RESEARCH ARTICLE

Magnetite Nanoparticles-Supported APTES as a Powerful and Recoverable Nanocatalyst for the Preparation of 2-Amino-5,10-dihydro-5,10-dioxo-4*H*-benzo[g]chromenes and Tetrahydrobenzo[g]quinoline-5,10-diones

Mohammad Ali Ghasemzadeh*, Zahra Elyasi, Mina Azimi-Nasrabad, and Boshra Mirhosseini-Eshkevari

Department of Chemistry, Qom Branch, Islamic Azad University, Qom, I.R. Iran

Abstract: *Aim and Objective:* This study introduces a green and effective approach for the preparation of biologically-active heterocyclic compounds including 2-amino-5,10-dihydro-5,10-dioxo-4*H*-benzo[*g*]chromenes and tetrahydrobenzo[*g*]quinoline-5,10-diones using one-pot multi-component reactions in the presence of Fe₃O₄@SiO₂-NH₂ nanocomposite. The preparation and use of amino-functionalized Fe₃O₄@SiO₂ as a powerful and reusable nanocatalyst is described. The catalyst was characterized by spectral techniques including FT-IR, SEM, XRD, EDX and VSM analysis. This method offers the advantages of high yields, short reaction times, comfortable work-up and reusability of the catalyst.

ARTICLE HISTORY

Received: June 21, 2016 Revised: November 30, 2016 Accepted: December 9, 2016

DOI: 10.2174/1386207319666161 223121612 *Material and Method*: The amino-functionalization silica-coated magnetite nanocomposite was prepared by three step method and the structure elucidation of the nanocatalyst has been done using various spectroscopic analyses. Then, the $Fe_3O_4@SiO_2-NH_2$ nanocomposite was used in the multi-component synthesis of 2-amino-5,10-dihydro-5,10-dioxo-4*H*-benzo[*g*]chromenes and tetrahydrobenzo[*g*]quinoline-5,10-diones under reflux conditions. All of the products were analyzed with m.p., ¹H NMR, ¹³C NMR and FT-IR spectroscopy techniques. The study on the recoverability of the nanocatalyst showed the recovered $Fe_3O_4@SiO_2-NH_2$ nanocomposite could be reused sixth consecutive times with a little-decreased activity.

Results: Amino-functionalized SiO₂ coated Fe₃O₄ nanocomposite exhibited superparamagnetic behavior and strong magnetization at room temperature. The average crystallite sizes of the catalyst was about 50-60 nm. The obtained magnetic nanocomposite showed excellent catalytic activity as a new heterogeneous magnetic catalyst for the synthesis of some benzo[g]chromenes and tetrahydrobenzo[g]quinoline-5,10-diones. We propose that NH₂ groups on the surfaces of nanocomposite act as the Brønsted base and cause to dehydrogenation of substrates to promote the reactions.

Conclusion: It was found that $Fe_3O_4@SiO_2-NH_2$ nanocomposite act as an eco-friendly and efficient catalyst for one-pot synthesis of three/four component condensation reactions. In this research, amino-functionalized $Fe_3O_4@SiO_2$ was used as recoverable catalyst for the synthesis of 2-amino-5,10-dihydro-5,10-dioxo-4*H*-benzo[*g*]chromenes and tetrahydrobenzo[*g*]quinoline-5,10-diones under reflux conditions. The significant advantages of this method are the reasonably simple work-up, little catalyst loading, short reaction times, excellent yields, non-hygroscopic quality and reusability of the nanocatalyst which is in good agreement with green chemistry disciplines.

Keywords: $Fe_3O_4@SiO_2-NH_2$, nanocomposite, multi-component reaction, core-shell, benzo[g]chromene, tetrahydrobenzo[g] quinoline-5,10-dione.

1. INTRODUCTION

In recent decades, the use of nanotechnology as an efficient field has been of interest to scientists. The surface atoms of nanoparticles can be replaced by adjacent atoms, this process is accompanied by the exchange of energy which specified the reactivity and selectivity of the nanocatalyst [1].

 Fe_3O_4 nanoparticles have been expansively studied because of their inimitable magnetic properties and executive specific abilities such as magnetic hyperthermia, targeted drug delivery, ferrofluids, etc [2, 3].

 ${\rm Fe_3O_4}$ NPs have the ability to aggregate, and they are also known as hard dispersion nanoparticles in the organic

1875-5402/17 \$58.00+.00

^{*}Address correspondence to this author at the Department of Chemistry, Qom Branch, Islamic Azad University, Qom, I.R. Iran; E-mail: ghasemzadeh@qom-iau.ac.ir

conditions, therefore, the surface coating of Fe_3O_4 NPs is very significant [4-7].

Silica due to its large surface and the ability to compromise with other substances is a substantial shellforming material [8, 9]. The process of nanoparticles' coating by silica improves their stability and develops sites for more surface functionalization using different groups such as silica sulfuric acid [10], proline [11], (3aminopropyl)- triethoxysilane [12], guanidine [13] and sulfamic [14]. The reaction acid of 3aminopropyltriethyloxysilane and nanoparticles leads to the formation of Si-O bonds. The Brønsted basic (-NH₂) functionalized Fe₃O₄ core has an important catalytic effect in the described transformation. The isolation of APTES coreshell nanocomposite can be used by applying an external magnetic field with a comfortable work up.

Multi-component reactions (MCRs) are exceedingly important due to their wide scope of applications in the organic synthesis and pharmaceutical chemistry [15]. Heterocyclic compounds containing nitrogen which are abundant in nature, have important and various applications in agrochemicals, activated biological pharmaceuticals and functional compounds [16-18]. The benzo[g]quinoline-5,10diones with interesting biological attributes act as a structural element in natural substances. For instance, dielsiquinone I is a strong cytotoxic natural compound for anthracyclines that is demonstrated as secure anticancer drugs [19] and Phomazarin II is achieved from the phomaterrestris Hansen [20]; Fig. 1 shows the vitro cytotoxic activity [21]. The procedure for the synthesis of tetrahydrobenzo[g]quinoline-5,10-dione derivatives mainly are classified via annulations reactions [22, 23], aza-Diels–Alder cycloaddition of an α , β unsaturated hydrazone to a quinone [24], hetero Diels-Alder reaction [25] and regioselective synthesis [26].

Fig. (1). Some heterocyclic compounds containing benzo[g]quinoline-5,10-dione moiety.

