Synthesis of Sulfated Cerebroside Analogs Having Mimicks of Ceramide and Their Anti-human Immunodeficiency Virus Type 1 Activities

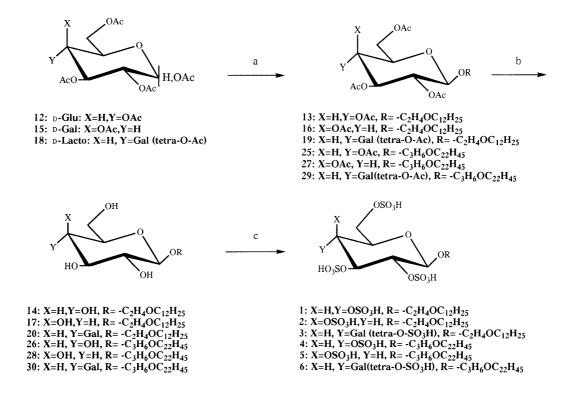
Hiroyuki Yoshida, Kiyoshi Ikeda, Kazuo Achiwa, **, and Hiroo Hoshino b

School of Pharmaceutical Sciences, University of Shizuoka, Yada 52–1, Shizuoka 422, Japan, Department of Hygiene, Gumma University School of Medicine, Maebashi, Gumma 371, Japan.

Received August 25, 1994; accepted November 26, 1994

Various sulfated cerebroside analogs, which are mimicks of cerebroside, have been prepared from per-O-acetylated D-glucose, per-O-acetylated D-glucose, and per-O-acetylated D-lactose with ethyleneglycol dodecyl ether, 3-docosyloxy-1-propanol, 2-hydroxymethyl-1,3-O-dimyristyl-1,3-propanediol, and L-serine diamide derivatives as ceramide moieties. The synthesized sulfated glycolipids showed anti-HIV-1 activities.

Key words sulfated cerebroside analog; ganglioside analog; anti-HIV-1 activity; L-serine diamide derivative


The glycoconjugates located on cell surface glycoprotein and glycolipids serve as recognition markers for the immune system and also play critical roles in the binding of lectins, hormones, and enzymes, the targeting of viruses and bacteria to the cell, and cell-cell recognition and development.¹⁾ It has been reported that dextran sulfate, heparin, and other sulfated polysaccharides are highly selective inhibitors of human immunodeficiency virus (HIV) replication.²⁾ Sulfation is assumed to play a critical role in the anti-HIV activity of these polysaccharide.³⁾

We have recently reported that sulfated gangliosides have potent anti-HIV activities.⁴⁾ However, gangliosides are usually available from natural sources in only limited quantities and are sialic acid-containing glycolipids, the

O-glycosidic linkage of which is fairly unstable to acids and bases. Therefore, versatile synthesis of cerebroside analogs as mimicks of gangliosides seems to be of importance.

As part of our synthetic studies⁵⁾ on biologically active new compounds designed on the basis of the chemical structure of glycoconjugates, including some found in nature, we planned to develop practical syntheses of biologically active cerebroside analogs containing modified ceramides as ganglioside analogs. We describe herein the synthesis of biologically active cerebroside analogs as mimicks of the ceramide moieties of gangliosides and the results of evaluation of their biological activities.

We chose the ethylene glycol dodecyl ether (11), 3-

reagents and conditions : a) TMSOTf, 11 (in the case of 1, 2, 3), 24 (in the case of 4, 5, 6); b) NH₄OH-MeOH (1:20) c) i) SO₃NMe₃, ii) CF₃CO₂H

Chart 1

* To whom correspondence should be addressed.

© 1995 Pharmaceutical Society of Japan

reagents and conditions : a) 3,4-dihydro-2H-pyran, PPTS; b) $C_{22}H_{45}OH$, NaH; c) PPTS, EtOH

Chart 2

docosyloxy-1-propanol (24) and 2-hydroxymethyl-1,3-O-dimyristyl-1,3-propanediol (35) as ceramide moieties for the derivatives. First, for preparing 1, 2, and 3, the neighboring-group-assisted coupling of per-O-acetylated D-glucose (12), per-O-acetylated D-galactose (15), and per-O-acetylated D-lactose (18) with ethylene glycol dodecyl ether (11) in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and molecular sieves 4 Å in ClCH₂CH₂Cl gave the desired glycosides 13, 16, and 19 in yields of 25, 42 and 59%, respectively, as shown in Chart 1.

Compounds 25, 27, and 29 were also obtained by the condensation of 12, 15, and 18 with 3-docosyloxy-1-propanol (24), readily prepared from 3-iodo-propanol (21) in 3 steps, according to Chart 2, in yields of 15, 20, and 72%, respectively.

The $^{1}\text{H-NMR}$ signal of the anomeric proton H-1 at δ 4.62 $(J_{1,2} = 8.3 \text{ Hz})$ in 13, δ 4.58 $(J_{1,2} = 7.9 \text{ Hz})$ in 16, δ 4.50 $(J_{1,2} = 8.3 \,\text{Hz})$ in **19**, δ 4.48 $(J_{1,2} = 8.3 \,\text{Hz})$ in **25**, δ 4.46 $(J_{1,2} = 8.2 \,\text{Hz})$ in 27, and δ 4.46 $(J_{1,2} = 7.8 \,\text{Hz})$ in 29 indicated the stereochemistry of the newly formed glycosidic bond to be β . Removal of acetyl groups in 13, 16, 19, 25, 27, and 29 by treatment with NH₄OH-MeOH (1:10) gave the alcohols 14, 17, 20, 26, 28, and 30 in yields of 31, 20, 46, 46, 53, and 29%, respectively. O-Sulfation of 14, 17, 20, 26, 28, and 30 was achieved with sulfur trioxide-trimethylamine complex in N,N-dimethylformamide⁶⁾ (DMF). Removal of trimethylamine was readily accomplished by brief treatment with trifluoromethanesulfonic acid in dichloromethane, and purification by chromatography on Sephadex LH-20 (CHCl₃: MeOH: $H_2O = 20:20:1$) followed by lyophilization of the aqueous solution afforded the sulfated glycosides 1, 2, 3, 4, 5, and 6 in yields of 34, 31, 61, 33, 42, and 28%, respectively. Absorptions at 1215— $1268 \, \text{cm}^{-1}$ (due to S=O stretching) and 756— $834 \, \text{cm}^{-1}$ (due to C-O-S vibration) were observed in the infrared (IR) spectra of 1, 2, 3, 4, 5, and 6, indicating the presence of sulfate esters. Furthermore, these compounds gave a positive test with the specific spray-reagent (azure A reagent) for sulfated glycolipids. 7)

Secondly, for the synthesis of 7 and 8, we prepared 2-hydroxymethyl-1,3-O-dimyristyl-1,3-propanediol (35) as the aglycone (Chart 3). Treatment of 2-isopropyl-5-hydroxymethyl-1,3-dioxane (31)⁸⁾ with benzyl bromide in DMF in the presence of sodium hydride gave, after chromatography, a monobenzyl ether (32) in 94% yield. Hydrolysis of 32 with 1 N HCl in MeOH gave the diol 33 in 50% yield. Then treatment of 33 with myristyl

$$HOH_2C$$
 $\stackrel{O}{\longrightarrow}$ $\stackrel{a}{\longrightarrow}$ $BnOH_2C$ $\stackrel{O}{\longrightarrow}$ $\stackrel{b}{\longrightarrow}$ 32

$$BnOH_{2}C \xrightarrow{OH} \xrightarrow{C} BnOH_{2}C \xrightarrow{OR} \xrightarrow{d} HOH_{2}C \xrightarrow{OR}$$

$$33 \qquad 34 \qquad 35$$

reagents and conditions : a) $C_6H_5CH_2Br$, NaH, n-Bu₄NI; b) 1 N HCl; c) NaH, $C_{14}H_{29}Br$, n-Bu₄NI; d) Pd-C, H_2

Chart 3

bromide in DMF in the presence of sodium hydride and n-tetrabutylammonium iodide, followed by hydrogenolysis over Pd-C with H_2 gave the alcohol 35 in 61% yield in two steps.

Condensation of **36** and **39** with **35** in the presence of HgBr₂ in 1,2-dichloroethane gave the expected glycosides **37** and **40**, in yields of 52 and 65%, respectively, as illustrated in Chart 4. ¹H-NMR spectra revealed a doublet due to H-1 at δ 4.47 ($J_{1,2}=8.3\,\mathrm{Hz}$) for **37** and δ 4.44 ($J_{1,2}=7.8\,\mathrm{Hz}$) for **40**, indicating the stereochemistry of the glycosidic bond formed to be β in both **37** and **40**. Subsequent saponification of **37** and **40** with NH₄OH–MeOH (1:10) gave the β -linked glycosides **38** and **41** in quantitative yields. Compounds **38** and **41** were then per-O-sulfated in the same manner to afford the sulfated glycosides **7** and **8**, in yields of 43 and 30%, respectively.

Thirdly, to obtain more effective compounds, we tried further structural modifications of the ceramide unit. We designed the L-serine diamide derivatives (45) bearing two amide functions as complicated mimicks of ceramides, as shown in Fig. 1.

That is, the (S)-configuration of the N-stearoyl group of 45 at the carbon of attachment is the same as that of natural sphingosines. In addition, the native allyl group has been replaced by an isosteric amide group consisting of a saturated fourteen-carbon fatty acid residue. For the preparation of 45, N-carbobenzoxy-L-serine-2,4-dinitrophenol (42) was treated with myristylamine in the presence of triethylamine to give the amide 43 in 65% yield. Deprotection of the benzyloxycarbonyl group of 43 was carried out with Pd-C and H₂, followed by acylation with stearoyl chloride and NaHCO₃ to give the diamide 45 in almost quantitative yield in 2 steps, as illustrated in

596 Vol. 43, No. 4

reagents and conditions: a) HgBr2, 35; b) NH4OH-MeOH (1:10); c) i) SO3NMe3, ii) CF3CO2H

Chart 4

reagents and conditions : a) $C_{14}H_{29}NH_2$, Et_3N ; b) Pd-C, H_2 ; c) $C_{17}H_{35}COCl$, $NaHCO_3$

Chart 5

Chart 5. Our attempts to prepare the glycoside 49 from 45 proceeded as follows. Glycosylation of 45 with glycosyl acetate (12), glycosyl bromide (36), and glycosyl trichloroacetimidate (46)⁹⁾ did not proceed using TMSOTf, $HgBr_2$, and BF_3 – Et_2O as promoters, probably due to the low reactivity of 45 and its low solubility in both organic solvents and water. We searched for an alternative method for the preparation of 9 and 10. We examined the amide 43 instead of 45. However, no reaction of 43 with glycosyl acetate (12) or glycosyl bromide (36) could be observed.

