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A new pyrazoline derivate was designed and synthesized. The structure of the pyrazoline was confirmed
by single crystal X-ray diffraction and its photophysical properties were studied by absorption and
fluorescence spectra. This compound can be used to determine Cu2þ ion with high selectivity and
sensitivity among a series of cations in aqueous tetrahydrofuran. This sensor forms a 1:1 complex with
Cu2þ and displays fluorescent quenching.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The selective detection of transition and heavymetal ions is very
important in various fields of chemical and biological science as
well as in the protection of our environment [1]. Cu2þ is an
important transition metal ion because it is not only an environ-
mental pollutant at high concentrations [2,3], but also an essential
trace element for many biological process and systems [4,5].
Therefore, many studies concerning Cu2þ sensing by synthesized
colorimetric/fluorescent probes based on quinoline [6], fluorescein
[7], pyrene [8,9], rhodamine [10e16], azobenzene [17,18], coumarin
[19e21], 1,8-naphthalimide [22e25], anthraquinone [26e29] and
other fluorophores [30,31] have been reported and investigated.
However, there is still an intense demand for new efficient Cu2þ

optical chemosensors, especially those that are simple to synthe-
size, and can work in aqueous solution with high selectivity and
sensitivity; very important factors for potential biological applica-
tions [32]. Studies related to this area are a great challenge and
continue to be of widespread interest.

1,3,5-Triaryl-2-pyrazolines, with their rigid but only partly
unsaturated central pyrazoline ring, are well-known fluorescent
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compounds widely used in fluorescence dyes emitting blue
fluorescence with high fluorescence quantum yield [33,34]; addi-
tionally these compounds have found application in electrolumi-
nescence [35e39]. However, to the best of our knowledge, only
a few examples have been reported on the interactions between
pyrazoline derivatives and zinc ion [40e42]. Herein, we report the
synthesis of two new pyrazoline derivative 1 and 2, and study the
properties of their UVevis absorption and fluorescence emission.
Compound 1 can be used to determine Cu2þ ion with high selec-
tivity and a low detection limit in aqueous solution.

2. Experimental

2.1. Apparatus

NMR spectra were measured on a Varian Mercury 300 spec-
trometer operating at 300MHz for 1H and 75MHz for 13C relative to
tetramethylsilane as internal standard.

HRMS were obtained on an Apex-Ultra MS equipped with an
electrospray source. IR spectra were recorded on a PerkineElmer
PE-983 infrared spectrometer as KBr pellets with absorption re-
ported in cm�1. All pH measurements were made with a Model
PHS-3C pH meter (Shanghai, China) and operated at room
temperature about 298 K. Absorption spectra were determined on
UV-2501 PC spectrophotometer. Fluorescence spectra measure-
ments were performed on a FluoroMax-P spectrofluorimeter
equipped with a xenon discharge lamp, 1 cm quartz cells at room
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temperature (about 298 K). The X-ray crystal structure determi-
nations of 1 were obtained on a Bruker SMART APEX CCD system.

2.2. Reagents

Deionized water was used throughout the experiments. All the
reagents were purchased from commercial suppliers and used
without further purification. The salts used in stock solutions of
metal ions were CoCl2$6H2O, ZnCl2, MnCl2$4H2O, KCl, NaCl,
CuCl2$2H2O, NiCl2$6H2O, CdCl2$2H2O, HgCl2, FeCl3$6H2O,
MgCl2$6H2O, CrCl3$6H2O, Pb(NO3)2. HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) buffer solution (pH ¼ 7.4) was
prepared using 20 mM HEPES, and proper amount of aqueous
sodium hydroxide under adjustment by a pH meter.