The synthesis of benzo[g]chromenes achieved great interest due to their wide range of biological activities

including: antimalarial [27, 28], anti-inflammatory [29], anticancer activities [30], besides demonstrating efficacy in pesticide activities [31] and cytotoxic activities [32, 33]. 2amino-3-cyano-4-(3-nitrophenyl)-4H-benzo[h]chromene III, is used for cartilage destruction associated with various degenerative illness of the articular joint such as rheumatoid arthritis [34]. Furthermore, 4H-chromen-4- yl-cyanoacetate IV as disincentive of Bcl-2 protein and apoptosis inducer [35] and benzopyrane V have been known for anticancer remedies (Fig. 2) [36]. Recently, the multi component synthesis of 2-amino-4H-chromene derivatives has been developed using different catalysts including triethylbenzylammonium chloride (TEBA) [37], triethylammonium hydrogen sulfate ([Et₃NH][HSO₄]) [38], potassium phthalimide-N-oxy (POPINO) [39] and triethylamine [40].

Fig. (2). Three kinds of 2-amino-4*H*-chromenes with diverse biological properties.

Due to the significant role of multi-component reactions especially in heterocyclic synthesis and in order to complete this study analysing the performance of nanocatalysts in MCRs [41-44], an efficient one-pot synthesis of tetrahydrobenzo[g]quinoline and 2-amino-4*H*-chromene derivatives was used using Fe₃O₄@SiO₂-NH₂ nanocomposite as a powerful and recoverable nanocatalyst under reflux conditions (Scheme 1).

2. EXPERIMENTAL

Chemicals were purchased from the Sigma–Aldrich and Merck in high purity. All of the materials were of commercial reagent grade and were used without further purification. All melting points were uncorrected and determined by the capillary tubes on a Boetius melting point microscope. ¹H NMR and ¹³C NMR spectra were obtained on a Bruker 400MHz spectrometer with CDCl₃ and DMSO- d_6 as solvents using tetramethylsilane as an internal standard;

Scheme 1. Preparation of 2-amino-5,10-dihydro-5,10-dioxo-4H-benzo[g]chromenes and tetrahydrobenzo[g]quinoline-5,10-diones.

the chemical shift values were in δ . Fourier transforminfrared spectrum was recorded on Magna-IR, spectrometer 550 Nicolet in KBr pellets in the range of 400–4000 cm⁻¹. The elemental analyses (C, H, N) were performed by a Carlo ERBA Model EA 1108 analyzer. Powder XRD was carried out on a Philips diffractometer of X'pert Company with monochromatized Cu K α radiation ($\lambda = 1.5406$ Å). Microscopic morphology of products was visualized by SEM (LEO 1455VP). The mass spectra were recorded on a Joel D-30 instrument at an ionization potential of 70 eV. Magnetic properties were obtained by a BHV-55 vibrating sample magnetometer (VSM) made by MDK-I.R.Iran. The compositional analysis was done by energy dispersive analysis of X-ray.

2.1. Preparation of Fe₃O₄ Nanoparticles

 Fe_3O_4 nanoparticles were synthesized on the basis of the procedure provided by Zhang *et al.* [45].

2.2. Preparation of Fe₃O₄ @SiO₂ Nanoparticles

In this research, the $Fe_3O_4@SiO_2$ core-shell microspheres were prepared according to the method reported in the previous literature [46].

2.3. Preparation of Fe₃O₄@SiO₂-NH₂

Fe₃O₄@SiO₂-NH₂MNPs was prepared according to the slightly modified previously reported method by Jiahong Wang et al [47]. Fe₃O₄@SiO₂ nanoparticles (2 g) were added to the three-necked flask and ultrasonically dispersed for 15 min in dry toluene (50 mL). Then, 1 ml of 3-aminopropyltriethoxysilane (APTES) was added into the flask, and the reaction mixture was refluxed at 110 °C for 10 h with stirring under nitrogen atmosphere. When the reaction was completed, the prepared Fe₃O₄@SiO₂-NH₂ was gathered by centrifugation and then washed several times with water and ethanol, which was then dried at 50 °C under vacuum for 12 h.

In the preliminary experiments, nanostructured $Fe_3O_4@SiO_2-NH_2$ was prepared and characterized by EDX, FE-SEM, XRD, FT-IR and VSM analysis.

To evaluate the size and morphology of the nanostructures, the scanning electron microscopy (SEM) of the nanocatalysts are given in Fig. **3**. As can be seen in Fig. 3a, the Fe₃O₄ NPs have a cubic shape and the diameter of the particles is around 15 nm. The structure and morphology of the Fe₃O₄ NPs and Fe₃O₄@SiO₂ nanocomposite were nearly similar, but the smoother surface area of Fe₃O₄@SiO₂ nanocomposite was observed because of the coating by silica shell (Fig. **3a** and Fig. **3b**). The micrograph of Fe₃O₄@SiO₂-

Fig. (3). SEM images of Fe₃O₄ (a), Fe₃O₄@SiO₂ (b) and Fe₃O₄@SiO₂-NH₂ (c) NPs.

Fig. (4). FT-IR spectra of Fe_3O_4 (a), $Fe_3O_4@SiO_2$ (b) and $Fe_3O_4@SiO_2$ -NH₂ (c) NPs.

Fig. (5). X-ray diffraction for Fe₃O₄ (a), Fe₃O₄@SiO₂ (b) and Fe₃O₄@SiO₂-NH₂ (c) NPs.

 NH_2 nanocomposite indicated a star-like shape with an average size about 50-60 nm (Fig. **3c**). This observation is the result of self-poly condensation of aminopropylsilane groups.

The comparison of FT-IR spectra of the three kinds of nanocatalyst (Fe₃O₄, Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂–NH₂ nanostructures) is shown in Fig. **4**. In all cases, the absorption peak at 500-600 cm⁻¹ belonged to the Fe–O vibration [48]. The stretching vibrations of SiO₂ groups were observed at 1072 cm⁻¹ due to silica coating on the Fe₃O₄ core for both of Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂-NH₂. The evidence for the amino-functionalization was the absorption bands at 1498 (C–H bending) and 3361cm⁻¹ (N–H stretching) [49]. The C–H stretching vibrations overlapped with the vibration band of N–H at about 3025-2800 cm⁻¹. Stretching vibration of C–N bond was appeared at about 1385 cm⁻¹ [50].

The crystalline structures of the nanostructures were identified with XRD (Fig. 5). The XRD pattern of Fe₃O₄ nanoparticles with crystalline cubic spinel structure showed reflections at 2θ = 30.2 °, 36.4 °, 43.7 °, 53.5 °, 56.3 °, 62.3°, and 73.8° [51]. Also, the characteristic peaks of Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂-NH₂ were completely similar to crystalline Fe₃O₄ phase that indicated the stability of the Fe₃O₄ during functionalization. The crystalline structures of the nanostructures were identified with XRD (Fig. 5).

