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In this Letter, we describe a short, six step enantioselective route to spiroaminal lactam model systems
reminiscent of marineosins A and B that has been developed starting from either (R)- or (S)-hydrox-
ysuccinic acid, respectively, in �9% overall yield. This route enables late stage incorporation of the pyrrole
ring at C5 via nucleophilic displacement of an iminium triflate salt.

� 2013 Elsevier Ltd. All rights reserved.
In 2008, Fenical and co-workers reported the discovery of two
novel spiroaminals, marineosins A (1) and B (2), from a marine-
derived Streptomyces-related actinomycete (Fig. 1),1 and related
to the prodigiosin family.2 Both 1 and 2 displayed inhibition of
human colon carcinoma cell growth (HCT-116 IC50s of 0.5 and
46 lM, respectively).1 Fenical also proposed a biosynthesis of 1
and 2 that proceeded through an inverse-electron demand het-
ero Diels–Alder reaction with 3 to provide 4, which is then re-
duced to afford 1 and 2. We evaluated this biosynthetic
proposal, and while 3 was accessible in high yield, we were un-
able to affect the intramolecular inverse-electron demand hetero
Diels–Alder reaction under a variety of conditions. Attempts with
multiple substrates for intermolecular variants were equally
unsuccessful.3

In 2010, Snider and co-workers proposed an alternative biosyn-
thesis of 1 and 2 from undecylprodigiosin that only requires a sin-
gle two-electron oxidation.4 Based on this proposal, Snider
developed a seven step route to a model system 7 for the spiroimi-
nal moiety from methylvalerolactone 5 (Scheme 1). While an
important advance towards the synthesis of 1 and 2, we aimed
to avoid long equilibration times, inseparable equilibrium mix-
tures, and, importantly, early installation of the pyrrole.4
ll rights reserved.
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. Lindsley).
After the unsuccessful biosynthetic approach,3 our lab has pur-
sued multiple synthetic strategies en route to a total synthesis of 1
and 2. Uniformly, routes with early incorporation of the C1–C4 pyr-
role moiety, led to reactivity/stability issues that forced abandon-
ment of advanced intermediates and strategies. Based on this
outcome, we decided to re-design our routes to install the pyrrole
moiety as the final step of the synthesis (Scheme 2). To determine
the viability of this new approach, we developed a short, enantio-
selective synthesis of two spiroiminal model systems of 1 and 2
(highlighted in red). This route enables late stage incorporation
of the pyrrole ring at C5 via a novel application of nucleophilic dis-
placement of an iminium triflate salt.

Our model system was inspired by the work of Huang for the
construction of aza-spiropyran derivatives by the addition of func-
tionalized Grignard reagents into maleimides.5 The synthesis of the
proposed model system began with the requisite THP-protected
bromobutanol 12 (Scheme 3) following a Grieco procedure.6 Here,
tetrahydrofuran is opened with HBr to afford 10 in 75% yield. Pro-
tection as the THP ether afforded 12 in 90% yield, which is then
converted into Grignard reagent 13.6

With 13 in hand, we prepared the maleimide fragment relevant
for a model system of 1.7,8 Starting from (R)-hydroxy succinic acid
14, refluxing in m-xylenes with p-methoxybenzyl amine 15 affords
the desired maleimide 16 in 78% yield (Scheme 4). Silver oxide
mediated alkylation with MeI in MeCN affords key coupling part-
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ner 17 in 78% yield. Addition of 13 into 17 provided hydroxy ami-
nal 18 in 80% yield (Scheme 5).15

Treatment with p-TsOH cleaves the THP ether and generates
iminium salt 19 which is attacked by the free hydroxyl leading
to formation of the spiroaminal 20 in 80% yield.16 Finally, ceric
ammonium nitrate (CAN)-mediated removal of the p-methoxyben-
zyl (PMB) group provides lactam 21 in 67% yield.17 Model system
21 possessed the correct stereochemistry at C7 for 1, but the oppo-
site absolute stereochemistry at C8. However, 21 is a valuable
model from which to develop chemistry for the late stage installa-
tion of the pyrrole at C5, and not consume valuable late stage 8.

