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Abstract 

Ansatrienins are a group of ansamycins with N-cyclohexanoyl D-alanyl side 

chain. Though ansatrienins have been identified for decades, the mechanism 

for the addition of this unique side chain were not established. Here, we report 

the biochemical characterization of a tridomain nonribosomal peptide 

synthetase (NRPS), AstC, and an N-acyltransferase, AstF1, encoded in the 

biosynthetic pathway of ansatrienins. We demonstrate that AstC can 

efficiently catalyze the transfer of D-alanine to the C-11 hydroxyl group of 

ansatrienins, and AstF1 is able to attach the cyclohexanoyl group to the 

amino group of D-alanine. Remarkably, AstC presents the first example that a 

modular NRPS can catalyze intermolecular D-alanylation of hydroxyl group to 

form an ester bond, though alanyl natural products have been known for 

decades. In addition, both of AstC and AstF1 have broad substrate specificity 

towards acyl donors, which can be utilized to create novel ansatrienins. 
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D-alanylation is of broad biological significance as exemplified by that of 

teichoic acids (TAs), major components of the low-G+C Gram-positive cell 

wall. D-alanylation of TAs is involved in diverse physiological process, 

including antibiotic resistance, biofilm formation, virulence, and acid 

tolerance.1 The modification of TAs with D-alanine involves enzymes encoded 

by the dltABCD operon, and the whole pathway displays remarkable 

parallelism to the division of labor employed by nonribosomal peptide 

synthetases (NRPSs).2 Similar pathways for the glycylation of 

lipopolysaccharide in Gram-negative bacteria had also been identified.3 

However, although D-alanylated small-molecule natural products have been 

identified for decades, the biosynthetic mechanism of this modification has not 

been established. 

Ansatrienins belong to a unique group of ansamycin antibiotics produced by 

Streptomyces.4 These small molecules contain a 21-membered macrocyclic 

lactam ring and a cyclohexanoyl-alanyl side chain attached to the C-11 

hydroxyl group of ansa ring. The biosynthesis of ansatrienins is presumed to 

follow the same manner as suggested for other ansamycins, which are 

produced by multimodular type I polyketide synthases (PKSs) using 3-amino-

5-hydroxybenzoic acid (AHBA) as the starter unit, and released by amide 

synthases followed by post-PKS modifications.5 Although the biosynthetic 

gene clusters for ansatrienins have been reported,6, 7 the attachment of the 

cyclohexanoyl-alanyl side chain has not been revealed. 

Previously, feeding experiments with Streptomyces collinus Tϋ 1892 have 

demonstrated that the D-alanine moiety of ansatrienins is derived directly from 

free D-alanine rather than L-alanine, and cyclohexanoyl-alanyl side chain is 

not incorporated as an intact moiety but added one component at a time.8 On 

the basis of bioinformatic analysis of the myc gene cluster in Streptomyces 

flaveolus DSM 9954, Qu et al. proposed that the NRPS MycC is involved in 

adenylating alanine residue, which is then transferred from MycC to the C-11 

hydroxyl group of ansa ring by the esterase MycF4, followed by N-cyclohexyl 

formylation catalyzed by the N-acetyltransferase MycF1.7 Recently, as part of 
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our efforts to exploit novel ansamycins from AHBA synthase gene positive 

strains,9-11 an ansatrienin gene cluster (ast, GenBank accession number: 

KF813023.1 and KP284551) was activated by constitutive expression of the 

pathway-specific positive regulator gene astG1 in Streptomyces sp. XZQH13, 

resulting in the isolation of two known ansatrienins, hydroxymycotrienin A (1) 

and thiazinotrienomycin G (2) (Figure 1a).12 However, sequence analysis 

revealed that the homolog of mycF4 gene was absent in the ast gene cluster, 

suggesting that MycF4 or its homologs may be not required for the transfer of 

the alanine residue. Accordingly, an isolate tridomain (adenylation-thiolation-

thioesterase, A-T-TE) NRPS, namely AstC, a homolog of MycC, was 

speculated to be responsible for the attachment of D-alanyl group to the ansa 

ring. This type of A-T-TE-tridomain NRPS-mediated intermolecular amino acid 

esterification is unprecedented among known esterases or NRPSs. Here we 

demonstrate that astC and astF1 are essential genes for the attachment of 

the cyclohexanoyl-alanyl side chain onto ansatrienin ansa ring, AstC can 

catalyze the attachment of D-alanine into the biosynthetic intermediate (3) 