We turned out attention to the corresponding fluoride in place of 36. The reaction of glycosyl fluoride and 43 gave the desired compound 47 in the presence of SnCl₂-AgClO₄¹⁰⁾ in a low yield (6%). The problem was overcome by the use of glycosyl imidate (46) as the glycosyl donor. That is, coupling of 43 and 46 using BF₃-Et₂O as the promoter afforded the β -glycoside 47 exclusively, in 77% yield. Using the same methodology, coupling of 51 and 43 proceeded to give 52 in 33% yield using the same method. In the ¹³C-NMR spectra of 47 and 52, the ¹³C-¹H coupling constants observed for the anomeric carbon signals, 161.2 Hz in 47 and 159.5 Hz in 52, suggested the stereochemistry of the glycosidic bond formed to be $\beta^{(11)}$ in both 47 and 52. Subsequent hydrogenation of 47 and 52 with 10% Pd-on-carbon and H₂ in MeOH gave the amino compounds 48 and 53 in quantitative yields. The acylation of 48 and 53 was carried out with stearoyl chloride and NaHCO₃ to give the amides 49 and 54 in yields of 67 and 100%, respectively. Next, several attempts to remove the acetyl groups of 49 and 54 using usual mild de-O-acetylating reagents such as NH₄OH-MeOH, H₂NNH₂H₂O in EtOH,¹²⁾ and H₂NNH₂H₂O in AcOHpyridine $(1:4)^{13}$ resulted in β -elimination of the glycosides, because the reaction is complicated by the acidlability of glycosides in general and the base-sensitivity (retro-Michael reaction) of the O-serinyl glycosides in particular. 14) The best result was obtained as follows. Basic

reagents and conditions : a) BF_3 - EtO_2 , 43; b) Pd-C, H_2 ; c) $C_{17}H_{35}COCl$, $NaHCO_3$; d) NEt_3 -MeOH; e) i) SO_3NMe_3 , ii) CF_3CO_2H

Chart 6

Table 1. Results of Anti-HIV Assay by IFA Using MT-4 Cells

Compd. No.	HIV-1 infection (IC ₅₀) $(\mu g/ml)^{a}$	CT ^{b)}
1	>100	(-)
2	>100	(-)
3	>100	(-)
4	30	(-)
- 5	30—100	(-)
6	30100	(-)
7	30100	(-)
8	>100	(-)
9	>100	(++)
10	>100	(++)

a) Concentrations (μ g/ml) of compounds at which 50% of MT-4 cells expressed HIV-1 antigens. b) CT: cytotoxic (- to ++).

hydrolysis of **49** and **54** was smoothly accomplished by stirring in 10% NEt₃–MeOH¹⁵⁾ at 45 °C to give the alcohols **50** and **55** in 89 and 70% yields, respectively. During the de-O-acetylation, no β -elimination product was detected. Finally, O-sulfation of **50** and **55** was achieved with sulfur trioxide–pyridine complex in DMF, followed by treatment with CF₃CO₂H, purification by chromatography on Sephadex LH-20 and lyophilization of the aqueous solution to afford the sulfated glycosides **9** and **10**, in yields of 28 and 43%, respectively.

The structures of all compounds were characterized by ¹H- and ¹³C-NMR spectral methods, as well as IR spectroscopy, elemental analyses and positive FAB-mass spectrometry.

The anti-HIV-1 activities of the ten sulfated glycolipids are shown in Table 1. The anti-HIV-1 activity was tested by the syncytium-formation assay method using MT-4 cells according to our previously reported procedure. Among the synthesized compounds, 4, 5, 6, 7 showed moderate activity with 50%-inhibitory concentration (IC₅₀) value of 30 μ M, 30—100 μ M, 30—100 μ M, and 30—100 μ M, respectively. Compound 1, 2, 3, 8, 9, 10 were found to be practically inactive (IC₅₀>100 μ M) against HIV-1 and noncytotoxic, except for compounds 9 and 10.

Experimental

All melting points are uncorrected. Optical rotations were measured with a JASCO DIP-140 digital polarimeter. IR spectra were recorded on a JASCO A-202 infrared spectrophotometer. ¹H-NMR spectra were taken on a JEOL JNM-GX270 (270 MHz) spectrometer. 13C-NMR spectra were recorded with a JEOL JNM-GX270 (67.5 MHz) spectrometer. ^{1}H and ^{13}C chemical shifts (δ) are given in ppm relative to that of Me_4Si ($\delta=0$) in $CDCl_3$ or CD_3OD , or sodium 4,4-dimethyl-4silapentane-1-sulfonate hydrate (DSS, $\delta = 0$ in D_2O) as an internal standard. The abbreviations of signal patterns are as follows: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Column chromatography was carried out on silica gel 60 (70—230 mesh, Merck). Gel filtration was performed on Sephadex LH-20 (Pharmacia). Thinlayer chromatography (TLC) on Silica gel 60F₂₅₄ (Merck) was used to monitor the reaction and to ascertain the purity of the reaction products. The spots were visualized by spraying the plates with 5% aqueous sulfuric acid and then heating. Sulfated glycolipids were visualized with azure A reagent. The bands of lipids containing sulfate esters were stained blue.

2-(Dodecyloxy)ethyl 2,3,4,6-Tetra-*O***-acetyl-** β -D-glucopyranoside (13) A solution of 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (12) (210 mg, 0.54 mmol) and ethyleneglycol dodecyl ether (186 mg, 0.81 mmol) in

598 Vol. 43, No. 4

anhydrous ClCH₂CH₂Cl (10 ml) was stirred for 1 h at room temperature under argon in the presence of 4Å powdered molecular sieves. The mixture was cooled to 0°C, then Me₃SiOSO₂CF₃ (TMSOTf) (132 mg, 0.59 mmol) was added. Stirring was continued for 3h at room temperature, then the solution was poured into ice-water, and extracted with CHCl₃. The extract was successively washed with aqueous NaHCO₃ and H₂O, dried (MgSO₄), and evaporated in vacuo. The residual product was chromatographed on SiO₂ with 10:1 CHCl₃-CH₃COCH₃ to give 13 (75 mg, 25%) as an amorphous powder. $[\alpha]_D$ -24.9° (c=0.18, CHCl₃). IR (neat): 1752, 1375, 1113 cm⁻¹. 1 H-NMR (CDCl₃) δ : 0.88 $(3H, t, J = 6.4 \text{ Hz}, OC_{11}H_{22}C\underline{H}_3), 1.26 (18H, s, OCH_2CH_2(C\underline{H}_2)_9CH_3),$ 1.54 (2H, m, $OCH_2CH_2C_{10}H_{21}$), 2.01, 2.02, 2.04, 2.09 (each 3H, s, $OCOCH_3 \times 4$), 3.43 (2H, t, J = 6.4 Hz, $OC\underline{H}_2C_{11}H_{23}$), 3.57 (2H, t, $J = 4.9 \text{ Hz}, \text{CH}_2\text{OC}_{12}\text{H}_{25}), 3.66 - 3.77 \text{ (2H, m, Glu-H5, OCH}_a\text{H}_b\text{CH}_2\text{O}),$ 3.93 (1H, dt, J=4.4, 10.7 Hz, OCH_aH_bCH₂O), 4.14 (1H, dd, J=12.3, 2.5 Hz, Glu-H6_a), 4.27 (1H, dd, J = 12.3, 4.9 Hz, Glu-H6_b), 4.62 (1H, d, J = 8.3 Hz, Glu-H1), 5.00 (1H, dd, J = 8.3, 9.3 Hz, Glu-H2), 5.09 (1H, t, J=9.3 Hz, Glu-H4), 5.21 (1H, t, J=9.3 Hz, Glu-H3). Positive FAB-MS m/z: 561 (M+H)⁺, 583 (M+Na)⁺.

2-(Dodecyloxy)ethyl β-D-Glucopyranoside (14) A mixture of 13 (75 mg, 0.13 mmol) and NH₄OH–MeOH (1:20) (10 ml) was stirred at room temperature for 15 h, and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in CHCl₃–MeOH (5:1) to give 14 (16 mg, 31%), mp 62—64 °C. [α]_D +25.2° (c=0.22, MeOH). IR (KBr): 3383, 1115 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=7.3 Hz, OC₁₁H₂₂CH₃), 1.26 (18H, s, OCH₂CH₂(CH₂)₉CH₃), 1.56 (2H, m, OCH₂CH₂C₁₀H₂₁), 3.45 (2H, t, J=6.7 Hz, OCH₂Cl₁₁H₂₃), 3.55 (2H, m, OCH₂CH₂OC₁₂H₂₅), 3.73 (2H, m, OCH₂CH₂OC₁₂H₂₅), 4.34 (1H, d, J=7.6 Hz, H-1). Positive FAB-MS m/z: 393 (M+H)⁺, 415 (M+Na)⁺.

2-(Dodecyloxy)ethyl 2,3,4,6-Tetra-O-sulfo-β-D-glucopyranoside (1) A solution of 14 (16 mg, 0.041 mmol) in DMF (2 ml) was stirred for 20 h at 45—50 $^{\circ}\text{C}$ in the presence of sulfur trioxide–trimethylamine complex (46 mg, 0.33 mmol). The mixture was cooled and chromatographed on a column of Sephadex LH-20 equilibrated in 20:20:1 (v/v) CHCl₃-MeOH-H₂O. Elution with the same solvent gave a residue that was dissolved in CH2Cl2 (2 ml). The solution was treated with CF3SO3H (37 mg, 0.33 mmol) for 2 h under ice-cooling, then evaporated in vacuo. The residue was dissolved in H₂O (1 ml) and chromatographed on a column of Sephadex LH-20. Elution with 20:20:1 (v/v) in CHCl₃-MeOH-H₂O afforded 1 (10 mg, 34%) as an amorphous powder, after lyophilization from H_2O . $[\alpha]_D + 51.4^\circ$ (c = 0.22, MeOH). IR (KBr): 1255, 1109, $803 \,\mathrm{cm}^{-1}$. ¹H-NMR (D₂O) δ : 0.90 (3H, t, $J = 6.9 \,\mathrm{Hz}$, $OC_{11}H_{23}CH_{3}$), 1.29 (18H, br s, $OCH_{2}CH_{2}(CH_{2})_{9}CH_{3}$). Anal. Calcd for $C_{20}H_{40}O_{19}S_4 \cdot N(CH_3)_3$: C, 35.79; \vec{H} , 6.40; \vec{N} , 1.81. Found: C, 35.14; H, 6.68; N, 1.97.