Stereochemical assignments of 20, with anti O-1, O-7 geometry,
were made based on literature precedent and from extensive NOE
studies (Fig. 2).9
With 21 in hand, we were poised to evaluate conditions to in-
stall the pyrrole moiety at C5 to validate our retrosynthetic ap-
proach aimed at accessing 8. Our initial thought was to install
the pyrrole through classical Vilsmeier-type chemistry (POCl3/pyr-
role);9 however, this failed to provide the desired 22. We surveyed
a number of known strategies to convert the lactam carbonyl into a
suitable electrophile, followed by treatment with pyrrole under a
variety of reaction conditions, but none proved successful. The lac-
tam was converted into the corresponding triflate 23 through
treatment with Tf2O or PhNTf2, followed by a Suzuki coupling with
various forms of N-protected, 2-pyrrole boronic acid. Unfortu-
nately, all attempts with multiple Pd(0) and Ni(0) sources, bases
and solvents afforded either no product or only trace amounts of
22 (Scheme 6).

A deeper perusal of the literature led us to consider the chem-
istry of triflic anhydride/amide adducts, and the opportunity to
potentially intercept the in situ generated triflate with the pyrrole
nucleophile in a single pot reaction.10–12 It has been demonstrated
that treatment of an indolin-2-one with Tf2O, to generate the imin-
ium triflate salt, followed immediately by the addition of a func-
tionalized indole affords the bis-indole product.11 With this lone
precedent, we treated 21 with 2.0 equiv of Tf2O, to generate the
iminium triflate salt, followed by the addition of 5.0 equiv of pyr-
role in CH2Cl2 at 0 �C. Unfortunately, these conditions afforded only
a trace (<5%) of the desired 22. Evaluation and refinement of the
reaction conditions identified that employing 1.0 equiv of Tf2O, to
generate the iminium triflate salt, followed by the addition of
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5.0 equiv of pyrrole in CH2Cl2 at 0 �C did provide the desired model
system 22 of marineosin A, 1, in 36% yield (Scheme 7).18 The ste-
reochemistry was further confirmed at this stage by NOE studies
on 22. Irradiation of H-7 supported the 6R,7S stereochemical
assignment of 22; no equilibration to the syn O-1, O-7 isomer
had occurred after installation of the pyrrole, even after a period
of 2 weeks in CDCl3.4,9 Identical NOE data were seen in model sys-
tem 22. Although the configuration of the spirocenter in model 22
is opposite to marineosins A, we envision that a syn O-1, O-7 iso-
mer can be obtained by increasing the steric demands of the pyran
ring through stereoselective functionalization of a carbon fragment
similar to Grignard 13. Repetition of this sequence, starting from
the (S)-hydroxy succinic acid, afforded the model system 24 remi-
niscent of marineosin B in �9% overall yield. Once again, literature
precedent and extensive NOE data confirmed the stereochemical
assignment.

As both 1 and 2 displayed inhibition of human colon carcinoma
(HCT-116 IC50s of 0.5 and 46 lM, respectively), and due to the fact
that many related, bi- and tricyclic prodigiosin natural products
have potent cytotoxicity,13,14 we evaluated 22 and 24 in our
HCT-116 cytotoxicity assay in order to ascertain if the model sys-
tems represented a minimum pharmacophore for 1 and 2, respec-
tively. Interestingly, both model systems were inactive in this
assay, suggesting the larger construct, and/or stereochemical con-
formation, of 1 and 2 are important for the observed biological
activity, thus warranting completion of the total synthesis of 1
and 2.
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In summary, we have developed chemistry to enable late stage
introduction of the pyrrole moiety at C5 in marineosin A (1) and B
(2) via a novel application of the nucleophilic displacement of an
iminium triflate salt by pyrrole. Moreover, we have performed an
enantioselective synthesis of two spiroaminal model systems rem-
iniscent of 1 and 2 starting from chiral pool molecules. Overall
yields for both 22 and 24 averaged �9% from commercial tetrahy-
drofuran. This synthetic approach is currently being applied to the
total synthesis of 1, and results will be presented in due course.
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