(Figure 1a), and AstF1 is responsible for the attachment of the cyclohexanoyl 

moiety. 
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Figure 1. The astC and astF1 genes are required for the attachment of the 

cyclohexanoyl-alanyl side chain onto ansatrienin ansa ring in Streptomyces sp. 

XZQH13/pJTU824-astG1(OE). a) Structures of the representative ansatrienins 

isolated from the strain XZQH13. b) HPLC analysis (275 nm) of metabolites 

produced by the strain XZQH13 and the corresponding mutant strains. 

Uncharacterized ansatrienin analogs were identified by diode array UV comparison 

with that compounds 1–3 in the strains XZQH13/pJTU824-astG1(OE) (●) and 

XZQH13OE∆astC (★), respectively. It is worth noting that the intermediates 

accumulated by XZQH13OE∆astF1 are refractory to isolations thus that we have not 

obtained enough amount for full structure elucidation. 

 

The production of ansatrienins is low in the strain XZQH13 but increased 

tremendously by overexpressing the regulator gene astG1 thus that many 

uncharacterized extra peaks were presented in the mutant 

XZQH13/pJTU824-astG1(OE) (Figure 1b).12 All these extra peaks were 

identified to be ansatrienins by HPLC comparison of the fermentation 

products of the PKS gene (astD1)-disrupted mutant XZQH13OE∆astD1, and 

XZQH13/pJTU824-astG1(OE) with that of ansatrienins (Figure 1b ， 

Supplementary Figure S4), supporting that the ast gene cluster is responsible 

for the biosynthesis of ansatrienins. To confirm the roles of astC and astF1 in 

the incorporation of the cyclohexanoyl-alanyl side chain, the individual gene-

disrupted mutants were generated and complemented in trans of a full-length 

copy of the disrupted gene under the control of the promoter of the 

erythromycin resistance gene (ermE*) (Supplementary Figure S5). Both of the 

resultant mutants XZQH13OE∆astC and XZQH13OE∆astF1 abolished the 

production of compounds 1 and 2 along with the uncharacterized analogs, 

and recovered the production of ansatrienins after complementing the astC 

and astF1 genes (Figure 1b), respectively, indicating that both genes are 

required for the attachment of the cyclohexanoyl-alanyl side chain onto 

ansatrienin ansa ring. 

To investigate the function of AstC, we identified the metabolic 

intermediates accumulated in XZQH13OE∆astC. Compound 3 was obtained 
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from the fermentation products of XZQH13OE∆astC (Figure 1a). Its high-

resolution mass spectrometry (HRMS) showed a quasi molecular ion at m/z 

527.2152 for 3 [M(C28H35N2O6S) – H]- (Supplementary Figure S11). Its 

structure was established by the NMR comparison with that of 

thiazinotrienomycin E (Supplementary Table S3, Supplementary Figures S7 – 

10).13 The NMR spectroscopic data of both compounds were similar, except 

for the absence of the cyclohexanoyl-alanyl side chain at C-11 in 3, which 

indicated that the astC gene may be involved in the incorporation of the D-

alanine residue in ansatrienins. 

