Zincate-mediated rearrangement reaction of 2-(1-hydroxyalkyl)-1-alkylcyclopropanol[†]

Kenichi Nomura and Seijiro Matsubara*

Received (in Cambridge, UK) 16th January 2009, Accepted 11th February 2009 First published as an Advance Article on the web 3rd March 2009 DOI: 10.1039/b901043b

A rearrangement of lithium alkoxide of 2-(1-hydroxyalkyl)-1-alkylcyclopropanol into lithium alkoxide of *vic*-diol was mediated with an organozincate complex.

In 1960, Julia *et al.* reported the acid-catalyzed ring opening rearrangement of 2-hydroxyalkylcyclopropane, which affords *E*-homoallylic alcohol *via* a carbocation species on the cyclopropyl-substituted carbon.¹ When the reaction was applied to 2-(1-hydroxyalkyl)-1-alkylcyclopropanol **3**, the acid-mediated ring-opening reaction gave the corresponding α , β -unsaturated ketone **4** as shown in Scheme 1.²

We have reported that treatment of α , β -epoxyketones 2 with bis(iodozincio)methane (1) gave 3 stereoselectively and stereospecifically in good yields after aqueous work-up.^{3,4} The corresponding zinc alkoxides were formed *in situ*. When the reaction mixture was heated to reflux in THF without aqueous work-up, *vic*-diol **5a** was obtained in 68% yield (Scheme 2).

As shown in Table 1, the rearrangement reaction from 2-hydroxymethyl-1-phenylcyclopropanol (**3b**) was examined with various reagents. A simple heating of the zinc or lithium alkoxide of **3b** resulted in the recovery of **3b**.⁵ While addition of 1 equiv. of zinc(II) chloride to the lithium alkoxide of **3b** gave a complex mixture (entry 3), a use of 1 equiv. of zinc(II) chloride and 3 equiv. of butyllithium gave the desired product in good yield (entry 4). The combination was expected to form a zincate-complex (*e.g.* Bu(RO)₂Zn⁻Li⁺). The pre-formed zincate 'Bu₃ZnLi,⁶ which can be prepared easily from ZnCl₂ and 'BuLi, was also effective for this rearrangement (entry 6). Treatment of the prepared lithium alkoxide of **3b** with a catalytic amount of 'Bu₃ZnLi also gave **5b** (entries 7 and 8).

In order to study the wider applications of the rearrangement, we treated various lithium alkoxides of **6**, prepared *in situ* from **3**, with *t*-Bu₃ZnLi as a catalyst (Table 2). The substrates **6b–d** gave the corresponding 1,2-diols **5b–d** in good yields (entries 2–4). Cyclopropyl alkyl carbinol derivatives **6a,e,f** were also converted into the corresponding 1,2-diols **5a,e,f** in good yields with a low diastereoselectivity (entries 1,5,6). In the case of cyclopropyl dimethyl carbinol derivative **6g**, the corresponding diol **5g** was obtained in 57% yield (entry 7). It is notable that ethyl phenyl ketone was also obtained in this reaction in 30% yield.

We speculated that the reaction proceeded *via* a zincate intermediate. The working hypothesis of this rearrangement is

Scheme 1 Acid-mediated isomerization of 2-(1-hydroxyalkyl)-1-alkylcyclopropanol 3 into the β,α -unsaturated ketone.

Scheme 2 Formation of vic-diol 5a.

Table 1Rearrangement of 2-hydroxymethyl-1-phenylcyclopropanol(3b)

Entry	Reagent (equiv.)	Time/h	Yield of 5b (%) ^a
1	Me_2Zn (2.0)	3	0^b
2	BuLi (3.0)	3	0^b
3	BuLi $(2.0)/ZnCl_2$ (1.0)	3	0^c
4	BuLi $(3.0)/ZnCl_2$ (1.0)	3	88
5	BuLi $(3.0)/ZnCl_2$ (2.0)	3	53
6	t-Bu ₃ ZnLi (1.0)	3	70
7	t-Bu ₃ ZnLi (0.2)/BuLi (2.0)	6	88
8	t-Bu ₃ ZnLi (0.1)/BuLi (2.0)	12	65

 a The yield was detemined by nmr using bromoform as an internal standard. b **3b** was recovered quantitatively. c Complex mixture was obtained.

shown in Fig. 1. The alkoxide 6a, which was formed from 3a by a deprotonation with BuLi, would form a zincate complex 7 via a ligand-exchange with t-Bu₃ZnLi. The high affinity between Zn and O atoms will benefit this reaction. The retro-allylation analog would afford acetaldehyde and an allylic anion that are connected with zinc atom 8. The intermediate 8 reacts rapidly to give the product 9. A hydrolysis of 8 would form acetaldehyde and 1-phenyl-2-propen-1-ol; the latter will tautomerize into ethyl phenyl ketone. In entry 1, neither acetaldehyde nor ethyl phenyl ketone were detected. Only in the case of entry 7 (Table 2), ethyl phenyl ketone was isolated in 30% yield. The results can be rationalized by considering that the addition of intermediary allylic anion to acetone is slow enough to break a pair of the allylic anion and acetone.