2-(Dodecyloxy)ethyl 2,3,4,6-Tetra-O-acetyl-β-D-galactopyranoside (16) The same procedure as described for the preparation of 13 provided a crude product from 1,2,3,4,6-penta-O-acetyl-D-galactopyranose (15) $(119\,\mathrm{mg},\,0.31\,\mathrm{mmol}),\,\mathrm{ethylene}$ glycol dodecyl ether $(105\,\mathrm{mg},\,0.46\,\mathrm{mmol})$ and TMSOTf (75 mg, 0.34 mmol), and this was purified by column chromatography with 10:1 CHCl₃-CH₃COCH₃ to give **16** (72 mg, 42%) as an amorphous powder. [α]_D -24.8° (c=0.22, CHCl₃). IR (neat): 1752, 1369, 1120 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, J = 7.0 Hz, $OC_{11}H_{22}CH_{3}$), 1.26 (18H, br s, $OCH_{2}CH_{2}(CH_{2})_{9}CH_{3}$), 1.54 (2H, m, OCH₂CH₂C₁₀H₂₁), 1.96, 2.05, 2.06, 2.15 (each 3H, s, OCOCH₃×4), 3.43 (2H, t, $J = 6.7 \,\text{Hz}$, $OC\underline{H}_2C_{11}H_{23}$), 3.58 (2H, t, $J = 4.6 \,\text{Hz}$, $C\underline{H}_2OC_{12}H_{25}$), 3.71—3.76 (1H, m, $OC\underline{H}_aH_bCH_2OC_{12}H_{25}$), 3.89—3.93 (2H, m, H-5, OCH_a \underline{H}_b CH₂OC₁₂H₂₅), 4.13 (1H, dd, J=6.7, 11.2 Hz, H-6_{a}), 4.18 (1H, dd, J = 6.4, 11.2 Hz, H-6_b), 4.58 (1H, d, J = 7.9 Hz, H-1), 5.02 (1H, dd, J=3.3, 10.7 Hz, H-3), 5.22 (1H, t, J=7.9, 10.7 Hz, H-2), 5.39 (1H, d, J = 3.3 Hz, H-4). ¹³C-NMR (CDCl₃) δ : 14.1 (q, C₁₁H₂₂CH₃), 20.6, 20.7, 20.8 (q, OCOCH₃ × 4), 22.7, 26.1, 29.4, 29.5, 29.6, 29.8, 31.9 $(t, OCH_2(CH_2)_{10}CH_3), 61.3(t, C-6), 67.1(d, C-4), 68.9(t, OCH_2CH_2O-6)$ $C_{12}H_{25}$), 69.0 (t, $OCH_2CH_2OC_{12}H_{25}$), 69.8 (t, $OCH_2C_{11}H_{23}$), 70.7 (d, C-5), 71.0 (d, C-3), 71.7 (d, C-2), 101.4 (d, C-1), 169.5, 170.2, 170.3, 170.4 (s, OCOCH₃ × 4). Positive FAB-MS m/z: 561 (M+H)⁺, 583 $(M + Na)^+$

2-(Dodecyloxy)ethyl β -**D-Galactopyranoside (17)** The same procedure as described for the preparation of **14** provided a crude product from **16** (72 mg, 0.13 mmol), and this was purified by column chromatography with 5:1 CHCl₃–MeOH to give **17** (21 mg, 20%) as an amorphous powder. $[\alpha]_D$ –23.1° (c=0.30, MeOH). IR (KBr): 3382, 1118 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, J=7.0 Hz, OC₁₁H₂₂CH₃), 1.26 (18H, br s, CH₂(CH₂)₉CH₃), 1.57 (2H, m, OCH₂CH₂C₁₀H₂₁), 3.46 (2H, t,

 $J=6.7\,\mathrm{Hz},\ \mathrm{OC}_{\pm 2}\mathrm{C}_{11}\mathrm{H}_{23}$). Positive FAB-MS m/z: 393 (M+H)⁺, 415 (M+Na)⁺, 431 (M+K)⁺.

2-(Dodecyloxy)ethyl 2,3,4,6-Tetra-*O***-sulfo-***β***-D-galactopyranoside (2)** The same procedure as described for the preparation of **1** provided a crude product from **17** (21 mg, 0.054 mmol) and sulfur trioxide–trimethylamine complex (30 mg, 0.22 mmol), followed by trifluoroacetic acid (TFA, 24 mg, 0.22 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃–MeOH–H₂O to give **9** (12 mg, 31%) as an amorphous powder. $[\alpha]_D$ – 121.4° (c = 0.05, MeOH). IR (KBr): 1255, 1109, 834 cm⁻¹. ¹H-NMR (D₂O) δ: 0.90 (3H, t, J = 7.3 Hz, $OC_{11}H_{22}CH_3$), 1.29 (18H, br s, $OCH_2CH_2(CH_2)_9CH_3$). *Anal.* Calcd for $C_{20}H_{40}O_{19}S_4 \cdot 2 \times N(CH_3)_3$: C, 37.58; H, 7.04; N, 3.37. Found: C, 37.74; H, 7.68; N, 3.97.

2-(Dodecyloxy)ethyl 2,3,6-Tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)- β -D-glucopyranoside (19) The same procedure as described for the preparation of 13 provided a crude product from 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- β -D-glucopyranose (18) (192 mg, 0.28 mmol), ethylene glycol dodecyl ether (98 mg, 0.43 mmol) and TMSOTf (69 mg, 0.31 mmol), and this was purified by column chromatography with 10:1 CHCl₃-CH₃COCH₃ to give 7 (141 mg, 59%) as an amorphous powder. [α]_D +7.0° (c=0.27, CHCl₃). IR (neat): 1751, 1113 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, $J = 6.9 \text{ Hz}, \text{ OC}_{11}\text{H}_{22}\text{C}_{13}\text{H}_{3}, 1.26 (18\text{H}, \text{br s}, \text{ OCH}_{2}\text{CH}_{2}(\text{C}_{12}\text{H}_{2})_{9}\text{CH}_{3}), 1.54$ $(2H, m, OCH_2C\underline{H}_2C_{10}H_{21}), 1.96, 2.04, 2.05, 2.06, 2.12, 2.15$ (21H, s, $OCOC\underline{H}_3 \times 7$), 3.41 (2H, t, J = 6.3 Hz, $OC\underline{H}_2C_{11}H_{23}$), 4.11 (4H, m, Gal-H6, Glu-H6), 4.50 (1H, d, J = 8.3 Hz, H-1), 4.57 (1H, d, J = 7.8 Hz, Gal-H1), 4.90 (1H, dd, J = 8.3, 9.3 Hz, Glu-H2), 4.96 (1H, dd, J = 3.4, 10.7 Hz, Gal-H3), 5.11 (1H, dd, J=7.8, 10.7 Hz, Gal-H2), 5.20 (1H, t, J=9.3 Hz, Glu-H3). Anal. Calcd for $C_{40}H_{58}O_{19} \cdot H_2O$: C, 55.81; H, 7.02. Found: C, 55.89; H, 7.68.

2-(Dodecyloxy)ethyl 4-*O*-(*β*-D-Galactopyranosyl)-*β*-D-glucopyranoside (20) The same procedure as described for the preparation of 14 provided a crude product from 19 (141 mg, 0.17 mmol), and this was purified by column chromatography with 5:1 CHCl₃-MeOH to give 20 (42 mg, 46%), mp 133—137 °C. [α]_D +2.4° (c=0.36, MeOH). IR (KBr): 3395, 1110 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=7.0 Hz, OC₁₁H₂₂CH₃), 1.26 (18H, br s, OCH₂CH₂(CH₂)₉CH₃), 1.60 (2H, m, OCH₂CH₂C₁₀H₂₁), 4.32 (1H, d, J=7.9 Hz, Glu-H1), 4.37 (1H, d, J=8.0 Hz, Gal-H1). Positive FAB-MS m/z: 555 (M+H)+, 577 (M+Na)+ 593 (M+K)+.

2-(Dodecyloxy)ethyl 2,3,6-Tri-*O***-sulfo-***4-O***-(2,3,4,6-tetra-***O***-sulfo-***β***-D-galactopyranosyl)-***β***-D-glucopyranoside (3)** The same procedure as described for the preparation of **1** provided a crude product from **20** (42 mg, 0.076 mmol) and sulfur trioxide–trimethylamine complex (149 mg, 1.07 mmol), followed by TFA (122 mg, 1.07 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃–MeOH–H₂O to give **3** (52 mg, 61%) as a colorless amorphous solid after lyophilization from H₂O. [α]_D +16.7° (c=0.24, MeOH). IR (KBr): 1218, 1132, 812 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.3 Hz, OC₁₁H₂₂CH₃), 1.26 (18H, br s, OCH₂CH₂-(CH₂)₉CH₃). *Anal.* Calcd for C₂₆H₅₀O₃₃S₇·6×N(CH₃)₃: C, 35.96; H, 7.13; N, 5.72. Found: C, 35.55; H, 8.01; N, 5.92.

3-Iodo-1-*O*-tetrahydropyranylpropanol (22) 3,4-Dihydro-2*H*-pyran (THP) (9.76 g, 116 mmol) was added dropwise to a stirred mixture of 3-iodo-1-propanol (21) (10.8 g, 58.2 mmol) and pyridinium toluene-*p*-sulfonic acid (PPTS) (0.73 g, 29.1 mmol) in dry CH_2Cl_2 (100 ml) at 0 °C and was kept at 0 °C overnight, after which it was washed with saturated aqueous NaHCO₃ and saturated aqueous NaCl, dried (MgSO₄), and evaporated to dryness. Chromatography of the residual oil on a column of SiO₂ with 2:1 hexane–EtOAc gave 22 (14.8 g, 94%). IR (neat): 1182, 1131, 1644 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.10 (2H, m, $-CH_2$ –), 1.50–1.92 (6H, m, THP), 3.30 (2H, t, J = 6.8 Hz, $-CH_2$ I), 3.43 (2H, t, J = 5.9 Hz, CH_2 OTHP), 4.61 (1H, t, J = 3.4 Hz, THP).