The astC gene encodes a single-module A-T-TE-tridomain NRPS-like 

protein. The closest homologs in NCBI are AnsC and MycC (protein 

accession numbers AHW80292.1 and AFG19416.1) of S. seoulensis and S. 

flaveolus DSM 9954, respectively, both shared 88% identity of amino acid 

sequences with AstC. However, none of these two proteins have been 

functionally characterized. To obtain direct evidence for the role of AstC, we 

amplified the 2541-bp fragment of astC gene using PCR and cloned it into 

pET28a(+) for expression in E. coli BL21(DE3). To produce the holo-enzyme, 

heterologously expressed AstC was treated in vitro with the 

phosphopantetheinyl transferase Sfp. The activity of holo-AstC was assayed 

using compound 3 as acyl acceptor and D/L-alanine as acyl donors. LC-MS 

analysis showed the presence of an extra peak (4) with a quasi molecular ion 

at m/z 598.2515 [M – H]- (Figure 2a, Supplementary Figure S12), in 

accordance with the attachment of an alanyl residue to 3, in the reaction with 

D-alanine. In contrast, reactions either with boiled AstC or L-alanine did not 

afford any evident products (Figure 2a). These results show that AstC 

catalyzes the alanylation of compound 3 with D-alanine but not L-alanine as 

the acyl donor to produce compound 4 (Figure 2c), which is consistent with 

the selective use of D-alanine in feeding experiments.8 
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Figure 2. Reconstitution of AstC activity in vitro. a) HPLC traces (260 nm) the 

incubations of L-/D-alanine and 3 with holo-AstC and holo-AstCS545A. b) AstC follows 

the “ping-pong” mechanism. c) AstC was proposed to incorporate the D-alanine 

residue at C-11 of 3. 

 

To characterize the enzymatic properties, the holo-AstC-catalyzed reaction 

was quantified by HPLC. The purified holo-AstC showed optimal activity at pH 

8.0, and exhibited more than 75% of its maximum activity between pH 7.0 and 

10.0 (Supplementary Figure S3a). The optimal reaction temperature was 

30 °C at pH 8.0, with > 75% activity between 25 and 35 °C (Supplementary 

Figure S3b). The kinetic parameters of holo-AstC were measured under the 

optimal conditions, showing the conversion with an apparent KM of 40.21 ± 

20.60 µM and kcat of 0.70 ± 0.20 min-1 for compound 3, and an apparent KM of 

5.57 ± 1.56 µM and kcat of 0.27 ± 0.03 s-1 for D-alanine (Supplementary 

Figures S3d, e). To determine the mechanism of reaction catalyzed by AstC, 

the concentrations of D-alanine were varied with different constant 

concentrations of compound 3. When plotting the reciprocal of V0 versus the 

reciprocal of the D-alanine concentrations, parallel lines were obtained (Figure 

2b), showing that AstC transfers the D-alanyl to the C-11 hydroxyl group of 3 

via the “ping-pong” mechanism. 
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To address the substrate specificity of AstC, sodium propionate, β-alanine, 

glycine and 12 D-amino acids were selected as acyl donors. The strongest 

conversion was detected with D-alanine, followed by D-serine, β-alanine, 

glycine, D-threonine, and D-valine (4–9; Supplementary Figure S6). The other 

tested D-amino acids were not accepted at the detected levels. This relaxed 

substrate specificity toward acyl donors suggests a rather non-specific 

activation of amino acids by the A-domain of AstC, which will allow for 

chemoenzymatic synthesis of new ansatrienin analogs. We also assayed the 

tolerance of AstC toward different acyl acceptors by performing the acylation 

assay with various ansamycins, including N-desmethyl-4,5-

desepoxymaytansinol,14 geldanamycin and hygrocins.15 However, no positive 

results were obtained (data not shown), suggesting a strict substrate 

specificity of AstC for the acyl acceptors. 

The notable feature of the AstC is the presence of only three individual 

domains (A-T-TE) responsible for adenylation, thiolation and thioester 

cleavage, and the absence of the traditional condensation (C) domain. 

Previously, only a few such A-T-TE-tridomain, one module NRPS proteins 

have been characterized, all are involved in the homodimerizations of 

aromatic α-keto acids by catalyzing carbon-carbon bond formation.16-18 AstC 

represents a new member of A-T-TE-tridomain NRPS enzymes but with quite 

different function.19, 20 The D-alanylation catalyzed by AstC presents a unique 

acylation strategy, which differs markedly from any other acyltransferases.21, 

22 In the latter biosynthetic manifolds, the enzyme-mediated acylations usually 

require coenzyme A (CoA) thioesters or N-acetylcysteamine (NAC) thioesters 

as substrates to produce the acylated products.23 By contrast, AstC utilizes 

free amino acids as acyl donors that are activated as aminoacyl adenylates by 

the A-domain, and then transferred to the T-domain, transiently forming 

aminoacyl thioesters. Indeed, when the active site Ser545 within the 

conserved GGXSXLA motif of the T-domain was mutated to alanine, the 

mutant AstC was no longer capable of generating 4 from 3 (Figure 2a). 