Fig. **6** shows the room-temperature magnetization curve of the nanostructures including Fe_3O_4 , Fe_3O_4 @SiO₂, and Fe_3O_4 @SiO₂-NH₂ recorded by a VSM, without any hysteresis in the magnetization. It was found that the three nanostructures were super-paramagnetic due to coercivity and remanence. The saturation magnetization value of Fe_3O_4 obtained was 47.1 emu/g, of Fe_3O_4 @SiO₂ about 41.2 emu/g and finally for Fe_3O_4 @SiO₂-NH₂, it was equal to 32.4 emu/g. As shown in Fig. 6 the saturation magnetization of pristine Fe_3O_4 nanoparticles was higher than silica-coated Fe_3O_4NPs and saturation magnetization of Fe_3O_4 @SiO₂-NH₂ was lower than Fe_3O_4 @SiO₂. The surface including a magnetically inactive layer (NH₂/SiO₂ shell) decreased saturation magnetization in the coated nanostructures.

Fig. (6). VSM magnetization curves of the Fe_3O_4 (a), $Fe_3O_4@SiO_2$ (b) and $Fe_3O_4@SiO_2-NH_2$ (c) NPs.

To study the purity of the three prepared nanocatalyst, the energy dispersive X-ray spectroscopy (EDX) was investigated as shown in Fig. 7. For the bare Fe_3O_4 NPs, the only elements were O and Fe. The EDX spectra of $Fe_3O_4@SiO_2$ (Fig. **7b**) and $Fe_3O_4@SiO_2$ -NH₂ (Fig. **7c**) showed that the elemental compositions were (Fe, Si and O) and Fe, Si, C, O.

2.4. Generic Method for the Synthesis of 2-amino-5,10dihydro-5,10-dioxo-4H-benzo[g]chromenecatalyzed by Fe₃O₄@SiO₂-NH₂ (4a-4n)

Aldehyde (1 mmol) and malononitrile (1.2 mmol) were dissolved in ethanol under stirring at an ambient temperature in the presence of $Fe_3O_4@SiO_2-NH_2$ (0.02 g) as the catalyst followed by the addition of 2-hydroxynaphthalene-1,4-dione (1 mmol). Then, the reaction mixture was heated at 80°C under reflux conditions. Finally, n-hexane (10 mL) was added to the reaction mixture and the insoluble catalyst was separated by an external magnet. Evaporation of the solvent under reduced pressure afforded the solid residue which was recrystallized by ethanol.

Fig. (7). EDX spectra of Fe_3O_4 (a), $Fe_3O_4@SiO_2$ (b), $Fe_3O_4@SiO_2$ -NH₂ (c) NPs.

All the products were analyzed with m.p., ¹H NMR, ¹³C NMR and FT-IR spectroscopy techniques. Spectral data of the new products are given below.

Selected spectra of two products are given below:

2-Amino-3-cyano-4-(2,4-dichlorophenyl)-5,10-dioxo-5,10dihydro-4H-benzo[g] chromene (41)

Orange solid; FT-IR (KBr, cm⁻¹): 3437, 2211, 1665, 1633, 1590, 1249, 1200.¹H NMR (DMSO-d₆): δ 5.08 (1H, s, CH), 6.51 (2H, s, NH₂), 7.21–7.46 (3H, m, ArH), 7.56–7.75 (4H, m, ArH). ¹³C NMR (DMSO-d₆): 37.1, 55.9, 111.3, 119.4, 119.8, 121.4, 126.8, 127.1, 127.4, 129.7, 131.5, 131.4, 134.2, 137.1, 137.6, 137.9, 145.5, 156.1, 176.4, 185.5. Anal.Calcd. for C₂₀H₁₀Cl₂N₂O₃: C 60.48, H 2.54, N 7.05. Found C 60.40, H 2.48, N 7.11.

2-Amino-3-cyano-4-(2-nitrophenyl)-5,10-dioxo-5,10dihydro-4H-benzo[g] chromene (4m)

Orange solid; FT-IR (KBr, cm⁻¹): 3439, 2208, 1676, 1621.¹H NMR (DMSO-d₆): δ 5.11 (1H, s, CH), 6.56 (2H, s, NH₂), 7.33–7.66 (6H, m, ArH), 7.91–7.93 (2H, m, ArH). ¹³C NMR (DMSO-d₆): 31.3, 55.2, 119.2, 121.6, 124.5, 126.3, 127.0, 128.9, 131.1, 131.4, 132.1, 134.3, 134.6, 134.1, 137.3, 149.2, 149.4, 159.3, 177.2, 183.2. Anal.Calcd. for C₂₀H₁₁N₃O₅: C 64.35, H 2.97, N 11.26. Found C 64.42, H 3.04, N 11.32.

2.5. General Method for the Preparation of Tetrahydrobenzo[g]quinoline-5,10-diones Catalyzed by Fe₃O₄@SiO₂-NH₂ (7a-7j)

A mixture of 2-hydroxy-1,4-naphthoquinone (1 mmol), ethyl acetoacetate (1 mmol) aromatic aldehyde (1 mmol), NH₄OAc (2.5 mmol) and Fe₃O₄@SiO₂-NH₂ NPs (0.05 g) was taken in a round bottom flask and the mixture was refluxed using 2.5 mL ethanol and 2.5 mL. After completion of the reaction, the mixture was diluted by CHCl₃ (10 mL) and the nanocatalyst was separated using an external magnet. Evaporation of the solvent under reduced the pressure afforded the corresponding products that purified using ethanol as solvent. The final products were determined by FT-IR and NMR spectroscopy.

The spectroscopic data of new compounds

4-(4-Fluorophenyl)-2-methyl-5,10-dioxo-1,4,5,10 tetrahydrobenzo[g]-quinoline-3-carboxylate(7e)

Red brown solid; FT-IR (KBr, cm⁻¹): 3226, 1720, 1370, 1232.¹H NMR (DMSO-d₆): δ 1.19 (3H, t, CH₃), 2.41 (3H, s, CH₃), 4.08 (2H, q, CH₂), 4.86 (1H, s, CH), 7.08 (1H, bs, NH), 7.19-7.38 (4H, m, ArH), 7.55-7.78 (4H, m, ArH). ¹³C NMR (DMSO-d₆): 14.5, 20.5, 36.2, 62.1, 105.5, 119.5, 126.3, 126.7, 128.8, 129.5, 130.5, 132.4, 132.9, 134.3, 136.7, 142.8, 145.1, 166.5, 179.8, 181.3. Anal.Calcd. for C₂₃H₁₈FNO₄: C 70.58, H 4.64, N 3.58. Found C 70.62, H 4.56, N 3.53.