1-O-Tetrahydropyranyl-3-O-docosylpropanediol (23) A solution of 1-docosanol (17.9 g, 54.8 mmol) in dry tetrahydrofuran (THF, 30 ml) was added to an ice-cooled solution of NaH (1.97 g, 82.2 mmol, 60% dispersion in oil) in DMF (100 ml) under an argon atmosphere. The mixture was stirred for 1 h at room temperature, then 22 (14.8 g, 54.8 mmol) was added dropwise and stirring was continued for 4 d at 60 °C. After being cooled to room temperature, the mixture was partitioned between CH₂Cl₂ and water. The organic phase was washed with water, dried (MgSO₄), and evaporated to dryness. Chromatography of the residual oil on a column of SiO₂ with 10:1 hexane–EtOAc gave 23 (3.08 g, 12%) as an oil. IR (neat): 1647, 1118, 1057 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=5.4 Hz, O(CH₂)₂₁CH₃), 1.25 (38H, s,

OCH₂CH₂(C $\underline{\text{H}}_2$)₁₉CH₃), 1.43—1.82 (8H, m, THP, OCH₂C $\underline{\text{H}}_2$ C₂₀H₄₁), 1.87 (2H, m, OCH₂C $\underline{\text{H}}_2$ CH₂O), 3.40 (2H, t, J=6.3 Hz, OC $\underline{\text{H}}_2$ CC₁₁H₄₃), 3.50 (2H, t, J=6.3 Hz, C $\underline{\text{H}}_2$ OC₂₂H₄₅), 3.51 (2H, t, J=6.6 Hz, THP), 3.84 (2H, t, J=6.4 Hz, -CH₂O-), 4.59 (1H, t, J=2.5 Hz, THP).

3-Docosyloxy-1-propanol (24) A mixture of **23** (3.08 g, 6.57 mmol) and PPTS (0.165 g, 0.66 mmol) in ethanol (30 ml) was heated at 55 °C for 3 h. The solution was cooled, then saturated aqueous NaHCO₃ was added and the whole was extracted with ether. The extract was washed with water, dried (MgSO₄) and evaporated to dryness. Chromatography of the residue on a column of SiO₂ with 10:1 hexane–EtOAc gave **24** (1.07 g, 43%), mp 57—61 °C. IR (KBr): 3382, 1024 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.8 Hz, O(CH₂)₂₁CH₃), 1.25 (38H, br s, OCH₂CH₂(CH₂)₁₉CH₃), 1.55 (2H, m, OCH₂CH₂C₁₉H₃₉), 1.83 (2H, m, OCH₂CH₂CH₂CH₂O), 3.43 (2H, t, J=6.4 Hz, OCH₂C₂1H₄₃), 3.62 (2H, t, J=5.4 Hz, CH₂OC₂₂H₄₅), 3.78 (2H, t, J=5.5 Hz, -CH₂OH). Positive FAB-MS m/z: 385 (M+H) +.

3-(Docosyloxy)propyl 2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranoside (25) The same procedure as described for the preparation of 13 provided a crude product from 1,2,3,4,6-penta-*O*-acetyl-β-D-glucopyranose (12) (201 mg, 0.52 mmol), 24 (298 mg, 0.77 mmol) and TMSOTf (126 mg, 0.57 mmol), and this was purified by column chromatography with 10:1 CHCl₃-CH₃COCH₃ to give 17 (55 mg, 15%) as white prisms, mp 63—65 °C. [α]_D +44.1° (c=0.03, CHCl₃). IR (KBr): 1744, 1059 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=7.3 Hz, O(CH₂)₂1CH₃), 1.25 (38H, brs, OCH₂CH₂(CH₂)₁₉CH₃), 1.58 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.83 (2H, m, OCH₂CH₂CH₂O), 2.00, 2.02, 2.04, 2.09 (each 3H, s, OCOCH₃ × 4), 3.38 (2H, t, J=7.8 Hz, OCH₂C₂1H₄₃), 3.44 (2H, t, J=6.4 Hz, CH₂OC₂2H₄₅), 4.13 (1H, dd, J=2.4, 14.4 Hz, H-6a), 4.27 (1H, dd, J=4.8, 14.4 Hz, H-6b), 4.48 (1H, d, J=8.3 Hz, H-1), 4.98 (1H, dd, J=8.3, 9.2 Hz, H-2), 5.08 (1H, t, J=9.2 Hz, H-4), 5.20 (1H, t, J=9.2 Hz, H-3).

3-(Docosyloxy)propyl β-D-Glucopyranoside (26) The same procedure as described for the preparation of 14 provided a crude product from 25 (55 mg, 0.077 mmol) and NH₄OH–MeOH (1:20), and this was purified by column chromatography with 5:1 CHCl₃–MeOH to give 26 (19 mg, 46%) as a white powder, mp 67—69 °C. [α]_D +47.5° (c=0.10, MeOH). IR (KBr): 3384, 1038 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.8 Hz, O(CH₂)₂₁CH₃), 1.25 (38H, brs, OCH₂CH₂(CH₂))₁₉CH₃), 1.55 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.88 (2H, m, OCH₂CH₂CH₂O), 3.3 (2H, t, J=6.8 Hz, OCH₂CC₂₁H₄₃), 3.52 (2H, t, J=5.9 Hz, CH₂OC₂₂H₄₅), 4.32 (1H, d, J=7.3 Hz, Glu-H1). ¹³C-NMR (CDCl₃) δ: 14.1 (q, OC₂₁H₄₂CH₃), 22.7, 26.2, 29.4, 29.6, 29.7, 31.9 (t, OCH₂(CH₂)₂₀CH₃), 29.7 (t, OCH₂CH₂CH₂O), 61.6 (t, C-6), 67.6 (t, CH₂OC₂₂H₄₅), 69.7 (d, C-4), 71.2 (t, OCH₂CH₂CH₂OC₂₂H₄₅), 73.5 (d, C-2), 75.6 (d, C-3), 77.2 (d, C-5), 102.9 (d, C-1). Positive FAB-MS m/z: 547 (M+H)⁺, 569 (M+Na)⁺, 585 (M+K)⁺.

3-(Docosyloxy)propyl 2,3,4,6-Tetra-*O*-sulfo-*β*-D-glucopyranoside (4) The same procedure as described for the preparation of 1 provided a crude product from 26 (19 mg, 0.036 mmol) and sulfur trioxide–trimethylamine complex (40 mg, 0.029 mmol), followed by treatment with CF₃CO₂H (25 mg, 0.22 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃–MeOH–H₂O to give 4 (13 mg, 33%) as an amorphous solid. [α]_D +0.3° (c=0.37, MeOH). IR (KBr): 1250, 1109, 812 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.9 Hz, OC₂₁H₄₂CH₃), 1.25 (38H, brs, OCH₂CH₂CH₂OC₂₂H₄₅), 1.53 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.86 (2H, m, OCH₂CH₂CH₂OC₂₂H₄₅), 2.89 (9H, s, HN⁺ Me₃). ¹³C-NMR (CDCl₃) δ: 14.1 (q, OC₂₁H₄₂CH₃), 19.0, 22.7, 26.2, 29.4, 29.7, 29.8, 32.0 (t, OCH₂(CH₂)₂₀CH₃).

3-(Docosyloxy)propyl 2,3,4,6-Tetra-*O*-acetyl-β-D-galactopyranoside (27) The same procedure as described for the preparation of 13 provided a crude product from 1,2,3,4,6-penta-*O*-acetyl-β-D-galactopyranose (15) (212 mg, 0.55 mmol), 24 (314 mg, 0.82 mmol) and TMSOTf (200 mg, 0.90 mmol), and this was purified by column chromatography with 10:1 CHCl₃-CH₃COCH₃ to give 27 (79 mg, 20%) as an amorphous solid. [α]_D +41.5° (c=0.12, CHCl₃). IR (neat): 1754, 1055 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.8Hz, O(CH₂)₂₁CH₃), 1.26 (38H, br s, OCH₂CH₂(CH₂)₁₉CH₃), 1.58 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.84 (2H, m, OCH₂CH₂CH₂CH₂O), 2.04, 2.05, 2.06, 2.15 (each 3H, s, OCOCH₃ × 4), 3.38 (2H, t, J=6.0 Hz, OCH₂C₂₁H₄₃), 3.44 (2H, t, J=7.9 Hz, CH₂OC₂₂H₄₅), 3.61 (1H, d, J=8.7 Hz, OCH₃H₆CH₂CH₂O), 3.90 (1H, d, J=7.4 Hz, OCH₄H₆CH₂CH₂O), 4.46 (1H, d, J=8.2 Hz, H-1), 5.02 (1H, dd, J=5.9, 15.6 Hz, H-3), 5.20 (1H, dd, J=5.9, 8.2 Hz, H-2), 5.39 (1H, d, J=3.6 Hz, H-4).

3-(Docosyloxy)propyl β-D-Galactopyranoside (28) The same procedure as described for the preparation of 14 provided a crude product from 27 (79 mg, 0.11 mol) and NH₄OH–MeOH (1:20), and this was purified by column chromatography with 5:1 CHCl₃–MeOH to give 28 (32 mg, 53%). [α]_D + 19.3° (c = 0.13, MeOH). IR (neat): 3418,1055 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J = 7.3 Hz, O(CH₂)₂₁CH₃), 1.26 (38H, br s, OCH₂CH₂(CH₂)₁₉CH₃), 1.56 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.88 (2H, m, OCH₂CH₂CH₂O). ¹³C-NMR (CDCl₃) δ: 14.2 (q, OC₂₁H₄₂CH₃), 18.1, 19.8, 22.8, 26.2, 27.2, 29.5, 29.7, 29.8, 30.2, 32.1, 32.9, 37.2 (t, OCH₂(CH₂)₂₀CH₃), 29.8 (t, OCH₂CH₂CH₂O), 61.6 (t, C-6), 67.4 (t, CH₂OC₂₂H₄₅), 67.8 (d, C-2), 69.2 (d, C-4), 71.6 (t, OCH₂CH₂CH₂O-C₂₂H₄₅), 73.8 (d, C-3), 74.9 (d, C-5), 103.6 (d, C-1). Positive FAB-MS m/z: 547 (M+H)⁺, 569 (M+Na)⁺, 585 (M+K)⁺.

