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Cryptands containing a tetradentate tris(aminoethyl)amine moiety have been prepared in high-yield via
copper-catalyzed alkyne–azide cycloaddition followed by a templated 3+3 condensation. Silver and zinc
complexes of the cryptands are reported. Weak interactions between a chloride anion and the cryptand
suggest possible ditopic coordination.
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Propelled by the importance of anions in environmental and
biomedical processes,1,2 anion recognition is now an important
branch of supramolecular chemistry.3,4 In order to efficiently and
selectively bind anions, ligands incorporate functionalities such
as hydrogen bond donors,5,6 metal coordination sites,7 p-sys-
tems,8–10 or combinations thereof.11–13 Furthermore, anion encap-
sulation is particularly selective with cryptands due to the
geometric constraints imparted by their rigidity. Presented here
are the high-yielding syntheses of novel cryptands with two differ-
ent binding sites, one hard polyamine site and one soft tris(tria-
zole) site. As described recently,14–17 the polarized C–H bonds of
the triazoles are conducive to bind anions and thus impart the
cryptands with attributes to serve as a heteroditopic ligand for an-
ion recognition.

The macrobicyclic scaffold was prepared in two steps from 3-
(2-propyn-1-yloxy)benzaldehyde, 1, and tris(2-azidoethyl)amine,
2 (CAUTION),18 which syntheses were reported previously
(Scheme 1).19,20 The end caps of the cryptands were constructed
successively, first by copper-catalyzed azide-alkyne cycloaddition
(CuAAC) to yield 93% of 3, then by a [3+3] reversible condensation
with tris(2-aminoethyl)amine (tren) to yield triimine cryptand 4.
Though 4 can be isolated, a same-pot borohydride reduction was
preferred as it yielded larger quantities of cryptand 5. The amine
groups of 5 can be easily functionalized, as demonstrated by a
013 Published by Elsevier Ltd. All r
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methylation to yield cryptand 6. The 1H NMR of cryptands 4, 5,
and 6 in CDCl3 indicate C3 symmetry in solution. Complete assign-
ment of 1H chemical shifts, was realized via COSY and NOESY
experiments (see Supplementary information).

The [3+3] condensation was implemented under both template
and semi-dilute conditions. Templating with lanthanum(III) nitrate
proved to be an efficient procedure, with a 72% yield for the one-
pot, two-step 3?5 sequence, compared with 30% under nontem-
plated conditions. Different metal ions were tested as templating
agents. Cobalt(II) chloride, zinc(II) chloride, and silver(I) nitrate
were chosen as they form complexes with 5 (see below), but lan-
thanum(III) nitrate was by far the best templating agent. With zinc
and silver, yields of 30% were obtained, likely due to the difficulty
in purifying 5. Cobalt(II) chloride had a negative effect on the reac-
tion by inhibiting the formation of the cryptand completely. No
complexes were observed between lanthanum nitrate and 3, 4,
or 5 by ESI-MS in 1:1 methanol/dichloromethane, consistent with
a kinetic templating effect. The lanthanum ion likely coordinates
to tren, as previously reported,21,22 and this complex is poised to
react with trialdehyde 3. Once the cryptand is formed, the oxophil-
ic lanthanum(III) ion is easily removed during work-up with the
oxygen-rich EDTA ligand. In contrast, removal of cobalt, zinc, and
silver ions from the formed cryptand proved difficult as these ions
form stable complexes in the nitrogen-rich environment of 5.

X-ray diffraction analysis of single crystals of 6�Et2O indicate
that methylated cryptand 6 adopts an endo-endo conformation
(Fig. 1), as is customary with cryptands bearing tren moieties.23

The molecular structure of 6 has a C1 symmetry due to the anti
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Scheme 1. Synthesis of cryptands 4–6. Conditions: (i) CuSO4, NaAsc, t-BuOH:H2O
1:1, 24 h, 93%; (ii) tren, La(NO3)3, MeOH:THF 10:1, 48 h, 48%; (iii) NaBH4,
MeOH:THF 10:1, 3 h, 72% over 2 steps; (iv) CH2O, HCO2H, 24 h reflux, 80%.
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Figure 2. ORTEP representations at 50% thermal ellipsoid probability of: (a) the
cationic part of [5Ag](NO3)�CH3OH, and (b) [5ZnCl](Cl). The hydrogen atoms were
omitted for clarity. Selected bond lengths (Å) and angles (�) for [5Ag](NO3)�CH3OH:
Ag1–N1 = 2.506(5), Ag1–N2 = 2.398(5), Ag1–N3 = 2.385(4), Ag1–N4 = 2.370(5), N1–
Ag1–N2 = 74.85(15), N1–Ag1–N3 = 74.99(15), N1–Ag1–N2 = 75.29(15); for
[5ZnCl](Cl): Zn1–N1 = 2.245(5), Zn1–N2 = 2.104(4), Zn1–N7 = 2.160(5), Zn1–
N11 = 2.110(4), Zn1–Cl1 = 2.2861(14).

Cl2

H13A

H28A

Cl1

H40A H12A

N3

N4

Zn1

H26A

Figure 3. Zoom of the ORTEP representation (50% thermal ellipsoid probability) of
[5ZnCl](Cl). The hydrogen atoms were omitted for clarity except those involved in
weak contacts. Selected distances (Å): Cl2� � �H12A = 2.601, Cl2� � �H26A = 2.657,
Cl2� � �H13A = 2.728, Cl2� � �H28A = 2.893, H40A� � �N3 = 2.614, H40A� � �N4 = 2.774.