4-(4-Thiomethylphenyl)-2-methyl-5,10-dioxo-1,4,5,10tetrahydrobenzo[g]-quinoline-3-carboxylate (7j)

Red brown solid; FT-IR (KBr, cm⁻¹): 3215, 1725, 1410, 1240. ¹H NMR (DMSO-d₆): δ 1.21 (3H, t, CH₃), 2.42 (3H, s, CH₃), 2.53 (3H, s, SCH₃), 4.12 (2H, q, CH₂), 4.91 (1H, s, CH), 7.06 (1H, s, NH), 7.16-7.29 (4H, m, ArH), 7.44-7.68 (4H, m, Ar-H). ¹³C NMR (DMSO-d₆): 14.2, 19.6, 20.9, 37.1, 59.9, 104.9, 119.4, 125.9, 126.3, 128.1, 129.1, 130.2, 132.4, 132.9, 134.5, 136.3, 136.8, 141.8, 143.3, 166.7, 180.0, 182.4. Anal.Calcd. for C₂₄H₂₁NO₄S: C 68.79, H 5.05, N 3.38. Found C 68.72, H 5.01, N 3.31.

3. RESULTS AND DISCUSSION

The Fe₃O₄ NPs were obtained from the reaction of iron (II,III) ions via co-precipitation method. The surface of Fe₃O₄ nanoparticles was coated using silica shell that was the result of tetraethyl orthosilicate (TEOS) addition.Then in order to equip reaction sites for thermal stability and more reactivity, the surface of Fe₃O₄@SiO₂ was reacted with APTES to perform amino-functionalized Fe₃O₄@SiO₂ (Scheme **2**).

In order to optimize the reaction conditions, a principled experimental method with diverse influencing variables such as catalyst, solvent and temperature was investigated. The reaction of 2-hydroxy-1,4-dihydronaphthalene-1,4-dione (1), 4-chlorobenzaldehyde (2a) and malononitrile (3) was selected as a model reaction. The results are classified in Table 1.

Scheme 2. The preparation steps to the synthesis of nanocatalyst.

Table 1. The effect of catalyst, catalyst amounts, solvent and temperature in the preparation of benzo[g]chromene (4a)^a.

$ \begin{array}{c} $							
Entry	Catalyst	Catalyst loading (g)	Solvent	T (°C)	Time (min)	Yield (%) ^b	
1	None	-	Solvent-free	r.t	180	20	
2	None	-	Solvent-free	100 °C	180	25	
3	None	-	Water/EtOH	r.t	150	35	
4	None	-	Water/EtOH	Reflux	120	50	
5	ZnO	0.04	Water/EtOH	Reflux	70	70	
6	CuI	0.04	Water/EtOH	Reflux	75	65	
7	Fe ₃ O ₄	0.04	Water/EtOH	Reflux	60	66	
8	Fe ₃ O ₄ @SiO ₂	0.04	Water/EtOH	Reflux	45	73	
9	Fe ₃ O ₄ @SiO ₂ -NH ₂	0.04	Water/EtOH	Reflux	30	97	
10	Fe ₃ O ₄ @SiO ₂ -NH ₂	0.02	Water/EtOH	Reflux	30	97	
11	Fe ₃ O ₄ @SiO ₂ -NH ₂	0.01	Water/EtOH	Reflux	45	85	
12	Fe ₃ O ₄ @SiO ₂ -NH ₂	0.02	EtOH	Reflux	75	60	
13	Fe ₃ O ₄ @SiO ₂ -NH ₂	0.02	Water	Reflux	70	55	
14	Fe ₃ O ₄ @SiO ₂ -NH ₂	0.02	CH ₂ Cl ₂	Reflux	80	45	
15	Fe ₃ O ₄ @SiO ₂ -NH ₂	0.02	Toluene	Reflux	100	35	

^aGeneral reaction conditions: 2-hydroxy-1,4-dihydronaphthalene- 1,4-dione (1) (1 mmol), 4 chlorobenzaldehyde (2a) (1 mmol), malononitrile (3) (1.2 mmol) ^b Isolated yields.

As shown in Table 1, in the absence of catalyst, just a trace amount of benzo[g]chromene (4a) was obtained under solvent-free conditions even at 100 °C (Table 1, entries 1,2). However, when the reaction was performed using H₂O/EtOH as the solvent, we observed that the product yield was slightly increased (Table 1, entries 3, 4). Then the model reaction was carried out using different nanocatalysts such as CuI, Fe₃O₄, ZnO, Fe₃O₄@SiO₂-NH₂ and Fe₃O₄@SiO₂ in the ethanol/water as solvent under reflux conditions as indicated in Table 1. The comparison of various nanocatalysts based on yields and times of their corresponding reactions determined that Fe₃O₄@SiO₂-NH₂ is the best particle. It is likely that higher catalytic activity of Fe₃O₄@SiO₂-NH₂ NPs can be attributed to the better dispersion of nanocomposite and wider surface of nanoparticles (Table 1, entries 5-10).

In the next step, the influence of the amount of MNPs was studied (Table 1, entries 9-11). 0.02 g of the magnetic $Fe_3O_4@SiO_2-NH_2$ NPs proved to be the best reaction condition. Decreasing the amount of MNPs led to the decline in the reaction time and yield.

According to the considerable results of the above experiments, we started to produce various 2-amino-5,10-dihydro-5,10-dioxo-4H-benzo[g]chromenes in the presence of Fe₃O₄@SiO₂-NH₂ NPs under the optimized reaction conditions (Table 2). A series of 2-amino-5,10-dihydro-5,10-dioxo-4H-benzo[g]chromene derivatives were prepared in excellent yields within short reaction times. The diverse aryl aldehydes with electron-withdrawing or electron-donating groups (4a-m), were obtained with high purity and efficiency. According to the data, the electronic nature of different aromatic aldehyde has no important effect on the

(Table 2) Contd....

Entry	Aldehyde	Product	Time (min)	Yield (%) ^b	mp (°C)	Lit. M.p. (°C)
7	F-CHO (2g)	(4g) F	35	93	242-245	244-246 ³⁹
8	O ₂ N CHO (2h)	0 NH ₂ CN (4h) NO ₂	35	92	248-250	247-250 ³⁸
9	он ₃ с-Сно (2і)		40	90	245-248	246-248 ³⁸
10	Н ₃ СО СНО (2 ј)		40	86	248-250	249-251 ³⁸
11	СІ СНО (2k)		50	87	235-238	235-237 ³⁸
12	СІ-СІ СІ-СНО (21)		55	85	286-288	288 ³⁸
13	NO ₂ СНО (2m)	(4m)	50	85	240-243	241-243 ³⁸
14	С ₇ Н ₁₅ СНО (2n)	-	-	24 h	-	-

^a General reaction conditions: 2-hydroxy-1,4-dihydronaphthalene-1,4-dione (1) (1 mmol), Aldehyde (2a-n) (1 mmol), malononitrile (3) (1.2 mmol), Reflux, Fe₃O₄@SiO₂-NH₂ (0.02 g). ^b Isolated yields.

