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a b s t r a c t

Ytterbium triflate was shown to be effective in promoting the reduction of substituted aromatic and ali-
phatic aldehydes and ketones using isopropanol as the solvent and the reducing agent. The whole process
furnished the desired adducts in 22-98% yield.

� 2011 Elsevier Ltd. All rights reserved.
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The reduction of carbonyl compounds into the corresponding
alcohols is well recognized as one of the most effective and valu-
able chemical processes both in industry and in the chemical lab-
oratory environment. Aldehydes and ketones can be converted to
primary and secondary alcohols, respectively, using different
reducing agents like metal alkoxides in isopropanol or other alco-
hols, metal hydrides, catalytic hydrogenation, alkaline metals and
ethanol and several others. The metal alkoxide-based methodology
is the well known Meerwein–Ponndorf–Verley (MPV) reaction that
is among the oldest synthetic method described for the first time in
1925.1,2 The MPV process involves the transfer of a hydrogen atom
to a carbonyl group. As stated before metal alkoxides are often
used as promoters of this reaction.3 The disadvantages of the origi-
nal experimental protocol and of its closest versions mainly con-
cern the use of a large excess of metal alkoxides to efficiently
promote the reaction and to get appreciable yields of adducts, that
in turn leads to difficulties for their removal and separation. This
also does not render the overall process an environmentally
friendly one. Several other homogeneous and heterogeneous cata-
lysts for the MPV reaction have been developed. These include di-
methyl- and trimethylaluminium chloride,4 complexes of iridium,5

ruthenium,6 plutonium7 and samarium,8 bimetallic alkoxides,9 Al-
free Zr zeolites,10 supported Zr propoxide,11 MCM-41-grafted Al
isopropoxide,12 Al2O3,13 ZrO2,14 MgO,15,16 Mg–Al17 and Ca–Al18

mixed oxides and finally Yb isopropanolate.19 In recent years some
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experimental protocols to perform the title reaction either in
acidic20 or basic medium21 in the absence of any catalyst have been
reported, although some doubts about the effectiveness of these
uncatalysed processes have arisen.22 Moreover the MPV reaction
has been successfully employed in the synthesis of biologically
natural products.23 Finally the reported methodologies for the
MPV reaction have been recently exhaustively reviewed.24–27 The
large number of reports about the title chemical process witness
for a field of research in the context of organic synthesis of current
and growing interests.

During the last two decades, rare earth metal triflates have been
found to be unique Lewis acids since they are water tolerant recy-
clable catalysts and can effectively promote several carbon–carbon
and carbon–heteroatom bonds formation reactions in high yields
often in the frame of a green chemical approach.28 In continuation
of our ongoing studies aimed at developing mild and practical pro-
tocols for the synthesis of useful building blocks and/or biologically
active compounds by using lanthanides as catalysts, herein we
R1 = aromatic, aliphatic
R2 = H, aliphatic

Scheme 1. Yb(OTf)3 catalysed MPV reduction of carbonyl compounds.
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wish to report that the MVP reaction can be effectively catalysed
by Yb(OTf)3 hydrate in discrete to very good yields using differ-
ently substituted aromatic and aliphatic aldehydes and ketones
and isopropanol as the solvent and the reducing agent (Scheme 1).

In a preliminary experiment, benzaldehyde (1.0 mmol) and
ytterbium triflate hydrate (0.1 mmol) were dissolved in iPrOH
(2 mL). The resulting mixture was vigorously stirred at reflux over-
night. After evaporation of the solvent by anhydrous N2 bubbling
Table 1
Yb(OTf)3 catalysed MPV reduction of selected carbonyl compounds29

Entry R1 R2 Product Yielda (%)

1 Ph H
OH

98

2 pCF3–Ph H
OH

CF3

62

3 pCH3–Ph H
OH

67

4 pNO2–Ph H
OH

O2N
96

5 pCl–Ph H
OH

Cl
68

6 pOCH3–Ph H
OH

MeO
22

7 pOH–Ph H
OH

HO
Traces

8 oNO2–Ph H
OH

NO2

39

9 n-Pentyl H OH 87

10 c(CH2CH2CH2CH2)