2.3. Synthesis of pyrazoline derivatives 1 and 2

The synthetic route to compounds 1 and 2 is shown in Scheme 1.
Starting materials 2-hydrazinobenzothiazole (3) [43], chalcone (4)
[44] and chalcone (5) [45] were prepared according to the litera-
ture. To a stirred solution of chalcone (4) and (5) (1.0 mmol) in
AcOH (15 mL) was added 2-hydrazinobenzothiazole (3) (0.165 g,
1.0 mmol). The reaction mixture was heated under reflux for 6 h.
The progress of the reaction was monitored by TLC. After comple-
tion, the reaction mixture was cooled to room temperature and the
solvent was evaporated in vacuo, and the crude product was
washed with water, and consequently recrystallized from ethanol
to afford pure compound 1 as a white solid (24.1 mg, 0.65 mmol,
65%) and compound 2 as a white solid (24.9 mg, 0.70 mmol, 70%).

2-(1-(Benzo[d]thiazol-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-
3-yl)phenol (1). M.p.:206e207 �C; IR (nmax, KBr, cm�1): 3214, 1599,
1531,1440,1316, 755; 1H NMR (CDCl3), d (ppm): 3.44 (dd,1H, J¼ 5.4,
5.4 Hz, pyridine-H), 4.05 (dd, 1H, J¼ 12.0, 12.0 Hz, pyridine-H), 5.81
(dd, 1H, J ¼ 5.1, 5.1 Hz, pyrazoline-H), 6.90e6.93 (m, 1H, AreH),
7.08e7.38 (m, 10H, AreH), 7.52e7.55 (m, 1H, AreH), 7.64e7.67
(m, 1H, AreH), 10.06 (s, 1H, OH); 13C NMR (CDCl3), d (ppm):
162.3, 157.5, 154.8, 152.2, 140.6, 131.9, 131.3, 128.9, 128.1, 128.0,
125.9, 125.8, 122.2, 120.8, 120.2, 119.7, 117.1, 115.1, 62.2, 44.1; HRMS
(ESI): m/z [M þ H]þ calcd for C22H18N3OS: 372.1165; found:
372.1168.

2-(3,5-Diphenyl-4,5-dihydropyrazol-1-yl) benzo[d]thiazole (2).
M.p.:186e187 �C; IR (nmax, KBr, cm�1): 3080, 2385, 1601, 1537, 1440,
1274, 1126, 870, 753; 1H NMR (CDCl3), d (ppm): 3.30 (dd, 1H, J ¼ 5.1,
5.1 Hz, pyridine-H), 3.93 (dd, 1H, J ¼ 11.7, 12.0 Hz, pyridine-H), 5.83
(dd, 1H, J ¼ 5.1, 5.1 Hz, pyrazoline-H), 7.05e7.08 (m, 1H, AreH),
O
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O

3 4

5

Scheme 1. Synthesis of pyraz
7.10e7.34 (m, 2H, AreH), 7.41e7.50 (m, 7H, AreH), 7.64e7.67 (m,
1H, AreH); 13C NMR (CDCl3), d (ppm): 163.2, 152.6, 152.5, 141.2,
131.7, 131.2, 130.1, 128.9, 128.7, 127.8, 126.5,125.9,125.6,121.8, 120.8,
120.1, 63.6, 43.7; HRMS (ESI): m/z [M þ H]þ calcd for C22H18N3S:
356.1216; found: 356.1217.

2.4. X-ray diffraction analysis of compound 1

Suitable single crystals of 1 for X-ray structural analysis were
obtained by slow evaporation of a solution of 1 in CHCl3eCH3OH
(20:1, v/v) mixture at room temperature. The diffraction data was
collected with a Bruker SMART CCD diffractometer using a graphite
monochromated MoKa radiation (l ¼ 0.71073 �A) at 296(2) K. The
structures were solved by direct methods with SHELXS-97 program
and refinements on F2 were performed with SHELXL-97 program
by full-matrix least-squares techniques with anisotropic thermal
parameters for the non-hydrogen atoms. All H atoms were initially
located in a difference Fourier map. All H atoms were placed in
geometrically idealized positions and constrained to ride on their
parent atoms, with CeH ¼ 0.93 �A and Uiso(H) ¼ 1.2 Ueq(C).