Transfer of the activated acyl moiety from the T-domain to the TE-domain 

would form the acyl-O-TE enzyme intermediate (Figure 2c). At this point, we 

proposed that the acyl carbonyl carbon of this intermediate was 
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nucleophilically attacked by the C-11 hydroxyl oxygen of 3 to complete the 

acylation (Figure 2c). However, it is not yet clear how AstC recognizes and 

interacts with the acyl acceptor, 3. Moreover, so far, only a PCP-C-didomain 

(Fum14) and a freestanding C-domain (SgcC5) NRPS-like proteins have been 

biochemically characterized to use free alcohols as the acyl acceptors to 

couple with acyl carrier protein-tethered acyl donors for ester bond 

formations.24-26 To our knowledge, AstC is the first example of an A-T-TE-

tridomain NRPS protein that is capable of catalyzing intermolecular ester 

bond formation, particularly, using free amino acids as acyl donors. 

AstF1 identified as an acyltransferase was suggested to catalyze the 

transfer of cyclohexanoyl moiety to the alanyl nitrogen at C-11 of 

ansatrienins.7 To establish the function of AstF1, the astF1 gene (927 bp) was 

amplified from fosmid 17-10F by PCR, and inserted into pET22b for 

expression in E. coli BL21(DE3). Due to lack of the intermediates 

accumulated by the astF1-deleted mutant (XZQH13OE∆astF1), we directly 

examined whether compound 4 can be used as the acyl acceptor in the 

transacyl reaction. Incubation of the recombinant AstF1 protein with the 

reaction mixture of AstC assay containing compound 4 and the chemically 

synthesized cyclohexanoyl-SNAC (I) (Figure 3a) led to the formation of 

thiazinotrienomycin E (10) accompanied by the decrease of 4 (Figure 3b). To 

confirm this result, an identical incubation without AstF1 was conducted; no 

conversion of 4 was detected. These results clearly demonstrated the 

predicted acyltransferase activity of AstF1 (Figure 3a). 
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Figure 3. Reconstitution of AstF1 activity in vitro. a) The reactions catalyzed by 

AstF1. b) LC-MS analysis of the reaction products 10–15 of AstF1 incubated with N-

acetylcysteamine (SNAC) thioesters I–VI and 4 (produced by the incubation of 3 and 

D-alanine with holo-AstC), respectively. i), SNAC thioesters; ii), SNAC thioesters and 

4 without AstF1; iii), SNAC thioesters and 4 with AstF1. 

 

Broad substrate specificity with regard to the acyl donors of 

acyltransferases has been commonly observed and utilized to generate 

analogs of natural products with varied acyl substituents.27 We examined 

whether cyclohex-1-enecarbonyl-SNAC (II), 4-methylpentanoyl-SNAC (III), 2-
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methylbutanoyl-SNAC (IV), 2-methylbut-2-enoyl-SNAC (V), and 3-

methylbutanoyl-SNAC (VI) could replace I as the acyl donors in the acylations 

of 4. As expected, all these SNAC thioesters can serve as substrates for 

AstF1, but with different turnover rates, to produce 11 – 15 (Figure 3b). The 

demonstrated ability of the recombinant AstF1 to use various acyl-SNAC 

substrates is consistent with the substitution profile of identified natural 

ansatrienins. The mutasynthesis study by Song et al. has also shown that a 

diversity of small molecule organic acids can be attached to the D-alanyl 

nitrogen of ansatrienins, which is supposed to be catalyzed by a homolog of 

AstF1 in S. seoulensis IFB-A01.28 Therefore, the remarkable substrate 

tolerance of AstF1 to acyl donors provides an efficient chemoenzymatic route 

to new ansatrienin analogs. 