3-(Docosyloxy)propyl 2,3,4,6-Tetra-*O***-sulfo-***β***-D-galactopyranoside (5)** The same procedure as described for the preparation of **1** provided a crude product from **28** (32 mg, 0.058 mmol) and sulfur trioxide–trimethylamine complex (65 mg, 0.47 mmol), followed by treatment with CF₃CO₂H (40 mg, 0.35 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃–MeOH–H₂O to give **5** (27 mg, 42%) as an amorphous solid. [α]_D +14.7° (c=0.24, MeOH). IR (KBr): 1268, 1055, 756 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.8 Hz, OC₂₁H₄₂CH₃), 1.25 (38H, br s, OCH₂CH₂(CH₂)₁₉CH₃), 1.55 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.87 (2H, m, OCH₂CH₂CH₂O–). ¹³C-NMR (CDCl₃) δ: 14.1 (q, OC₂₁H₄₂CH₃), 22.7, 29.4, 29.7, 29.8, 31.9 (t, OCH₂(CH₂)₂₀CH₃), 107.3 (d, C-1).

3-(Dodecyloxy)propyl 4-O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (29) The same procedure as described for the preparation of 13 provided a crude product from 18 (119 mg, 0.18 mmol), 24 (73 mg, 0.19 mmol) and TMSOTf (43 mg, 0.19 mmol), and this was purified by column chromatography with 10:1 CHCl₃–CH₃COCH₃ to give **29** (126 mg, 72%) as an amorphous solid, mp 44—45 °C. $[\alpha]_D$ +16.7° (c=0.19, CHCl₃). IR (KBr): 1751, 1370, 1052, 1637 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, J=6.9 Hz, $O(CH_2)_{21}C\underline{H}_3)$, 1.25 (38H, br s, $OCH_2CH_2(C\underline{H}_2)_{19}CH_3)$, 1.54 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.83 (2H, m, OCH₂CH₂CH₂O), 1.97, 2.04, 2.05, 2.06, 2.12, 2.15 (21H, s, OCOCH₃ × 7), 3.43 (2H, dd, J=4.5, 6.0 Hz, $OC\underline{H}_2C_{21}H_{43}$), 3.60 (2H, t, J=7.4 Hz, $C\underline{H}_2OC_{22}H_{45}$), 3.79 (1H, t, J=9.6 Hz, Glu-H5), 3.86—3.92 (2H, m, Gal-H5, Glu-H4), 4.46 (1H, d, J=7.8 Hz, Glu-H1), 4.49 (1H, d, J=7.8 Hz, Gal-H1), 4.89 (1H, t, J=7.8 Hz, Glu-H2), 4.96 (1H, dd, J=3.3, 10.1 Hz, Gal-H₃), 5.11 (1H, dd, J=7.8, 10.1 Hz, Gal-H2), 5.19 (1H, t, J=7.8 Hz, Glu-H3), 5.33 (1H, dd, J=3.3, 14.2 Hz, Gal-H4). Anal. Calcd for $C_{51}H_{80}O_{19} \cdot 5H_2O$: C, 56.34; H, 8.34. Found: C, 55.98; H, 8.11.

3-(Dodecyloxy)propyl 4-*O*-(β-D-Galactopyranosyl)-β-D-glucopyranoside (30) The same procedure as described for the preparation of 14 provided a crude product from 29 (126 mg, 0.13 mmol) and NH₄OH–MeOH (1:20), and this was purified by column chromatography with 5:1 CHCl₃–MeOH to give 30 (26 mg, 29%) as a white powder, mp 153—156 °C. [α]_D +6.8° (c=0.96, MeOH). IR (KBr): 1114, 1639 cm⁻¹. ¹³C-NMR (CDCl₃) δ: 14.2 (q, OC₂₁H₄₂CH₃), 19.9, 23.0, 25.8, 26.5, 29.7, 29.8, 29.9, 30.0, 30.1, 30.3, 32.3, 34.8, 39.2 (t, OCH₂(CH₂)₂₀CH₃), 32.3 (t, OCH₂CH₂CH₂O), 61.6 (t, Gal-C6), 62.0 (t, Glu-C6), 68.0 (d, Gal-C4), 69.5 (d, Gal-C2), 71.5 (t, OCH₂CH₂CH₂O), 73.7 (d, Glu-C2), 73.9 (d, Gal-C3), 75.3 (d, Glu-C5), 75.9 (d, Glu-C3), 78.0 (d, Gal-C5), 80.4 (d, Glu-C4), 103.3 (d, Glu-C1), 104.2 (d, Gal-C1). Positive FAB-MS m/z: 732 (M+Na)[†].

3-(Dodecyloxy)propyl 4-*O*-(2,3,4,6-Tetra-*O*-sulfo-*β*-D-galactopyranosyl)-2,3,6-tri-*O*-sulfo-*β*-D-glucopyranoside (6) The same procedure as described for the preparation of 1 provided a crude product from 30 (26 mg, 0.037 mmol) and sulfur trioxide–trimethylamine complex (71 mg, 0.051 mmol), followed by treatment with CF₃CO₂H (44 mg, 0.38 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃–MeOH–H₂O to give 6 (17 mg, 28%) as an amorphous solid. [α]_D –23.7° (c=0.13, MeOH). IR (KBr): 1215, 1051, 757 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.9 Hz, OC₂₁H₄₂CH₃), 1.25 (38H, br s, OCH₂CH₂CH₂)₁₉CH₃), 1.54 (2H, m, OCH₂CH₂C₂₀H₄₁), 1.85 (2H, m, OCH₂CH₂CH₂O).

2-Isopropyl-5-benzyloxymethyl-1,3-dioxane (32) A solution of 2-isopropyl-5-hydroxymethyl-1,3-dioxane (cis, trans mixture) (31) (8.20 g, 0.052 mol) in dry THF (50 ml) was added portionwise to an ice-cooled solution of sodium hydride (2.00 g, 0.082 mol, 60% dispersion in oil) and n-tetrabutylammonium iodide (6.10 g, 0.016 mol) in dry THF (100 ml) under argon. The mixture was stirred at room temperature for 1 h, then benzyl bromide (18.8 g, 0.11 mol) was added dropwise to it at 0 °C and

the whole was left overnight at room temperature. The reaction was quenched with MeOH and the mixture was concentrated under reduced pressure. The residue was extracted with ether, and the ethereal layer was washed with brine. The organic layer was dried over MgSO₄, and concentrated to an oil, which was applied to a column of silica gel and eluted with 5:1 n-hexane–EtOAc to give 32 (12.6 g, 94%) as an oil. IR (neat): 2958, 2918, 2852, 1039, 1112, 736, 698 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 0.91 (6H, d, J=6.9 Hz, CHCH(C $\underline{\text{H}}_3$)₂), 1.62 (1H, m, C $\underline{\text{H}}$ CHC $\underline{\text{H}}_2$ OCH₂Ph), 1.76 (1H, m, CHC $\underline{\text{H}}$ (CHC), 3.77 (2H, d, J=7.8 Hz, CHC $\underline{\text{H}}_2$ OCH₂Ph), 3.82 (2H, m, CHC $\underline{\text{H}}_4$ H₀OCH), 4.07 (2H, dd, J=1.5, 11.7 Hz, CHCH₄- $\underline{\text{H}}_6$ OCH), 4.24 (1H, d, J=4.4 Hz, C $\underline{\text{H}}$ CH(CH₃)₂), 4.54 (2H, s, OC $\underline{\text{H}}_2$ Ph), 7.28 (5H, m, Ph). *Anal*. Calcd for $C_{14}H_{20}O_3$: C, 71.58; H, 8.53. Found: C, 71.77; H, 9.06.

2-Benzyloxymethyl-1,3-propanediol (33) Compound **32** (12.6 g, 0.05 mol) was dissolved in 1 n HCl (90 ml) and MeOH (180 ml). The mixture was refluxed for 3 h, neutralized with 1 n NaOH, diluted with $\mathrm{CH_2Cl_2}$, and washed with brine. The organic phase was dried over MgSO₄, and concentrated under reduced pressure. The residual oily product was applied to a column of silica gel and eluted with 5:1 *n*-hexane–AcOEt to give **32** (4.50 g, 50%) as an oil. IR (neat): 3384, 1029, 1074, 738, 697 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.00 (1H, m, CH₂CH(CH₂OH)), 3.40 (2H, br s, CH(CH₂OH)₂), 3.55 (2H, d, J=6.0 Hz, CHCH₂OCH₂Ph), 3.72 (4H, d, J=6.0 Hz, CH(CH₂OH)₂), 4.47 (2H, s, OCH₂Ph), 7.29 (5H, m, Ph). *Anal.* Calcd for C₁₁H₁₆O₃·1/3H₂O: C, 65.33; H, 8.31. Found: C, 65.65; H, 8.41.

2-Benzyloxymethyl-1,3-dimyristylpropanediol (34) A solution of 33 (1.20 g. 6.59 mol) in dry THF (10 ml) was added to an ice-cooled solution of sodium hydride (0.63 g, 26.4 mol) and n-tetrabutylammonium iodide (1.46 g, 3.95 mmol) in dry THF (50 ml) under argon. The mixture was stirred at room temperature for 1 h, then myristyl bromide (5.48 g, 19.8 mmol) was added dropwise at 0 °C and the reaction mixture was left overnight at room temperature. The reaction was quenched with MeOH and the mixture was concentrated under reduced pressure. The residue was extracted with ether, and the ethereal layer was washed with brine. The organic layer was dried over MgSO₄, and concentrated to an oil, which was applied to a column of silica gel and eluted with 5:1 n-hexane-EtOAc to give 34 (2.70 g, 69%) as an oil. IR (neat): 1027, 1109, 733, $697 \,\mathrm{cm}^{-1}$. ¹H-NMR (CDCl₃) δ : 0.88 (6H, t, $J = 6.6 \,\mathrm{Hz}$, $OC_{13}H_{26}CH_3 \times 2)$, 1.25 (44H, br s, $OCH_2CH_2(CH_2)_{11}CH_3 \times 2)$, 1.53 $(4H, m, OCH_{2}C\underline{H}_{2}C_{12}H_{25} \times 2), 2.20 (1H, m, OCH_{2}C\underline{H}(CH_{2}OC_{14}H_{29})_{2}),$ 3.38 (4H, t, $J = 6.6 \,\text{Hz}$, $OC\underline{H}_2C_{13}H_{27} \times 2$), 3.47 (4H, d, $J = 5.9 \,\text{Hz}$, $OCH_2CH(C\underline{H}_2OC_{14}H_{29})_2 \times 2)$, 3.53 (2H, d, J = 5.9 Hz, $OC\underline{H}_2CH$ - $(CH_2OC_{14}H_{29})_2$, 4.49 (2H, s, $OC\underline{H}_2C_6H_5$), 7.31 (5H, m, $OCH_2C_6\underline{H}_5$). Anal. Calcd for C₃₉H₇₂O₃: C, 79.53; H, 12.32. Found: C, 79.61; H, 12.19