2.5. Binding titration

The stock solutions of 1 and 2(1.0 � 10�5 M) were prepared by
dissolving 1 and 2 in THF/water (9:1, v/v) containing HEPES buffer
(10 mM, pH ¼ 7.4), respectively. The cationic stocks were all in H2O
with a concentration of 3.0 � 10�3 M for UVevis absorption and
fluorescence spectra analysis. For metal ion absorption and fluo-
rescence titration experiments, each time 3 mL solution of 1 and 2
were filled in a quartz cell of 1 cm optical path length, and we
increased concentrations of metal ions by stepwise addition of
different equivalents using a micro-syringe. After each addition of
Cu2þ ion, the solution was stirred for 3 min. The volume of cationic
stock solution added was less than 100 mL with the purpose of
keeping the total volume of testing solution without obvious
change. For all measurements of fluorescence spectra of 1 and 2, the
excitation was at 355 nm and 349 nm, respectively.

3. Results and discussion

3.1. Synthesis and structural characteristics of 1 and 2

The 3, 5-diaryl pyrazoline derivative 1 was obtained by the
reaction of chalcone (4) with 2-hydrazinobenzothiazole (3) in
AcOH under reflux. To understand the crucial role of both the
N
NAcOH, reflux
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Table 1
Crystal structure data and structure refinement for 1.

Empirical formula C22H17N3OS
Formula weigh 371.45
Temperature 296(2) K
Wavelength (�A) 0.71073
Crystal system Orthorhombic
Space group Pca2(1)
a (�A) 26.585 (5)
b (�A) 9.5587 (17)
c (�A) 7.0731 (12)
a 90�

b 90�

g 90�

V (�A3) 1797.4 (5)
Z 4
Density (calculated) 1.373 Mg/m3

Index ranges �22 � h � 28, �13 � k � 13, �18 � l � 18
F(000) 776
Crystal size 0.16 � 0.12 � 0.05 mm
q Range for data collection 1.53e25.26�

Reflections collected 11,100
Independent reflections 3253 [R(int) ¼ 0.0351]
Max. and min. transmission 0.9902 and 0.9691
Data/restraints/parameters 3253/1/246
Goodness-of-fit on F2 1.063
Absorption correction None
Final R indices (I > 2s(I)) R1 ¼ 0.0304, wR2 ¼ 0.0752
R indices (all data) R1 ¼ 0.0381, wR2 ¼ 0.0782
Largest diff. peak and hole 0.153 and �0.155 e �A�3
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phenol and thiazole providing a suitable binding site for metal ions,
compound 2 was also prepared from chalcone (5) with 2-
hydrazinobenzothiazole (3) in the same way. The yields of 1 and
2 were 65% and 70%, respectively. The structures of 1 and 2 were
identified by using 1H NMR, IR and MS. The structure of 1 was
further confirmed by X-ray diffraction analysis.

The X-ray molecular view of 1 is shown in Fig. 1. A summary of
crystallographic data collection parameters and refinement
parameters for 1 is compiled in Table 1.

Compound 1 crystallized in an orthorhombic space group Pbcn.
One benzene moiety, one phenol ring and a benzothiazole moiety
are bonded to the pyrazoline ring at the atoms of C8, C10 and N2,
respectively. Consistent with a pronounced electronic interaction,
the bond lengths of C10eC11, N2eC7 are significantly shorter as
would be expected for a single bond. Moreover, the bond lengths of
N2eN3, N3eC10, C8eC9 agree well with the equivalent ones in
similar structures [46]. In the crystal of 1, torsion angle C7eN2e
C8eC17 of 67.9(3)� shows C7 in the benzothiazole moiety adopts
an synperiplanar conformation with respect to the C17 atom of the
benzene ring. In the asymmetry unit, the pyrazoline ring, phenol
ring and benzothiazole are almost coplanar. And the pyrazoline
ring makes dihedral angles with phenol and thiazole of 5.19(11)�

and 4.54(12)�, respectively, while the dihedral angle between pyr-
azoline and benzene moiety is 87.89(10)�.

Regarding the crystal structure of 1, there is one intramolecular
O1eH1/N3 hydrogen bond forming a pseudo six-membered ring.
The packing diagram of compound 1 is shown in Fig. 2. The
molecules are connected by weak p/p interactions and CeH/p
interaction. Cl5/Cg4 3.661(2) �A C18/Cg2 2.998(2) �A.