N2

N10

H28A

N1N6
C12

C13

Figure 1. ORTEP representation at 50% thermal ellipsoid probability of 6�Et2O. The
co-crystallized diethyl ether and hydrogen atoms (except H28A) were omitted for
clarity.
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conformation of the N1–C31–C32–N10 linkage while the other two
tren nitrogens (N2 and N6) adopt a syn conformation in relation to
N1 through their respective ethylene links. The only significant
intramolecular contact within the cryptand is a C–H� � �p interac-
tion between two triazole units (H28A� � �C12 = 2.684 and
H28A� � �C13 = 2,792 Å, van der Waals radii: C, 1.70; H, 1.20 Å).

The coordination ability of cryptands 5 and 6 resides principally
in the multi-chelating tren moiety, as illustrated here with mono-
meric silver(I) and zinc(II) complexes of 5. Attempts to isolate
dinuclear complexes involving coordination to the triazole moie-
ties24,25 have yet to be successful. Addition of silver(I) nitrate to a
hot solution of 5 in methanol led to a crystalline precipitate after
cooling. The structure of this complex, [5Ag](NO3)�CH3OH, was
solved by X-ray diffraction (Fig. 2). The inner-sphere complex,
[5Ag]+, has a pseudo-C3 symmetry. The Ag atom is coordinated to
the tren moiety, despite the potential to coordinate with the tria-
zole groups, as shown in the literature.26–28 Two of the triazoles
are facing each other, and a weak C–H� � �p interaction exists
between two triazole units, thus competing with coordination at
this site. The Ag atom sits in a distorted trigonal–pyramidal envi-
ronment composed of the nitrogen atoms of three tren moiety,
with the Ag sitting below the equatorial plane. The out-of-plane ef-
fect is commonly found in silver complexes with tren.29–36

The ditopic nature of cryptand 5 is revealed upon solid-state
characterization of its zinc(II) chloride complex. A mononuclear
complex of formula [5ZnCl](Cl)�H2O was obtained by mixing 5 with
zinc(II) chloride in hot methanol and letting the solution cool
down. Formation of the complex was confirmed in solution with
ESI-MS, the major peaks corresponding to the isotopic pattern of
[5ZnCl]+. Single crystals amenable to X-ray diffraction analysis
were grown by slow diffusion of diethyl ether into a methanol
solution of the compound. The complex crystallizes as [5ZnCl](Cl)
in the chiral P21 space group (Fig. 2).37 The cryptand adopts an
endo–endo conformation and has an overall C1 symmetry.
Akin to free ligand 6 and silver complex [5Ag]+, this structure re-
veals a weak C–H� � �p interaction between two triazole units
(H40A on Fig. 3). The Zn atom adopts a trigonal–bipyramidal coor-
dination geometry within the tren moiety with the chloride (Cl1)
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Figure 4. 1H NMR titration of [5ZnCl](Cl) with AgTfO in acetonitrile-d3 at 60 �C.
Aliquots of a 125 mM solution of AgTfO were added to a 41.6 mM solution of
[5ZnCl](Cl).
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and central nitrogen (N1) atoms in the axial positions and the
remaining nitrogens in the equatorial positions. The second chlo-
ride ion, Cl2, interacts with the hydrogens of two NH groups from
the tren moiety of a neighboring molecule (Cl2� � �H2Ci–N2i = 2.324,
Cl2� � �H7Bi–N7i = 2.356 Å; i = 1 � x, 0.5 + y, 1 � z; vdW radii: H,
1.20; Cl, 1.75 Å) and is involved in four contacts with the cryptand
itself (Fig. 3). Two of these contacts are with H–C(triazole) groups
(Cl2� � �H12A = 2.601, Cl2� � �H26A = 2.658 Å), likely the result of the
triazole rings being electron-deficient.15 The two other H� � �Cl2
contacts are with CH2 groups, one adjacent to a triazole
(Cl2� � �H13A = 2.728 Å) and the other adjacent to the tertiary nitro-
gen N6 (Cl2� � �H28A = 2.893 Å). This set of weak yet multiple inter-
actions is responsible for the cryptand to splay open to
accommodate Cl2. This demonstrates a possible role of the triazole
part of the cryptand to act as a secondary binding site and suggests
that, with a proper substrate, cryptand 5 will act as a ditopic ligand.

To test this hypothesis, we carried out solution studies of chlo-
ride binding followed by 1H NMR. To a solution of [5ZnCl](Cl)�H2O
in acetonitrile-d3 was added increasing amounts of silver triflate
(AgTfO) dissolved in acetonitrile-d3 (0–2.5 equiv per Zn). After
addition of each aliquot, AgCl precipitated and the NMR spectral
evolution was recorded (Fig. 4 and Supplementary Fig. S15).38 This
experiment highlighted two types of protons that are the most sus-
ceptible to the abstraction of chloride ions: C (triazole C–H bond)
and H (on the benzene ring). Addition of the first equivalent of
AgTfO affects the triazole protons C more than any other, while
benzene protons H are more sensitive to the second equivalent of
AgTfO. Notwithstanding conformational reorganization, this
behavior is consistent with a weak Cl� � �Htriazole interaction that is
disrupted first, while the second abstraction requires chloride dec-
oordination from Zn2+. In addition, the fact that protons H are sen-
sitive to the chloride abstraction and not the other protons on the
benzene ring suggests that protons H are oriented toward the in-
side of the cryptand where the chloride abstractions occur.

In conclusion, we have synthesized novel cryptands in high
yields by choosing reactions such as CuAAC and taking advantage
of the templating capability of the lanthanum(III) ion. Cryptand 5
has demonstrated its ability to coordinate transition metals such
as silver, zinc and cobalt. Weak interactions in the zinc complex
suggest that the cryptand can be used for ditopic binding through
the coordinating tren moiety (for a metal ion) and the triazole
functions (for an anion or substrate). Current investigations into
the binucleating and docking properties of the cryptands are
underway.
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