Scheme 3. The synthesis of 2-ethyl-5,10-dioxo-4-(4-chlorophenyl)-1,4,5,10-tetrahydrobenzo[g]quinoline-3-carboxylates (7b) using Fe_3O_4 (@SiO_2-NH_2 NPs.

 Table 3.
 Preparation of 2-ethyl-5,10-dioxo-4-(4-chlorophenyl)-1,4,5,10-tetrahydrobenzo[g]quinoline-3-carboxylate (7b) in different solvents^a.

Entry	Solvent	T (°C)	Time (min)	Yield (%) ^b
1	EtOH	Reflux	160	70
2	Water	Reflux	180	60
3	CH ₂ Cl ₂	Reflux	180	35
4	Toluene	Reflux	240	30
5	Water/EtOH	Reflux	150	95
6	Water/EtOH	25	200	55
7	Solvent-free	25	240	30
8	Solvent-free	100	180	35

^a²-hydroxy-1,4-dihydronaphthalene-1,4-dione (1) (1mmol), 4- chlorobenzaldehyde (2a) (1mmol), ethyl acetoacet (5)(1mmol), ammonium acetate (6) (2.5 mmol) and Fe₃O₄@SiO₂-NH₂ (0.1 g).

b Isolated yields.

rate or yield of reactions. In addition, the reaction of an aliphatic aldehyde was carried out without the synthesis of any significant product after 24 h (Table **2**, entry 14).

In continuation of our research, we encouraged to apply $Fe_3O_4(a)SiO_2-NH_2$ NPs for the preparation of tetrahydrobenzo[g]quinoline-5,10-dione derivatives. On the basis of optimized reaction condition, the four component reaction of 2-hydroxy-1,4-dihydronaphthalene-1,4-dione (1), 4-chlorobenzaldehyde (2a), ethyl acetoacetate (5) and ammonium acetate (6) was chosen as the main synthetic model (Scheme 3). The conditions were optimized due to variable conditions such as catalyst, temperatures and solvent for the preparation of 2-ethyl-5,10-dioxo-4-(4chlorophenyl)-1,4,5,10 tetrahydrobenzo[g]quinoline-3carboxylates (7b).

Following this, we investigated the effect of solvent and also solvent free when the model reaction was carried out in the presence of $Fe_3O_4@SiO_2-NH_2$ nanocomposite. As shown in table 3, the rate of reaction and the amount of product were increased under reflux conditions (**7b**) (95% yield, 150 min) (Table 3, entry 5).

The importance of our research was reflected in the comparison of the magnetite nanocomposite-supported APTES (Fe₃O₄@SiO₂-NH₂) with other catalysts such as CuI, ZnO, Fe₃O₄, Fe₃O₄@SiO₂. According to the collected results shown in Table 4, the best reaction time and high yield belonged to Fe₃O₄@SiO₂-NH₂ MNPs.

Next, our research was preceded due to the use of various amounts of $Fe_3O_4@SiO_2-NH_2$ nanocatalysts under reflux

conditions (Table 5). As shown in Table 5, the yield of product was traced in the absence of the nanocatalyst (Table 5, entry 1). The results showed that 0.05 g of the $Fe_3O_4(a)SiO_2-NH_2$ was sufficient to promote the reaction.

Entry	Catalyst	Time (min)	Yield (%) ^b
1	Fe ₃ O ₄	200	55
2	ZnO	240	45
3	CuI	220	55
4	Fe ₃ O ₄ @SiO ₂ -NH ₂	150	95
5	Fe ₃ O ₄ @SiO ₂	180	60

Table 4.The model synthesis of tetrahydrobenzo[g]quinoline-
3-carboxylates (7b) by various catalysts^a.

^a Water/ethanol as solvent under reflux conditions

^b Isolated yields

Finally, we investigated the one-pot synthesis of tetrahydrobenzo[g]quinoline-5,10-diones using $Fe_3O_4(a)$ SiO₂–NH₂ MNPs under reflux conditions. As shown in Table **6**, we observed that different aromatic aldehydes could be used to produce high yields of corresponding products. In addition, aromatic aldehyde bearing electron-withdrawing groups such as NO₂, Cl and Br in *p*-position reacted very smoothly toward substances with electron-donating groups like OH and OME. However, the reaction of sterically hindered aldehydes was slow in comparison with unhindered aldehydes and required long reaction times (Table **6**).

Table 5.	Effect of the amounts of Fe ₃ O ₄ @SiO ₂ -NH ₂ NPs on				
	the preparation of tetrahydrobenzo[g]quinoline-3-				
	carboxvlates (7b). ^a				

Entry	Catalyst amount (g)	Time (min)	Yield (%) ^b
1	None	250	None
2	0. 01	220	30
3	0. 03	180	75
4	0.05	150	95
5	0.06	150	95

^a Water/ethanol as solvent under reflux conditions

^b Isolated yields

3.1. Recycling and Reusing of the Catalyst

The recoverability of Fe_3O_4 @SiO₂-NH₂ is very important because of their practical applications. When the reaction was complete, the catalyst separated magnetically and washed with methanol and chloroform and dried at 50°C for 8 h. According to the results, the MNPs could be reused for sixth consecutive times with a little-decreased activity. The results are summarized in Table 7.

3.2. Proposed Mechanism

A plausible mechanism for the preparation of 2-amino-5,10-dihydro-5,10-dioxo-4*H*-benzo[*g*]chromene using $Fe_3O_4@SiO_2-NH_2$ NPs has been shown in Scheme 4. It is likely that NH₂ groups on the surfaces of nanocomposite act as the Brønsted base and lead to dehydrogenation of substrates. Firstly, the Knoevenagel condensation reaction of aldehyde and malononitrile afforded intermediate A in the presence of Fe₃O₄@SiO₂-NH₂ as the catalyst.