3.2. Spectral characteristics

Initial studies on the UVevis absorption and fluorescent emis-
sion revealed that 1 showed selectivity toward Cu2þ ions in THF/
water (9:1, v/v). As shown in Fig. 3, in the absence of Cu2þ,
compound 1 exhibits a broad band at 352 nm (log 3 ¼ 4.48).
Coordination of copper cation to 1 resulted in the formation of
a new absorption band at 400 nm and synchronous decrease in the
absorption band at 352 nm. In contrast to 1, compound 2, which has
Fig. 1. The molecular structure of compound 1, with displacement ellipsoids drawn at
the 30% probability level.
no hydroxyl group in the phenyl ring and exhibits two broad band
at 294 nm (log 3¼ 4.69) and 350 nm (log 3¼ 4.42), did not revealed
any significant changes in absorption and fluorescence emissions
upon addition to 1 equiv of copper ion as shown in Fig. 3, which
indicates the importance of a phenolic group as a binding site at the
3 position of the pyrazoline ring.

The UVevis absorption spectra of compound 1 (1 � 10�5 M) in
the presence of various concentrations of Cu2þ ion (0e3 � 10�5 M)
is shown in Fig. 4 and the inset shows the plots of changes in 352
and 400 nm maxima as a function of increasing concentrations of
Cu2þ. The absorbance of compound 1 at 352 nm gradually
decreases with an increasing concentration of Cu2þ ion. Moreover,
two isobestic points appears at 328 nm and 380 nm; new absorp-
tion peaks appear in the range 250e328 nm and 380e450 nm, and
their absorption intensity gradually increases or decreases with the
Fig. 2. A packing diagram for 1, viewed along the a-axis. Dashed lines show arrays of
hydrogen bonds.
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Fig. 3. UVevis spectra of compound 1(d) and 2 ( ) (1 � 10�5 M) (a) in the absence, and (b) in the presence of 1 equiv of CuCl2 in THF/water (9:1, v/v) containing HEPES buffer
(10 mM, pH ¼ 7.4). Fluorescence spectra of 1(d) and 2 ( ) (c) in the absence and (d) in the presence of 1 equiv of CuCl2 in THF/water (9:1, v/v) containing HEPES buffer (10 mM,
pH ¼ 7.4).
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addition of Cu2þ ion, respectively. This absorption peak is likely due
to the coordination of compound 1 with Cu2þ ion.

The fluorescence titration spectra of 1 with Cu2þ shows an
emission maximum peak at 438 nm (Fig. 5a). The fluorescence
quantum yield (Fu) of 1 in the absence of Cu2þ was calculated to be
0.20 with respect to quinine sulfate in 0.1 N H2SO4 solution
(Fs¼ 0.54) [47]. As Cu2þ ionwas gradually titrated, the fluorescence
intensity of compound 1 gradually decreased andwhen the amount
of Cu2þ ion added was about 1 �10�5 M, the fluorescence intensity
almost reached a minimum. The quantum yield of 1was calculated
to be 0.025 in the presence of Cu2þ ion (1 � 10�5 M) and almost
reduced to 12% of the initial one. When more Cu2þ was titrated, the
fluorescence intensity showed negligible changes. The nonlinear
curve fitting of the fluorescence titration (inset) gives a 1:1 stoi-
chiometric ratio between compound 1 and Cu2þ. Moreover, a Job’s
plot [48], which exhibits a maximum at 0.5 M fraction of Cu2þ,
further indicates that only a 1:1 complex is formed (Fig. 5b). Based
on the above fluorescence titration of 1 with Cu2þ, the association
constant was calculated to be 9.3 � 104 M�1(error limits �10%)by
a BenesieHildebrand plot [49] (Fig. 6). The detection limit, based on
the definition by IUPAC (CDL ¼ 3 Sb/m) [50], was found to be
8.7 � 10�8 M from 10 blank solutions.