OH

74

11 c(CH2CH2CH2CH2)CH
OH

63

12 CH3CH@CHCH2 CH3

O
54

13 Ph CH3

O

51

14 pOH–Ph CH3

O

HO

Traces

15 2-CH3c(CHCH2CH2CH2CH2)4

OH

41b

16 cis/trans 2-Decalone

H

H

OH

40

a Yields of pure isolated products, characterised by GC–MS, 1H NMR and 13C NMR.
b 83:17 Mixture of trans/cis isomers.
into the reaction medium, crystallization and recovery of the cata-
lyst by filtration, and finally purification by flash chromatography,
benzyl alcohol was obtained in a 98% yield. Encouraged by the re-
sults recorded using benzaldehyde as the substrate, we applied the
same reaction conditions to other differently substituted aromatic
and aliphatic aldehydes and ketones. The corresponding primary
and secondary alcohols were obtained in discrete to good yields
as reported in Table 1.

Both aromatic aldehydes having electron donating or with-
drawing substituents as well as aliphatic aldehydes and ketones
reacted in most cases to the same extent furnishing the desired ad-
ducts in yields ranging from 40% to 98%. The only exceptions are
represented by p-anisaldehyde (entry 6), p-hydroxybenzaldehyde
(entry 7), o-nitrobenzaldehyde (entry 8) and p-hydroxyacetophe-
none (entry 14). Trying to explain this discrepancy in reactivity,
it may be hypothesized that for p-anisaldehyde and p-hydroxy-
benzaldehyde the coordination of the oxygen atom in the para po-
sition of the aromatic ring to Yb+3, leading to a decrease of the
catalytic efficiency of the Lewis acid, may be evoked. The tendency
of trivalent Yb and lanthanide in general to be coordinated by phe-
nols is in fact widely reported in the literature.30 On the other hand
the lower yield obtained when o-nitrobenzaldehyde was used as
the substrate may be explained by the steric hindrance exerted
by the –NO2 group in the ortho position to the coordination of
the metal centre to the oxygen atom of the aldehyde function thus
diminishing its reactivity and preventing its interaction with the
reducing agent. The catalyst was recovered by precipitation from
every reaction and filtered. Recycled in this way, the catalyst could
be reused several times without any significant loss of activity. For
example, the reaction leading to product of entry 1 was repeated
three additional times with the recovered Lewis acid with yields
in benzyl alcohol of 93%, 95% and 92%, respectively.

From a mechanistic point of view, it could be hypothesized that
Yb+3 coordinates both the carbonyl substrate and isopropanol, the
latter serving as the hydride donor and being coordinated to the
metal centre as an alkoxide. The hydride transfer from the second-
ary carbon of the alcohol to the carbonyl group may occur in a six-
membered transition state in the same way as proposed by several
authors in the past and recent literatures,31–36 leading to the con-
temporary reduction of the aldehyde/ketone and the oxidation of
isopropanol to acetone, and this could be regarded as the rate-
determining step of the process. To this aim we performed also
the reaction depicted in entry 1 in an NMR sealed tube using equi-
molar quantities of benzaldehyde and isopropanol and CDCl3 as the
solvent. Results from this experiment revealed the equimolar con-
version to the same extent at fixed times of benzaldehyde into ben-
zyl alcohol and isopropanol to acetone.

As a conclusion, in this Letter we have demonstrated that differ-
ently substituted aromatic and aliphatic aldehydes and ketones
undergo reduction to primary and secondary alcohols under the
catalysis of Yb(OTf)3 hydrate in the presence of isopropanol used
as the solvent and as the reducing agent. The simple workup pro-
cedure, mild reaction conditions and overall satisfactory yields
make our methodology a valid and alternative contribution to
the existing processes in the field of MPV reduction. To the best
of our knowledge, the process described herein represents the first
example of the MPV process catalysed by a Lewis acid in a homo-
geneous system under non-basic conditions. Further investigations
to broaden the scope of this methodology are in progress in our
laboratories.
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