Next, the intermediate **C** was prepared by the nucleophilic attack of 2-hydroxynaphthalene-1,4-dione **B** to intermediate **A** using Fe_3O_4 @SiO₂-NH₂ nanocomposite. In the next step, the intermediate **D** was obtained by nucleophilic attack of the hydroxyl group on behalf of the CN, and then the intermediate **D** was tautomerized to product **4**. Moreover, the effect of the catalytic behavior of Fe_3O_4 @SiO₂-NH₂ NPs on the synthesis of 2-amino-5,10-dihydro-5,10-dioxo-4*H*-benzo[*g*]chromenes was the same as the above-mentioned mechanism for the preparation of tetrahydrobenzo[*g*]quinoline-5,10-dione derivatives.

4. CONCLUSION

In conclusion, we provided a green and facile protocol for the synthesis of some 2-amino-3-cyano-4-aryl-5,10dioxo-5,10-dihydro-4*H*-benzo[*g*]chromene and tetrahydrobenzo[*g*]quinoline-5,10-dione derivatives in the presence of Fe₃O₄@SiO₂-NH₂ nanocomposite as the catalyst. The significant advantages of this method using aminofunctionalization silica-coated magnetite nanocomposite as a strong Brønsted base included easy work up, clean reaction conditions, simple procedure, satisfactory yields, and reusability of the nanocatalyst.

CONFLICT OF INTEREST

The authors have confirmed that they have no conflict of interest.

Entry	Ar	Product	Time (min)	Yield (%) ^b	М.р. (°С)	Lit. M.p. (°C)
1	C_6H_5	7a	180	92	230-232	232 ²⁶
2	$4-C1C_6H_4$	7b	150	95	207-210	209 ²⁶
3	3-BrC ₆ H ₄	7c	170	92	186-190	189 ²⁶
4	$4-CH_3C_6H_4$	7d	180	90	219-222	222 ²⁶
5	$4-FC_6H_4$	7e	160	93	205-207°	
6	$4-O_2NC_6H_4$	7f	160	95	195-199	198 ²⁶
7	$2-C1C_6H_4$	7g	190	91	204-207	207 ²⁶
8	2,4-Cl ₂ -C ₆ H ₃	7h	200	90	180-183	182 ²⁶
9	4-(CH ₃) ₂ CHC ₆ H ₄	7i	210	88	160-165	165 ²⁶
10	4-MeSC ₆ H ₄	7j	180	92	238-240 ^c	

 Table 6.
 Preparation of tetrahydrobenzo[g]quinoline-5,10-diones.^a

^aGeneral reaction conditions: 2-hydroxy-1,4-dihydronaphthalene- 1,4-dione (1) (1 mmol), Aldehyde (7a-j) (1 mmol), ethyl acetoacetate (5) (1 mmol) and ammonium acetate (6) (2.5 mmol)), Water/ethanol at Reflux, $Fe_3O_4@SiO_2-NH_2$ (0.05g).

^bIsolated yields.

Table 7.	The reusability of the catalyst in the preparation	of 2-amino-5,10-dihydro-5,10-dioxo-4H-	benzo[g]chromene	and
	tetrahydrobenzo[g]quinoline-5,10-dione derivatives.			

Cycle	First	Second	Third	Fourth	Fifth	Sixth
Yield(%) ^a	95	95	91	90	88	85

^a Yields refer to the isolated pure product

Scheme 4. Proposed reaction mechanism for preparation of 2-amino-5,10-dihydro-5,10-dioxo-4H-benzo[g]chromenes using Fe₃O₄@SiO₂-NH₂ NPs.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the financial support of this work by the Research Affairs Office of the Islamic Azad University, Qom Branch, Qom, I. R. Iran [grant number 2014-13929].

REFERENCES

- Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. *Nat. Mater.*, 2008, 7, 527-538.
- [2] Raj, K.; Moskowitz, R. Commercial applications of ferrofluids. J. Magn. Magn. Mater., 1990, 85, 233-245.
- [3] Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 2003, 36, R167.
- [4] Kiasat, A. R.; Nazari, S. Magnetic nanoparticles grafted with βcyclodextrin–polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water. J. Mol. Catal. A-Chem., 2012, 365, 80-86.
- [5] Davarpanah, J.; Kiasat, A. R.; Noorizadeh S.; Ghahremani M. Nano magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica hybrid: Synthesis, characterization, and application as an efficient and reusable organic–inorganic hybrid silica with ionic liquid framework for one-pot synthesis of pyran annulated heterocyclic compounds in water. J. Mol. Catal. A-Chem., 2013, 376, 78-89.
- [6] Zhang, W.; Jia, S. Y.; Liu, Y.; Wu, S. H.; Wu, Q. Convenient synthesis of anisotropic Fe₃O₄ nanorods by reverse co-precipitation method with magnetic field-assisted. *Mater. Lett.*, **2011**, *65*, 1973-1975.
- [7] Rostamizadeh, S.; Azad, M.; Shadjou, N.; Hasanzadeh, (α- Fe₂O₃)-MCM-41-SO₃ H as a novel magnetic nanocatalyst for the synthesis of N-aryl-2-amino-1,6-naphthyridine derivatives M. *Catal. Commun.*, **2012**, 25, 83-91.
- [8] Beydoun, D.; Amal, R.; Low, G.; & McEvoy, S. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A-Chem., 2002, 180, 193-200.

