov, A.Ya., and Saloutin, V.I., *J. Fluorine Chem.*, 2009, vol. 130, p. 438.
- 4. Zhu, R. and Buchwald, S.L., J. Am. Chem. Soc., 2012, vol. 134, p. 12462.
- Wang, X., Ye, Y., Zhang, S., Feng, J., Xu, Y., Zhang, Y., and Wang, J., *J. Am. Chem. Soc.*, 2011, vol. 133, p. 16410.
- 6. Besset, T., Schneider, C., and Cahard, D., Angew. Chem., Int. Ed., 2012, vol. 51, p. 5048.
- 7. Studer, A., Angew. Chem., Int. Ed., 2012, vol. 51, p. 8950.
- Macé, Y. and Magnier, E., *Eur. J. Org. Chem.*, 2012, vol. 13, p. 2479.
- Kudyakova, Yu.S., Goryaeva, M.V., Burgart, Ya.V., and Saloutin, V.I., *Izv. Akad. Nauk, Ser. Khim.*, 2010, p. 1707.
- Bazhin, D.N., Gorbunova, T.I., Zapevalov, A.Ya., Beketov, I.V., and Saloutin, V.I., *Russ. J. Gen. Chem.*, 2011, vol. 81, p. 1829.