2-Hydroxymethyl-1,3-*O*-dimyristyl-1,3-propanediol (35) A mixture of 34 (2.70 g, 4.70 mmol) and 10% Pd-on-charcol (0.27 g) suspended in EtOH (30 ml) was hydrogenated for 3 h at room temperature under atmospheric pressure, then filtered, and the filtrate was concentrated to dryness. The residue was column-chromatographed with *n*-hexane-EtOAc (5:1) to give 35 (2.00 g, 88%) as a white powder, mp 52—54 °C. IR (KBr): 3342, 1036 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (6H, t, J = 6.6 Hz, OC₁₃H₂₆CH₃×2), 1.26 (44H, br s, OCH₂CH₂(CH₂)₁₁CH₃×2), 1.56 (4H, m, OCH₂CH₂C₁₂H₂₅×2), 2.10 (1H, m, HOCH₂CH₂CH₂OC₁₄-H₂₉)₂), 2.94 (1H, br, CH₂OH), 3.41 (4H, t, J = 6.6 Hz, OCH₂C₁₃H₂₇×2), 3.76 (2H, t, J = 5.2 Hz, CH₂OH). *Anal.* Calcd for C₃₂H₆₆O₃: C, 77.04; H, 13.33. Found: C, 77.40; H, 13.51. Positive FAB-MS m/z: 500 (M+H)⁺.

2-O-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)methyl-1,3-O-dimyristylpropanediol (37) A solution of 2,3,4,6-tetra-O-acetyl-D-glucopyranosyl bromide (36) (111 mg, 0.29 mmol) in ClCH₂CH₂Cl (1 ml) was added to a suspension of 35 (71 mg, 0.15 mmol), HgBr₂ (106 mg, 0.29 mmol) and MS4 Å in ClCH₂CH₂Cl (5 ml). The mixture was stirred overnight at room temperature, then filtered, and the filtrate was diluted with ClCH₂CH₂Cl. The mixture was successively washed with 10% aqueous KI and brine, then dried (MgSO₄) and concentrated to a syrup. This was column-chromatographed with n-hexane–EtOAc (5:1) to give 37 (63 mg, 52%) as an oil. [α]_D -9.1° (c=0.21, CHCl₃). IR (neat): 1742, 1107 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (6H, t, J = 6.8 Hz, OC₁₃H₂₆- $CH_3 \times 2$), 1.26 (44H, brs, $OCH_2CH_2(CH_2)_{11}CH_3 \times 2$), 1.53 (4H, m, $OCH_2C\underline{H}_2C_{12}H_{25} \times 2)$, 2.00, 2.02, 2.04, 2.09 (each 3H, s, $OCOC\underline{H}_3 \times 4)$, 2.10 (1H, m, OCH₂CH(CH₂OC₁₄H₂₉)₂), 3.68 (1H, m, H-5), 4.12 (1H, dd, J=2.5, 12.2 Hz, H-6_a), 4.28 (1H, dd, J=4.9, 12.2 Hz, H-6_b), 4.47 (1H, d, J=8.3 Hz, H-1), 4.99 (1H, dd, J=8.3, 9.7 Hz, H-2), 5.08 (1H, t, t) J=9.3 Hz, H-4), 5.19 (1H, dd, J=9.3, 9.7 Hz, H-3). Positive FAB-MS m/z: 830 (M+H)⁺, 852 (M+Na)⁺.

2-O-(β-D-Glucopyranosyl)methyl-1,3-dimyristylpropanediol (38) A solution of 37 (63 mg, 0.076 mmol) in NH₄OH-MeOH (1:10) (10 ml) was stirred at room temperature overnight. It was concentrated to dryness under reduced pressure and the residual product was purified by column chromatography with n-hexane-EtOAc 2:1 to give 38 (50 mg, quant.) as a white powder, mp 60—63 °C. $[\alpha]_D$ –18.8° (c=0.40, MeOH). IR (KBr): 3392, $1102 \,\mathrm{cm}^{-1}$. ¹H-NMR (CDCl₃) δ : 0.88 (6H, $J = 6.8 \,\mathrm{Hz}$, $OC_{13}H_{26}CH_3 \times 2$), 1.26 (44H, br s, $OCH_2CH_2(CH_2)_{11}CH_3 \times 2$), 1.55 $(4H, m, OCH_{2}C\underline{H}_{2}C_{12}H_{25}\times 2), 2.20\,(1H, m, OCH_{2}C\underline{H}(CH_{2}OC_{14}H_{29})_{2}),$ 4.28 (1H, d, J=7.8 Hz, Glu-H1). ¹³C-NMR (CDCl₃) δ : 14.1 (q, $OC_{13}H_{26}CH_3 \times 2$, 22.7, 26.2, 29.4, 29.6, 29.7, 29.8, 32.0 (t, $OCH_2(CH_2)$ - $_{12}CH_3 \times 2)$, 40.2 (d, OCH $_2$ CH(CH $_2$ OC $_{14}$ H $_{29}$) $_2$), 62.0 (t, C-6), 69.2 (t, $OCH_2CH(\underline{C}H_2OC_{14}H_{29})_2), 69.4 (t, O\underline{C}H_2CH(CH_2OC_{14}H_{29})_2), 70.2$ (d, C-4), 71.6 (t, $OCH_2C_{13}H_{27} \times 2$), 73.7 (d, C-2), 75.9 (d, C-5), 76.4 (d, C-3), 103.3 (d, C-1). Positive FAB-MS m/z: 662 (M+H)⁺, 684 $(M + Na)^+$

2-*O*-(2,3,4,6-Tetra-*O*-sulfo-*β*-D-glucopyranosyl)methyl-1,3-dimyristyl-propanediol (7) The same procedure described for the preparation of 1 provided a crude product from 38 (50 mg, 0.076 mmol) and sulfur trioxide–trimethylamine complex (96 mg, 0.61 mmol), followed by TFA (69 mg, 0.61 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20: 20:1 (v/v) CHCl₃–MeOH– $\rm H_2O$ to give 7 (32 mg, 43%) as an amorphous solid. [α]_D +1.6° (c=0.81, MeOH). IR (neat): 1205, 1107, 799 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (6H, br s, OC₁₃H₂₆CH₃ × 2), 1.25 (44H, br s, OCH₂CH₂(CH₂)₁₁CH₃ × 2), 1.50 (4H, br, OCH₂CH₂C₁₂H₂₅ × 2). ¹³C-NMR (CDCl₃) δ: 14.1 (q, OC₁₃H₂₆CH₃ × 2), 22.7, 26.2, 29.4, 29.5, 29.6, 29.7, 31.9 (t, OCH₂-CH(CH₂OC₁₄H₂₉)₂), 71.4, 71.6 (t, OCH₂CH₂CH₁H₂₉)₂), 71.0 (t, OCH₂-CH(CH₂OC₁₄H₂₉)₂), 71.4, 71.6 (t, OCH₂C₁₃H₂₇ × 2). Positive FAB-MS m/z: 923 (M+Na-SO₃)⁺. Anal. Calcd for C₃₈H₇₆O₂₀S₄ · 1/3H₂O: C, 46.23; H, 8.36. Found: C, 46.51; H, 7.81.

2-*O*-(**2**,**3**,**4**,**6**-Tetra-*O*-acetyl-*β*-D-galactopyranosyl)-1,**3**-dimyristyl-propanediol (**40**) The same procedure described for the preparation of **37** provided a crude product from **40** (59 mg, 0.12 mmol), and 2,3,4,6-tetra-*O*-acetyl-D-galactopyranosyl bromide (**39**) (89 mg, 0.24 mmol) and HgBr₂ (85 mg, 0.24 mmol), and this was purified by column chromatography with *n*-hexane–EtOAc 5:1 to give **40** (62 mg, 65%) as a syrup. [α]_D +7.4° (c=0.39, CHCl₃). IR (neat): 1752, 1076 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (6H, t, J=6.9 Hz, OC₁₃H₂₆CH₃×2), 1.26 (44H, br s, OCH₂CH₂(CH₂)₁₁CH₃×2), 1.56 (4H, m, OCH₂CH₂C₁₂H₂₅×2), 1.98, 2.04, 2.05, 2.15 (each 3H, s, OCOCH₃×4), 3.57 (1H, dd, J=6.4, 10.0 Hz, H-5), 3.90 (1H, m, H-6_a), 4.14 (1H, m, H-6_b), 4.44 (1H, d, J=7.8 Hz, H-1), 4.50 (1H, dd, J=3.7, 10.6 Hz, H-3), 5.19 (1H, dd, J=7.8, 10.6 Hz, H-2), 5.38 (1H, d, J=2.3 Hz, H-4). Positive FAB-MS m/z: 830 (M + H)⁺.

2-O-(β-D-Galactopyranosyl)methyl-1,3-O-dimyristylpropanediol (41) The same procedure as described for the preparation of **38** provided a crude product from **40** (63 mg, 0.076 mmol), and this was purified by column chromatography with *n*-hexane–EtOAc 2:1 to give **41** (50 mg, quant.) as a white powder, mp 69—71 °C. [α]_D -7.3° (c = 0.37, MeOH). IR (KBr): 3392, 1074 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (6H, J = 6.8 Hz, OC₁₃H₂₆CH₃×2), 1.26 (44H, brs, OCH₂CH₂C(H₂)₁₁CH₃×2), 1.55 (4H, m, OCH₂CH₂C₁₂H₂₅×2), 2.20 (1H, m, OCH₂CH(CH₂OC₁₄H₂₉)₂, 4.21 (1H, d, J = 7.4 Hz, H-1). ¹³C-NMR (CDCl₃) δ: 14.1 (q, OC₁₃H₂₆C, 4.3 × 2), 22.8, 26.2, 29.4, 29.6, 29.8, 32.0 (t, OCH₂CH₂CH₂)₁₂CH₃×2), 40.3 (d, OCH₂CH(CH₂OC₁₄H₂₉)₂), 61.8 (t, C-6), 69.1 (d, C-4), 69.2 (t, OCH₂CH(CH₂OC₁₄H₂₉)₂), 69.4 (t, OCH₂CH(CH₂OC₁₄H₂₉)₂), 71.6 (d, C-2), 73.6 (d, C-3), 74.8 (d, C-5), 103.9 (d, C-1). Positive FAB-MS m/z: 661 (M)⁺, 662 (M+H)⁺.