- [9] Girgis, E.; Wahsh, M. M.; Othman, A. J.; Bandhu, L.; Rao, K. V. Synthesis, magnetic and optical properties of core/shell Co1-x Zn x Fe₂O₄/SiO₂ nanoparticles. *Nano. Res. Lett.*, **2011**, *6*, 460-466.
- [10] Karimi, A, R.; Sourinia, M.; Dalirnasab, Z.; Karimi, Marzie. Silica sulfuric acid magnetic nanoparticle: an efficient and ecofriendly catalyst for synthesis of spiro[2-amino-4H-pyran-oxindole]. *Can. J. Chem.*, 2015, 93, 546-549.
- [11] Yang, H.; Li, S.; Wang, X.; Zhang, F.; Zhong, X.; Dong, Z.; Ma, J. Core-shell silica magnetic microspheres supported proline as a recyclable organocatalyst for the asymmetric aldol reaction. J. Mol. Catal. A- Chem., 2012, 404, 363-364.
- [12] Shaterian, H. R.; Mohammadnia, M. Mild preparation of 1Hpyrazolo[1,2-b]phthalazine-5,10-dione derivatives with magnetic Fe₃O₄ nanoparticles coated by (3-aminopropyl)-triethoxysilane as catalyst under ambient and solvent-free conditions. *Res. Chem. Intermed.*, **2014**, *40*, 371-383.
- [13] Atashkar, B.; Rostami, A.; Tahmasbi, B. Magnetic nanoparticlesupported guanidine as a highly recyclable and efficient nanocatalyst for the cyanosilylation of carbonyl compounds. *Catal. Sci. Technol.*, 2013, 21, 44-49.
- [14] Kassaee, M. Z.; Masrouri, H.; Movahedi, F. Sulfamic acidfunctionalized magnetic Fe₃O₄ nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. *Appl. Catal. A-Gen.*, **2011**, *395*, 28-33.
- [15] Shajari, N.; Kazemizadeh, A. R.; Ramazani, A. Efficient one-pot, four-component synthesis of N,N-dibenzyl- -1-(5-aryl-1,3,4oxadiazol-2-yl)cyclobutylamine derivatives from the reaction of (isocyanoimino)triphenylphosphorane, dibenzylamine, an aromatic carboxylic acid and cyclobutanone. J. Serb. Chem. Soc., 2012, 77, 1175-1180.
- [16] Lichtenthaler, F. W. Unsaturated O- and N-Heterocycles from Carbohydrate Feedstocks. Acc. Chem. Res., 2002, 35, 728-737.
- [17] Litvinov, V. P. Multicomponent cascade heterocyclisation as a promising route to targeted synthesis of polyfunctional pyridines. *Russ. Chem. Rev.*, 2003, 72, 69-85.
- [18] Alinezhad, H.; Tajbakhsh, M.; Zare, M. One–Pot Regioselective Synthesis of 4–Bromopyrazole Derivatives Under Solvent Free Conditions. J. Mex. Chem. Soc., 2011, 55, 238-241.
- [19] Brisach-Wittmeyer, A.; Sido, A. S. S.; Guilini, P.; Désaubry, L. Concise synthesis and voltammetric studies of dielsiquinone, a cytotoxic azaanthraquinone. *Bioorg. Med. Chem. Lett.*, 2005, 15, 3609-3610.

- [20] (a) Kogl, F.; Sparenburg, J. UntersuchungenüberPilzfarbstoffe XIII: ÜberPhomazarin, den Farbstoff von Phomaterrestris Hansen, Recl. Trav. Chim. Pays-Bas., 1940, 59, 1180-1197 (b) Kogl, F.; Quackenbush, F. W. UntersuchungenüberPilzfarbstoffe XV.): ÜberPhomazarin II, Recl. Recl. Trav. Chim. Pays-Bas., 1944, 63, 251-260 (c) Kogl, F.; van Wessem, G. C.; Elsbach, O. I. UntersuchungenüberPilzfarbstoffe XVI: SynthetischeVersuchezur Konstitutionsaufklärung des Phomazarins (III). Recl. Trav. Chim. Pays-Bas., 1945, 64, 23-29.
- [21] Boger, D. L.; Hong, J.; Hikota, M.; Ishida, M. Total Synthesis of Phomazarin. J. Am. Chem. Soc., 1999, 121, 2471-2477.
- [22] (a) Krapcho, A. P.; Gallagher, C. E.; Mammach, A.; Ellis, M.; Menta, E.; Oliva, A. Synthesis of regioisomeric 6,9-(chlorofluoro)substituted benzo[g]quinoline-5,10-diones, benzo[g] isoquinoline-5,10-diones and 6-chloro-9-fluorobenzo[g]quinoxaline-5,10-dione. *J. Heterocycl. Chem.*, **1997**, *34*, 27-32 (b) Meghani, P.; Mills, O. S.; Joule, J. A. Synthesis of some quinones of relevance to a synthetic approach to amphimedine. Crystal structure determination of 1-methylpyrido[4,3-g]quinoline-4,5,10-trione 5-N,N-diisopropylhydrazone. *Heterocycles.*, **1990**, *30*, 1121-1129.
- [23] Berghot, M. A. New Unexpected Products during Heteroannulation of 1,4-Naphthoquinone Derivatives. *Chem. Pap.*, 2002, 56, 202-207.
- [24] Cuerva, J. M.; Cárdenas, D. J.; Echavarren, A. M. New synthesis of pyridoacridines based on an intramolecularaza-Diels-Alder reaction followed by an unprecedented rearrangement. *Chem. Comm.*, 1999, 17, 1721-1722.
- [25] (a) Chigr, M.; Fillion, H.; Rougny, A. A regioselective synthesis of 4,5- and 4,8- disubstitutedaza-anthraquinones by the diels-alder route. *Terahedron Lett.*, **1988**, 29, 5913-5916 (b) Echavarren, A. M. Lewis acid-catalyzed reactions of .alpha.,.beta.-unsaturated N,N-dimethylhydrazones with 1,4-benzoquinone. Formation of indoles by a novel oxidative rearrangement. *J. Org. Chem.*, **1990**, 55, 4255-4260 (c) Nebois, P.; Barret, R.; Fillion, H. Synthesis of azaanthraquinone derivatives via a hetero diels-alder reaction. *Tetrahedron Lett.*, **1990**, 31, 2569-2572 (d) Nicolaides, D. N.; Awad, R. W.; Papageorgiou, G. K.; Stephanidou-Stephanatou, J. Diels-Alder Reactions Of Ethyl [10-(Methoxyimino)Phenanthren-9-Ylidene]Acetate With Dienophiles Synthesis Of Dibenzo[F,H]Quinoline And Dibenzo[A,C]Acridine Derivatives. *J. Org. Chem.*, **1994**, *59*, 1083-1086.
- [26] Devi Bala, B.; Balamurugan, K.; Perumal, S. Four-component, domino reactions for the regioselective synthesis of tetrahydrobenzo[g]quinolones. *Tetrahedron Lett.*, 2011, 52, 4562-4566.
- [27] De Andrade-Neto, V. F.; Goulart, M. O. F.; Da Silva Filho, J. F.; Da Silva, M. J.; Pinto, M. D. C. F. R.; Pinto, A. V. Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum *in vitro* and Plasmodium berghei in vivo. *Bioorg. Med. Chem. Lett.*, 2004, 14, 1145-1149.
- [28] Pérez-Sacau, E.; Estévez-Braun, A.; Ravelo, A.G.; Yapu, D.G.; Gutiérrez, D.; Turba, A.G. Antiplasmodial activity of naphthoquinones related to lapachol and β -lapachone. *Chem. Biodiv.*, 2005, 2, 264-274.
- [29] Moon, D. O.; Choi, Y. H.; Kim, N. D.; Park, Y. M.; Kim, G. Y. Anti-inflammatory effects of beta-lapachone in lipopolysaccharidestimulated BV2 microglia. *Int. Immuno. Pharmacol.*, 2007, 7, 506-514.
- [30] Ough, M.; Lewis, A.; Bey, E. A.; Gao, J.; Ritchie, J. M.; Bornmann, W.; Oberley, L. W.; Cullen, J. Efficacy of b-lapachone in pancreatic cancer treatment: Exploiting the novel, therapeutic target NQO1. J. Canc. Biol. Ther., 2005, 4, 94-101.
- [31] Shestopalov, A. M.; Emelianova, Y. M.; Nesterov, V. N. One-step synthesis of substituted 2-amino-5,6,7,8-tetrahydro-4 Hbenzo[b]pyrans: Molecular and crystal structure of 2-amino-3-(2methoxyethoxycarbonyl)-4-(2-nitro-phenyl)-5-oxo-5,6,7,8tetrahydro-4H- benzo[b]pyran. Russ. Chem. Bull., 2003, 52, 1164-1172.
- [32] Akbarzadeh, T.; Rafinejad, A.; Malekian Mollaghasem, J.; Safavi, M.; Fallah-Tafti, A.; Kabudanian Ardestani, S.; Shafiee, A.; Foroumadi, A. 2-Amino-3-cyano-4-(5-arylisoxazol-3-yl)-4Hchromenes: Synthesis and in vitro cytotoxic activity. *Arch. Pharm.*, 2012, 345, 386-392.