In conclusion, we have confirmed that the A-T-TE-tridomain NRPS protein 

AstC catalyzes the attachment of D-alanyl to the C-11 hydroxyl group of 

ansatrienin backbone, which represents an unprecedented acylation 

mechanism, and AstF1 catalyzes the sequential attachment of the 

cyclohexanoyl group to the D-alanyl nitrogen during ansatrienins biosynthesis. 

Moreover, kinetic studies of the D-alanyl transfer reaction catalyzed by AstC 

demonstrated that the reaction occurred by the “ping-pong” mechanism. In 

addition, both of AstC and AstF1 display broad substrate specificity toward the 

acyl donors. The ability to decorate the biosynthetic intermediates of 

ansatrienins with combinations of various amino acids and small organic acids 

via the actions of AstC and AstF1 should provide routes to new variants in the 

ansamycin class. 

 

Methods 

Inactivation of astD1, astF1 and astC in XZQH13/pJTU824-astG1 

The genomic library of Streptomyces sp. XZQH13 was constructed and 

screened by PCR using AHBA synthase-specific degenerate primers to 

identify fosmid 17-10F. The target genes in fosmid 17-10F were replaced by 

the apramycin resistance cassettes (acc(3)IV(AprR) + oriT) by λ-RED 
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mediated PCR-targeting method. The mutant fosmids were introduced into E. 

coli ET12567/pUZ8002 for conjugation with XZQH13/pJTU824-astG1(OE). 

Apramycin resistant exconjugants were selected and verified by PCR to 

generate XZQH13OE∆astD1, XZQH13OE∆astC and XZQH13OE∆astF1, 

respectively (Supplementary Figure S4). 

In vitro assays for AstC and AstCS545A 

The holo-AstC and holo-AstCS545A were obtained by incubating apo-AstC or 

apo-AstCS545A (2.5 µM) and CoA (100 µM) with Sfp (1 µM) in a 50 µL reaction 

containing Tris-HCl (50 mM, pH 8.0), MgCl2 (10 mM), and DTT (1 mM). After 1 

h incubation at 30 °C to prime the T-domain, the reaction was initiated by the 

addition of ATP (2 mM), amino acids (1 mM), and compound 3 (26 µM). After 

incubation for 2 h at 30 °C, a 100 µL reaction was quenched by the addition of 

100 µL methanol and centrifuged for 10 min at 13,000 rpm. The supernatant 

was analyzed by HPLC (Supporting Information). The details of 

characterization of AstC see Supporting Information. 

In vitro assay for AstF1 

Six acyl-SNACs were synthesized as the substrates for AstF1 (Supporting 

Information). The reaction mixture of formation of compound 4 contained Tris-

HCl (50 mM, pH 8.0), MgCl2 (10 mM), holo-AstC (2.5 µM), compound 3 (26 

µM), D-alanine (1 mM), ATP (2 mM), and DTT (1 mM). After incubation for 2 h 

at 30 °C to synthesize 4, the reaction was initiated by the addition of acyl-

SNAC (2 mM), glycerol (5%), AstF1 (5 µM) and DTT (1 mM). Reactions 

without AstF1 were served as the control. After incubation for 5 h at 30 °C, a 

75 µL reaction was quenched by the addition of 75µL methanol and 

centrifuged for 10 min at 13,000 rpm. The supernatant was analyzed by LC-

MS similar as that for AstC, but in positive mode (Supporting Information). 

 

Associated Content 

Supporting Information 
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The isolation of compound 3, the synthesis of acyl-SNACs, Tables S1–3, and 

Figures S1–30 are available free of charge via the Internet from 

http://pubs.acs.org. 
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The A-T-TE-tridomain NRPS protein AstC catalyzes the D-alanylation of C-11 hydroxyl group, and the 
acyltransferase AstF1 catalyzes the sequential attachment of acyl group to the D-alanyl nitrogen during the 

biosynthesis of ansatrienins.  
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