2-*O*-(**2**,**3**,**4**,**6**-Tetra-*O*-sulfo-β-D-galactopyranosyl)-1,**3**-dimyristyl-propanediol (**8**) The same procedure described for the preparation of **1** provided a crude product from **41** (50 mg, 0.076 mmol) and sulfur trioxide–trimethylamine complex (96 mg, 0.61 mmol), followed by TFA (69 mg, 0.61 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃–MeOH– H₂O to give **8** (22 mg, 30%) as an amorphous solil. [α]_D +6.8° (c=0.68, MeOH). IR (neat): 1251, 1101, 818 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (6H, t, J=6.4 Hz, OC₁₃H₂₆-CH₃×2), 1.26 (44H, br s, OCH₂CH₂-(CH₂)₁₁CH₃×2), 1.54 (4H, m, OCH₂CH₂C₁₃H₂, ×2). ¹³C-NMR (CDCl₃) δ: 13.9 (q, OC₁₃H₂₆CH₃×2), 22.5, 23.6, 25.5, 28.9, 29.2, 29.5, 31.8 (t, OCH₂CH₂)₁₂CH₃). Positive FAB-MS m/z: 981 (M)⁺, 923 (M+Na-SO₃)⁺. Anal. Calcd for C₃₈H₇₆O₂₀S₄·1/2H₂O: C, 46.09; H, 7.94. Found: C, 46.51; H, 7.81.

N-Benzyloxycarbonyl-L-serine Myristylamide (43) *N*-CarbobenzoxyL-serine-2,4-dinitrophenol (42) (997 mg, 2.40 mmol) was added to a solution of myristylamine (614 mg, 2.88 mmol) and triethylamine (262 mg, 2.88 mmol) in CH₂Cl₂ (10 ml) at room temperature under argon. The mixture was stirred for 5 h, washed with aqueous NaHCO₃ and brine, dried (MgSO₄), filtered and evaporated to dryness. The residue was crystallized from *n*-hexane to afford 43 (675 mg, 65%) as a white powder, mp 108—112 °C. [α]_D –7.3° (c=0.34, CHCl₃). IR (KBr): 3274, 1647, 1071, 720, 691 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.4 Hz, C₁₃H₂₆CH₃), 1.25 (22H, s, (CH₂)₁₁CH₃), 1.47 (2H, m, CH₂C₁₂H₂₅), 3.23 (2H, m, CH₂C₁₃H₂₇), 3.65 (1H, m, CHCH₂OH), 4.15 (2H, m, CHCH₂OH), 5.14 (2H, s, CH₂C₆H₅), 7.36 (5H, m, CH₂C₆H₅). *Anal.* Calcd for C₂₅H₄₂N₂O₄: C, 69.09; H, 9.74; N, 6.45. Found: C, 69.32; H, 9.76; N, 6.34.

L-Serine Myristylamide (44) A mixture of 43 (323 mg, 0.74 mmol) and 10% Pd–C (0.10 g) in MeOH (10 ml) was stirred under H₂ overnight at room temperature. The catalyst was removed by filtration and the filtrate was concentrated to dryness to give 44 (400 mg, quant.). Compound 44 was used for the subsequent acylation without further purification. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.4 Hz, C₁₃H₂₆CH₃), 1.26 (22H, br s, (CH₂)₁₁CH₃), 1.51 (2H, m, CH₂C₁₂H₂₅), 3.25 (2H, m, CH₂C₁₃H₂₇), 3.42 (1H, t, J=5.5 Hz, CHCH₂OH), 3.69 (1H, dd, J=6.0, 10.6 Hz, CHCH₃OH), 3.86 (1H, dd, J=5.1, 10.6 Hz, CHCH₃OH).

N-Stearoyl-L-serine Myristylamide (45) A solution of stearoyl chloride (304 mg, 1.00 mmol) in ether (2 ml) was added to a stirred solution of 44 (232 mg, 0.77 mmol) and NaHCO₃ (260 mg, 3.09 mmol) in H₂O (10 ml) at room temperature. Stirring was continued overnight, and the solid that separated was collected by filtration, washed with ether and water, and dried *in vacuo*. Crystallization from acetone gave 45 (546 mg, quant.) as an amorphous powder. ¹H-NMR (CDCl₃) δ: 0.88 (6H, t, J=6.4 Hz, $C_{13}H_{26}CH_3$, $C_{16}H_{32}CH_3$), 1.26 (50H, brs, $(CH_2)_{11}CH_3$, $(CH_2)_{14}CH_3$), 1.49 (2H, brs, $CH_2C_{12}H_{25}$), 1.62 (2H, brs, $CH_2(CH_2)_{14}CH_3$), 2.23 (2H, brs, $CH_2C_{16}H_{33}$), 3.22 (2H, brs, $CH_2C_{13}H_{27}$), 3.41 (1H, brs, HOCH $_2CH$ -), 3.56 (1H, m, HOC $_3CH$ -), 3.94 (1H, d, J=8.9 Hz, HOCH $_3CH$ -). Positive FAB-MS m/z: 568 $(M+H)^+$.

N-Benzyloxycarbonyl-O-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-L-serine Myristylamide (47) A stirred mixture of 46 (489 mg, 1.13 mmol), prepared from 2,3,4,6-tetra-O-acetyl- β -D-glucopyranose and trichloroacetonitrile and 1,8-diazabicyclo[5.4.0]-7-undecene, was treated with BF₃·OEt₂ (159 mg, 1.13 mmol) and powdered 4 Å molecular sieves in CH₂Cl₂ (5 ml) at 0 °C under Ar. The mixture was stirred overnight at room temperature, diluted with CH₂Cl₂, and filtered through Celite. The filtrate was washed with saturated aqueous NaHCO3 and dried (MgSO₄) and the solvent was evaporated in vacuo. The residue was chromatographed over SiO₂ with 10:1 CHCl₃-MeOH to give 47 (801 mg, 77%) as an amorphous powder. [α]_D +8.4° (c=1.15, CHCl₃). IR (neat): 1752, 1524, 1222, 1113 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, $J = 6.9 \,\text{Hz}$, $C_{13}H_{26}C\underline{H}_3$), 1.26 (22H, br s, $-(C\underline{H}_2)_{11}CH_3$), 1.48 (2H, br s, $C\underline{H}_2C_{12}H_{25}$), 2.00, 2.02, 2.03, 2.05 (each 3H, s, $OCOC\underline{H}_3 \times 4$), 3.23 (2H, dd, J = 6.3, 13.2 Hz, $-C\underline{H}_2C_{13}H_{27}$), 3.77 (1H, dd, J = 8.3, 10.5 Hz, $-OCH_2C\underline{H}$ -), 5.11 (2H, s, $OC\underline{H}_2C_6H_5$), 7.35 (5H, s, $OCH_2C_6\underline{H}_5$). ¹³C-NMR (CDCl₃) δ : 14.1 (q, CONHC₁₃H₂₆CH₃), 20.6, 20.7 (q, OCOCH₃), 22.7, 23.0, 26.9, 28.9, 29.3, 29.4, 29.6, 29.7, 30.4, 31.9, 38.7, 39.8 (t, OCONHC₁₃H₂₆CH₃), 53.8 (t, OCH₂CH-), 61.7 (t, C-6), 67.2 (t, COOCH₂Ph), 68.2 (d, C-2), 70.5 (d, OCH₂CH), 71.1 (d, C-5), 72.1 (d, C-3), 72.6 (d, C-4), 101.8 (d, C-1), 128.2, 128.6, 128.8, 130.9,132.5, 136.1 (d, Ph), 156.0 (s, NHCO), 167.8, 168.9, 169.4, 170.1 (s, OCOCH₃), 170.6 (s, CONH). Anal. Calcd for C₃₉H₆₀N₂O₁₃: C, 61.20; H, 7.91; N, 3.66. Found: C, 60.71; H, 7.79; N, 3.15. Positive FAB-MS m/z: 765

O-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-L-serine Myristylamide (48) A mixture of 47 (133 mg, 0.17 mmol) and 10% Pd–C (50 mg) in MeOH (10 ml) was stirred under H₂ overnight at room temperature. The catalyst was removed by filtration and the filtrate was concentrated to dryness to give 48 (67 mg, 61%). Compound 48 was used for the subsequent acylation without further purification. [a]_D -22.7° (c=0.47, CHCl₃). IR (neat): 1729, 1694, 1107 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=6.4 Hz, C_{13} H₂₆CH₃), 1.26 (22H, br s, CH₂(CH₂)₁₁CH₃), 1.54 (2H, br s, CH₂CH₂C₁₂H₂₅). Positive FAB-MS m/z: 631 (M)⁺.

N-Stearoyl-O-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-L-serine Myristylamide (49) A solution of stearoyl chloride (131 mg, 0.43 mmol) in ether (2 ml) was added to a solution of 48 (210 mg, 0.33 mmol) and NaHCO₃ (111 mg 5.3 mmol) in H₂O (10 ml) at 0 °C. The mixture was

stirred for 5 h at room temperature, diluted with CH₂Cl₂, washed with aqueous NaHCO₃ and brine, dried (MgSO₄), and filtered. The filtrate was evaporated to dryness. The residue was chromatographed on a column of silica gel with 10:1 CH₂Cl₂–MeOH to give **49** (201 mg,67%) as an amorphous powder. [α]_D -1.8° (c=0.68, CHCl₃). IR (neat): 1749, 1639, 1552, 1228, $1062 \, \mathrm{cm}^{-1}$. 1 H-NMR (CDCl₃) δ : 0.86 (3H, t, J=7.0 Hz, $^{-}$ CH₃), 1.26 (52H, brs, $^{-}$ CH₂–), 1.50, 1.59 (4H, brs, NCH₂CH₂ and C(O)CH₂CH₂), 2.01, 2.05, 2.10 (12H, s, OCOCH₃), 2.19 (2H, t, J=7.6 Hz, C(O)CH₂CH₂). 3.20 (2H, t, J=6.5 Hz, NCH₂CH₂). Anal. Calcd for C₄₉H₈₈N₂O₁₂: C, 65.59; H, 9.89; N, 3.12. Found: C, 65.22; H, 9.75; N, 3.50. Positive FAB-MS m/z: 898 (M+1) $^{+}$.