- [33] Rafinejad, A.; Fallah-Tafti, A.; Tiwari, R.; Shirazi, A. N.; Mandal, D.; Shafiee, A.; Parang, K.; Foroumadi, A.; Akbarzadeh, T. 4-Aryl-4H-naphthopyrans derivatives: one-pot synthesis, evaluation of Src kinase inhibitory and anti-proliferative activities. *DARU J. Pharm. Sci.*, **2012**, *20*, 100-106.
- [34] Chandrasekhar, S.; Harvey, A. K.; Dell, C. P.; Ambler, S. J.; Smith, C. W. J. Identification of a novel chemical series that blocks interleukin-1-stimulated metalloprotease activity in chondrocytes. *Pharmacol. Exp. Ther.*, **1995**, *273*, 1519-1528.
- [35] Wang, J-L.; Liu, D.; Zhang, Z-J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. Structure-based discovery of an organic compound that binds Bel-2 protein and induces apoptosis of tumor cells. *Proc. Natl. Acad. Sci. USA*, 2000, 97, 7124-7129.
- [36] Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan-Grundy, C.; Denis, R.; Barriault, N.; Vaillancourt, L.; Charron, S.; Dodd, J.; Attardo, G.; Labrecque, D.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S. X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions. *Bioorg. Med. Chem. Lett.*, **2005**, *15*, 4745-4751.
- [37] Yao, Changsheng, YU, Chenxia, LI, Tuanjie, TU, Shujiang. An Efficient Synthesis of 4H-Benzo[g]chromene-5,10-dione Derivatives through Triethylbenzylammonium Chloride Catalyzed Multicomponent Reaction under Solvent-free Conditions. *Chinese* J. Chem., 2009, 27, 1989-1994.
- [38] Khorami, F.; Shaterian, H. R. Preparation of 2-amino-3-cyano-4aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene and hydroxyl naphthalene-1,4-dione derivatives. *Res. Chem. Intermed.*, 2015, 41, 3171-3191.
- [39] Dekamin, M. G.; Eslami, M.; Maleki, A. Potassium phthalimide-Noxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. *Tetrahedron*, 2013, 69, 1074-1085.
- [40] Shaabani, A.; Ghadari, R.; Ghasemi, S.; Pedarpour, M.; Rezayan, A. H.; Sarvary, A.; Weng Ng, S. Novel one-pot three- and pseudofive-component reactions: synthesis of functionalized benzo[g]and dihydropyrano[2,3-g]chromene derivatives. J. Comb. Chem., 2009, 11, 956-959.
- [41] Mirhosseini-Eshkevari, B.; Ghasemzadeh, M. A. Safaei-Ghomi, J. An efficient and green one-pot synthesis of indazolo[1,2-b]phthalazinetriones via three-component reaction of aldehydes, dimedone and phthalhydrazide using Fe₃O₄@SiO₂ core-shell nanoparticles. *Res. Chem. Intermed.*, **2015**, *41*, 7703-7714.
- [42] Ghasemzadeh, M. A.; Safaei-Ghomi, J. CuI nanoparticles as a remarkable catalyst in the synthesis of benzo[b][1,5]diazepines: an eco-friendly approach. Acta. Chim. Slov., 2015, 62, 103-110.
- [43] Ghasemzadeh, M. A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M. H. Rapid and efficient one-pot synthesis of 3,4dihydroquinoxalin-2-amine derivatives catalyzed by Co₃O₄@SiO₂ core-shell nanoparticles under ultrasound irradiation. *Comb. Chem. High Throughput Screen.*, **2016**, *19*, 592-601.
- [44] Ghasemzadeh, M. A.; Ghasemi-Seresht, N. Facile and efficient synthesis of benzo[b][1,5]diazepines by threecomponent coupling of aromatic diamines, Meldrum's acid, and isocyanides catalyzed by Fe₃O₄ nanoparticles, *Res. Chem. Intermed.*, 2015, 41, 8625-8636.
- [45] Lu, H. Y.; Yang, S. H.; Deng, J.; Zhang, Z. H. Magnetic Fe₃O₄ nanoparticles as new, efficient, and reusable catalysts for the synthesis of quinoxalines in water. *Aust. J. Chem.*, **2010**, *63*, 1290-1296.
- [46] Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. *Adv Mater.*, 2006, 18, 3289-3293.
- [47] Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. J. Amino-functionalized Fe₃O₄@SiO₂ core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. *Colloid Interface Sci.*, 2010, 349, 293-299.
- [48] Maity, D.; Kale, S. N.; Kaul-Ghanekar, R.; Xue, J-M.; Ding, J. Studies of magnetite nanoparticles synthesized by thermal

decomposition of iron (III) acetylacetonate in tri (ethylene glycol). J. Magn. Magn. Mater., 2009, 321, 3093-3098.

- [49] Yamaura, M.; Camilo, R. L.; Sampaio, L. C.; Macêdo, M. A.; Nakamurad, M.; Tomad, H. E. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. *J. Magn. Magn. Mater.*, 2004, 279, 210-217.
- [50] Shen, X-C.; Fang, X-Z.; Zhou, Y-H.; Liang, H. Synthesis and Characterization of 3-Aminopropyltriethoxysilane-Modified Superparamagnetic Magnetite Nanoparticles. *Chem. Lett.*, 2004, 33, 1468-1469.
- [51] Yang, T. Z.; Shen, C. M.; Gao, H. J. Highly ordered selfassembly with large area of Fe₃O₄ nanoparticles and the magnetic properties. J. Phys. Chem. B., 2005, 109, 23233-23236.