The selectivity and tolerance of compound 1 for copper ion over
other metal cations were investigated by adding metal cations
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Fig. 7. UVevis spectral changes of compound 1 (1 � 10�5 M) in THF/water (9:1, v/v)
containing HEPES buffer (10 mM, pH ¼ 7.4) upon additions of various metal ions
(1 � 10�5 M).
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(5 � 10�5 M) to the solution of compound 1(1 � 10�5 M). As
depicted in Fig. 7, there was no obvious new absorption band at
400 nm and synchronous decrease in the absorption band at
352 nm with any other metal ions.

Fig. 8 shows that Cu2þ produced significant quenching in the
fluorescent emission of 1, the other tested metals only show rela-
tively insignificant changes. This means that sensor 1 has a high
selectivity to Cu2þ ion. And from the photograph shown in Fig. 8,
we can see the stronger blue emission of compound 1 without
addition of Cu2þ ion under the irradiation at 365 nm than with
addition of 1 � 10�5 M Cu2þ ion.

To further gauge selectivity for copper ion over other metal ions,
competition experiments of Cu2þ ion mixed with other metal ions
were carried out from fluorescence spectra and the results are
shown in Fig. 9. The fluorescence intensity of 1 (1 �10�5 M) in the
presence of 1 equiv of the Cu2þ ion was almost unaffected by the
addition of 5 equiv of competing metal ions (Kþ, Naþ, Cd2þ, Fe3þ,
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Fig. 9. Competitive experiments in the 1 þ Cu2þ system with interfering metal ions.
[1] ¼ 1 �10�5 M, [Cu2þ] ¼ 1 �10�5 M, and [Mnþ] ¼ 5 � 10�5 M. Excited at 355 nm and
emission collected at 438 nm.
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Mn2þ, Mg2þ, Co2þ, Ni2þ, Hg2þ, Pb2þ and Zn2þ). These results sug-
gested that molecule 1 could be used as Cu2þ selective fluorescent
chemosensor.

Additionally, in order to explore the effects of anionic counter-
ions on the sensing behavior of compound 1 to Cu2þ ion, fluores-
cence responses of compound 1 to sulfate, chloride, and nitrate
salts of copper were conducted in the THF/water (9:1, v/v) con-
taining HEPES buffer (10 mM, pH¼ 7.4). As can be seen from Fig. 10,
there were no obvious changes in the fluorescence responses of
compound 1 to CuSO4, CuCl2, and Cu(NO3)2.

To gain further insight into the fluorescent signaling behavior of
compound 1 toward Cu2þ ion, the effect of EDTA on the fluores-
cence signaling of the 1�Cu2þ system was investigated. When
1 � 10�5 M EDTA was added into the 1�Cu2þ system, the fluores-
cence intensity increased to the fluorescence intensity of
compound 1without Cu2þ ion as shown in Fig. 11. This is attributed
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Fig. 10. Fluorescence spectra of 1 (10�5 M) in THF/water (9:1, v/v) containing HEPES
buffer (10 mM, pH ¼ 7.4) in the presence of different copper salts (10�5 M). Excited at
355 nm.
to the stronger complexation of Cu2þ ion with EDTA than with
sensor 1.

To investigate the mechanism of the fluorescence quenching for
1, Cu2þ may be easily establish coordinative interactions with the
phenol, pyrazoline, and benzo[d]thiazole moiety than other metal
ions examined, the capture of Cu2þ resulted in the electron or
energy transfer from 1 to Cu2þ; thus, 1 showed quenching of the
fluorescence for Cu2þ and provided a high selectivity for Cu2þ over
the other tested metal ions.

4. Conclusion

In summary, a new highly selective fluorescent sensor based on
a pyrazoline unit was synthesized and used for the determination
of Cu2þ ion with high selectivity and a low detection limit in THF/
water (9:1, v/v) containing HEPES buffer (10 mM, pH ¼ 7.4). This
sensor formed a 1:1 complex with Cu2þ and showed a fluorescent
quenching with good tolerance of other metal ions. Moreover, this
sensor is very sensitive with fluorometric detection limit of
8.7 � 10�8 M.
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