N-Stearoyl-*O*-(β-D-glucopyranosyl)-L-serine Myristylamide (50) A solution of 49 (62 mg, 0.069 mmol) in NEt₃–MeOH (1:9) (2 ml) was stirred at 45 °C overnight. The mixture was concentrated to dryness under reduced pressure and the residual product was purified by column chromatography with 5:1 CH₂Cl₂–MeOH to give 42 (50 mg, 81%). $[\alpha]_D$ – 1.0° (c=0.88, CHCl₃). IR (neat): 1749, 1639, 1522 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.88 (3H, t, J=7.0 Hz, –CH₃), 1.26 (52H, br s, –CH₂–), 1.50 (2H, br s, C(O)CH₂CH₂), 2.20 (2H, t, J=8.1 Hz, C(O)CH₂CH₂). *Anal.* Calcd for C₄₁H₈₀N₂O₈: C, 67.54; H, 11.06; N, 3.84. Found: C, 67.35; H, 11.25; N, 3.54. Positive FAB-MS m/z: 729 (M) $^+$ and 752 (M + Na) $^+$.

N-Stearoyl-*O*-(2,3,4,6-penta-*O*-sulfo-β-D-glucopyranosyl)-L-serine Myristylamide (9) The same procedure described for the preparation of 1 provided a crude product from 50 (50 mg, 0.069 mmol) and sulfur trioxide–pyridine complex (66 mg, 0.41 mmol), followed by TFA (66 mg, 0.58 mmol), and this was purified on a column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃-MeOH-H₂O to give 9 (20 mg, 28%) as an amorphous powder, followed by lyophilization from H₂O. [α]_D – 2.9° (c=0.20, MeOH). IR (Nujol): 1654, 1546, 1227, 1047 cm⁻¹. *Anal.* Calcd for C₄₁H₈₀N₂O₂₀S₄ · 1/2C₅H₅N: C, 47.98; H, 7.46; N, 3.22. Found: C, 48.57; H, 8.15; N, 3.84.

N-Benzyloxycarbonyl-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-L-serine Myristylamide (52) The same procedure described for the preparation of 47 provided a crude product from 51 (1.23 g, 2.48 mmol), itself prepared from 2,3,4,6-tetra-O-acetyl-β-D-galactopyranose, trichloroacetonitrile, 1,8-diazabicyclo [5.4.0]-7-undecene, 43 (1.08 g, 2.48 mmol) and BF₃·OEt₂ (0.35 g, 2.48 mmol), and this was purified on a column of silica gel with 10:1 CHCl₃-MeOH to give 52 (0.62 g, 33%) as prisms, mp 98—100 °C. $[\alpha]_D$ +9.6° (c = 0.80, CHCl₃). IR (neat): 1747, 1665, 1536, 737, 699 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.91 (3H, t, J = 6.8 Hz, $C_{13}H_{26}C\underline{H}_3$), 1.28 (22H, brs, $CH_2(C\underline{H}_2)_{11}CH_3$), 1.50 (2H, brs, NCH_2CH_2), 2.02, 2.07, 2.12, 2.17 (each 3H, s, $OCOCH_3 \times 4$), 3.24 (2H, m, NHC $\underline{\text{H}}_2$ CH₂), 3.69 (1H, dd, J = 5.4, 11.3 Hz, OCH₂C $\underline{\text{H}}$ N), 5.15 (2H, s, $OCH_2C_6H_5$), 5.99 (1H, brd, J=7.3 Hz, NHCO), 6.72 (1H, brs, $NHCH_2$), 7.37 (5H, s, $OCH_2C_6H_5$). ¹³C-NMR (CDCl₃) δ : 14.1 (q, C₁₃H₂₆CH₃), 20.6, 20.7 (q, OCOCH₃), 22.7, 26.8, 26.9, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 39.7, 39.9 (t, $C_{13}H_{26}CH_3$), 55.4 (t, OCH_2CH), 62.8 (t, C-6), 67.2 (t, COOCH₂Ph), 68.2 (d, C-2), 70.5 (d, OCH₂CH), 71.0 (d, C-5), 101.9 (d, C-1), 128.1, 128.3, 128.6, 136.0 (s, Ph), 156.0 (s, NHCO), 170.1, 170.3, 170.4, 170.5, 170.6 (s, C = O). Anal. Calcd for $C_{39}H_{60}N_2O_{13}$: C, 61.20; H, 7.91; N, 3.66. Found: C, 61.57; H, 7.83; N, 3.15.

O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-L-serine Myristylamide (53) The same procedure described for the preparation of 48 provided a crude product from 52 (622 mg, 0.81 mmol) and this was concentrated to dryness to give 53 (48 mg, 94%). Compound 53 was used for the subsequent acylation without further purification. [α]_D +11.4° (c=0.95, CHCl₃). IR (neat): 1748, 1674, 1538, 1226, 1071 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.87 (3H, t, J=6.4 Hz, -C₁₃H₂₆CH₃), 1.25 (22H, br s, CH₂(CH₂)₁₁CH₃), 1.50 (2H, br s, CH₂CH₂C₁₂H₂₅), 1.98, 2.03, 2.14 (12H, s, COCH₃). Positive FAB-MS m/z: 731 (M)⁺.

N-Stearoyl-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-L-serine Myristylamide (54) The same procedure described for the preparation of 54 provided a crude product from 53 (483 mg, 0.77 mmol) and this was purified on a column of silica gel with $10:1 \text{ CHCl}_3$ -MeOH to give 46 (702 mg, quant.). [α]_D +4.3° (c=0.51, $1:1 \text{ CHCl}_3$ -MeOH). IR (KBr): 1747, 1641, 1555, 1223, 1059 cm^{-1} . ¹H-NMR (CDCl₃) δ: 0.86 (3H, t, J=7.3 Hz, $-\text{CH}_3$), 1.26 (52H, br s, $-\text{CH}_2$ -), 1.51--1.60 (4H, m, NCH₂CH₂ and C(O)CH₂CH₂), 1.99, 2.06, 2.16 (12H, s, OCOCH₃), 2.26 (2H, t, J=7.6 Hz, C(O)CH₂CH₂), 3.21 (2H, t, J=6.5 Hz, NCH₂CH₂-). Anal. Calcd for C₄₉H₈₈N₂O₁₂: C, 65.59; H, 9.89; N, 3.12 . Found: C, 65.19; H, 9.77; N, 3.75. Positive FAB-MS m/z: 920 (M+Na)⁺

N-Stearoyl-O-(β -D-galactopyranosyl)-L-serine Myristylamide (55) The same procedure described for the preparation of 50 provided a crude product from 54 (60 mg, 0.067 mmol), and this was purified on a column

602 Vol. 43, No. 4

of silica gel with 5:1 CHCl₃–MeOH to give **55** (34 mg, 70%) as an amorphous powder. $[\alpha]_D + 1.2^\circ$ (c = 0.29, CHCl₃). IR (neat): 3324, 2918, 1666, 1553 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, J = 7.0 Hz, -CH₃), 1.26 (52H, br s, -CH₂–), 1.54–1.68 (4H, m, C(O)CH₂CH₂ and NCH₂CH₂), 2.27 (2H, t, J = 7.0 Hz, C(O)CH₂CH₂). Positive FAB-MS m/z: 752 (M+Na)⁺.

N-Stearoyl-*O*-(2,3,4,6-penta-*O*-sulfo-β-D-galactopyranosyl)-L-serine Myristylamide (10) The same procedure described for the preparation of 1 provided a crude product from 55 (44 mg, 0.06 mmol) and sulfur trioxide–pyridine complex (57 mg, 0.36 mmol), followed by TFA (41 mg, 0.36 mmol), and this was purified by column of Sephadex LH-20 equilibrated in and eluted with 20:20:1 (v/v) CHCl₃–MeOH–H₂O to give 10 (27 mg, 43%) as an amorphous powder, after lyophilization from H₂O. [α]_D –10.4° (c=0.36, MeOH). IR (Nujol): 1649, 1539, 1230 cm⁻¹. *Anal.* Calcd for C₄₁H₈₀N₂O₂₀S₄·2C₅H₅N: C, 49.12; H, 7.27; N, 3.37. Found: C, 49.06; H, 7.74; N, 3.62.

References

- "Glycoconjugates," ed. by Allen H. J., Kisailus E. C., Marcel Dekker, Inc., New York, 1992.
- Nakashima H., Yoshida O., Tochikura T. S., Yoshida T., Mimura T., Kido Y., Motoki Y., Kaneko Y., Uryu T., Yamamoto N., *Jpn. J. Cancer Res.*, 78, 1164 (1987); Nakashima H., Kido Y., Kobayashi N., Motoki Y., Meushul M., Yamamoto N., *Antimicrob. Agents*

- Chemother., 31, 1542 (1987).
- Mizumoto K., Sugawara I., Ito W., Kodama T., Hayashi M., Mori S., Jpn. J. Exp. Med., 58, 145 (1988).
- Handa A., Hoshino H., Nakajima K., Adachi M., Ikeda K., Achiwa K., Ito T., Suzuki Y., Biochem. Biophys. Res. Commun., 175, 1 (1991).
- Ikeda K., Asahara T., Achiwa K., Chem. Pharm. Bull., 41, 1879 (1993) and references cited therein.
- Shibuya M., Jinbo Y., Kubota S., Chem. Pharm. Bull., 32, 303 (1984).
- Iida N., Toida T., Kushi Y., Handa S., Fredman P., Svennerholm L., Ishizuka I., J. Biol. Chem., 264, 5974 (1989).
- 8) Eliel E. L., Banks H. D., J. Am. Chem. Soc., 94, 171 (1972).
- 9) Grundler G., Schmidt R. R., Liebigs Ann. Chem., 1984, 1826.
- Mukaiyama T., Hashimoto Y., Shoda Shin-I., Chem. Lett., 1983, 935.
- 11) Bock K., Lundt I., Pedersen C., Tetrahedron Lett., 1973, 1037.
- 12) Ohta N., Achiwa K., Chem. Pharm. Bull., 39, 1337 (1991).
- Ishido Y., Nakazaki N., Sakairi N., J. Chem. Soc., Perkin Trans. 1, 1979, 2088.
- 14) Polt R., Szabo L., Treiberg J., Li Y., Hruby V. J., J. Am. Chem. Soc., 114, 10249 (1992).
- Derevitskaya V. A., Vafina M. G., Kochetkov N. K., Carbohydr. Res., 3, 377 (1967).