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoutodaigaku-Katsura, Nishikyo, Kyoto,

^{615-8501,} Japan. E-mail: matsubar@orgrxn.mbox.media.kyoto-u.ac.jp; Fax: (+81)75-3832461

[†] Electronic supplementary information (ESI) available: Experimental. See DOI: 10.1039/b901043b

Table 2Rearrangement of lithium alkoxide of 2-(1-hydroxyalkyl)-1-alkylcyclopropanol (3) with t-Bu₃ZnLi

Entry	\mathbf{R}^1	\mathbb{R}^2	R^3	R^4	T/h	Yield $(\%)^a$	Product
1	Ph	Н	CH ₃	Н	24	78 $(3/2)^b$	5a
2	Ph	Н	Н	Н	24	88	5b
3	Ph	CH_3	Н	Н	24	89	5c
4	Pentyl	Н	Н	Н	24	89	5d
5	Ph	CH_3	CH_3	Н	24	98 $(2/1)^c$	5e
6	CH_3	Η	Ph	Н	24	86 $(3/1)^d$	5f
7	Ph	Н	CH_3	CH_3	1	57 ^e	5g

^{*a*} Isolated yields. ^{*b*} The diastereomer ratio was shown in parenthesis. The major product's stereochemistry was $(2S^*, 3S^*)$. ^{*c*} The major product's stereochemistry was $(2S^*, 3S^*)$. ^{*d*} The major product's stereochemistry was $(2S^*, 3R^*)$. ^{*e*} Ethyl phenyl ketone was isolated in 30% yield.

Fig. 1 Possible route for rearrangement.

Starting from an optically pure (1R,2R)-**3b**, we examined the stereospecificity of the transformation (Scheme 3).^{7,8} The obtained diol has an *S*-configuration with loss of optical purity. The low stereospecificity may be unavoidable, as the optical purity is based on the enantiofacial selectivity in the intermediary corresponding to **8**.

Although the low stereospecificity shown in Scheme 3 is disappointing, the skeletal rearragement can be applied to ring-contraction starting from a bicyclo[n.1.0] compound such as **10** as shown in Scheme 4. Our previous method concerning acid-catalyzed rearrangement can be adapted to ring-expansion from **10** (Scheme 4).² Epoxidation of cyclopentadec-2-enone with basic hydrogenperoxide, followed by treatment with bis(iodozincio)methane (**1**), gave cyclopropanediol **10** in 80% yield. While treatment with TFA afforded *E*-cyclohexadec-3-enone (**12**) quantitatively, that with BuLi and *t*-Bu₃ZnLi gave 1-vinylcyclotetradecane-1,2-diol (**11**) in 94% yield.⁹

Thus we can show a novel rearrangement of the lithium alkoxide of cyclopropanediol, which is mediated with an organozincate catalyst. While the organozincate complex was shown as an efficient stoichiometric reagent for halogen-metal exchange,⁶ its use for organic synthesis as a catalyst is

Scheme 3 Stereospecificity of the rearrangement of 3b.

Scheme 4 Ring-expansion and -contraction via cyclopropanediol.

not common. A study including the mechanistic details is now under way.

Notes and references

- (a) M. Julia, S. Julia and R. Guegan, Bull. Soc. Chim. Fr., 1960, 1072; (b) K. Sakaguchi, M. Fujita and Y. Ohfune, Tetrahedron Lett., 1998, 39, 4313; (c) M. Honda, Y. Yamamoto, H. Tsuchida, M. Segi and T. Nakajima, Tetrahedron Lett., 2005, 46, 6465; (d) S. R. Wilson, A. E. Davey and M. E. Guazaroni, J. Org. Chem., 1992, 57, 2007; (e) C. Singh, S. Pandey, G. Saxena, N. Srivastava and M. Sharma, J. Org. Chem., 2006, 71, 9057.
- 2 K. Nomura and S. Matsubara, Synlett, 2008, 1412.
- 3 (a) K. Nomura, K. Oshima and S. Matsubara, Angew. Chem., Int. Ed., 2005, 44, 5860; (b) K. Nomura and S. Matsubara, Chem. Lett., 2007, 36, 164.
- 4 S. Matsubara, H. Yoshino, Y. Yamamoto, K. Oshima, H. Matsuoaka, K. Ishikawa and E. Matsubara, J. Organomet. Chem., 2005, 690, 5546.
- 5 Treatment of α,β-unsaturated ketone with aldehyde in the presence of chromium(II) affords 2-(1-hydroxyalky)-1-alkylcyclopropanol. Meanwhile the same reaction with the addition of TMSCI affords cross pinacol coupling product. See, (a) K. Takai, R. Morita and C. Toratsu, *Angew. Chem., Int. Ed.*, 2001, **40**, 1116; (b) K. Takai, R. Morita, H. Matsushita and C. Toratsu, *Chirality*, 2003, **15**, 17.
- 6 (a) T. Harada, T. Katsuhira, D. Hara, Y. Kotani, K. Maejima, R. Kaji and A. Oku, J. Org. Chem., 1993, 58, 4897; (b) M. Uchiyama, T. Furuyama, M. Kobayashi, Y. Matsumoto and K. Tanaka, J. Am. Chem. Soc., 2006, 128, 8404.
- 7 Compared with the result of specific rotation of the literature, it was found that the obtained **5b** has (S)-configuration. See: M. E. Vargas-Diaz, L. Chacon-Garcia, P. Velazquez, J. Tamariz, P. Joseph-Nathan and L. G. Zepeda, *Tetrahedron: Asymmetry*, 2003, **14**, 3225.
- 8 The enantiomeric purity of **5b** was determined by ¹H NMR after converting into the corresponding Mosher ester using (R)-(+)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride. The enantiomeric excess of the product was determined by ¹H NMR focused on methoxy group (the chemical shift at 3.40 ppm corresponds to (S)-isomer and that at 3.44 ppm, (R)-isomer).
- 9 The major product of 11 was $(1R^*, 2S^*)$ isomer.