SYNTHESIS OF OPTICAL ANTIPODES OF N-p-[DI-(2-CHLOROETHYL)AMINO]PHENACETYLAMINO ACIDS

R. B. Klyukene, K. I. Karpavichyus, and O. V. Kil'disheva

UDC 542.91:541.65:547.466

The antitumorigenic properties of certain compounds depend on their optical configuration. Thus, the L-antipode of p-[di-(2-chloroethyl)amino]phenylalanine is more active than the racemate of sarcolysineand the D-isomer [1]. N-p-[Di-(2-chloroethyl)amino]phenacetylamino acids (DChAPhA) are more activeand less toxic than p-[di-(2-chloroethyl)amino]phenylacetic acid [2]. However, racemic phenylalanine,alanine, methionine, and glutamic acid acylated with p-[di-(2-chloroethyl)amino]phenylacetic acid(DChAPhAC) are recommended for clinical study.

The synthesis of optical antipodes of N-p-[di-(2-chloroethyl)amino]phenylacetylvaline, alanine, and methionine is described in this paper and racemization during their synthesis of carbodiimide, acid chloride, cyanomethyl, and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline methods was studied. Benzhy-dryl esters of amino acids were obtained without racemization by condensation of the latter with diphenylidi-azomethane [3]. Removal of the protecting group was achieved at room temperature by reaction of HCl in glac. CH_3COOH . It was shown chromatographically that complete cleavage of the benzhydryl radical occurs in 12 h. To establish the degree of racemization during synthesis the optical activity of the obtained compounds and optically pure N-acylamino acids, which were obtained via the azide of DChAPhAs, was compared.

It is seen from results presented in Table 1 that the most suitable methods of synthesizing L- and D-DChAPhA were the acid chloride and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline methods, giving high yields and optical purity of the obtained antipodes. During synthesis by the carbodiimide method the optical purity of the antipodes is lower, although the total yield of products is not decreased. The use of activated cyanomethyl esters for their synthesis leads to racemic compounds.

EXPERIMENTAL METHOD

 $[\alpha]_D$ of the compounds was measured on a Perkin-Elmer 141M polarimeter; melting points were determined on a Koffler microheating table. Purity of products was confirmed by the method of TLC on plates having a fixed layer of silica gel with CHCl₃ as the eluent.

DChAPhA was obtained by the acid chloride method from the corresponding antipode of the amino acid and the acid chloride of DChAPhAc analogously to [4] [see Table 1, compounds (I)-(VI)]. * Upon using the carbodiimide method equimolar amounts of the benzhydryl ester of the corresponding amino acid in THF were condensed with DChAPhAc using 1,3-dicyclohexylcarbodiimide. Benzhydryl esters of DChAPhA were separated from ethanol and recrystallized [see Table 1, compounds (VII)-(IX)].[†]

* N-p-[Di-(2-chloroethyl)amino]phenacetyl-L- and D-methionine were separated from ethanol as the cyclohexylammonium salt.

 \dagger Benzhydryl esters of N-p-[di-(2-chloroethyl)amino]phenacetyl-L-valine and L-alanine were separated as oils, which were purified by passing through a column of SiO₂ in chloroform.

Institute of Heteroorganic Compounds of the Academy of Sciences of the USSR, Moscow. Institute of Biochemistry, Academy of Sciences of the LitSSR, Vil'nyus. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 891-894, April, 1976. Original article submitted March 6, 1975.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

	z	47 47 89 48 89 48 48	47 88 788 788 788 788 788	7,47 4,88 8,48	7,47 7,89	7,47 4,88 8,48 7,89
0/0	=	23.25 5 23.25 5 25.25	87.87 87 87 87 87 87 87 87 87 87 87 87 87 8	<u> </u>		<u></u>
Calc.%	0	$\begin{array}{c} 54,406,457,47\\ 54,406,457,47\\ 54,406,4817,47\\ 51,905,817,89\\ 51,905,817,89\\ 8,48\\ 8,48\\ 8,48\end{array}$	54, 406, 457, 47 64, 745, 874, 88 64, 745, 874, 88 54, 607, 378, 48 54, 607, 378, 48			· · · · · · · · · · · · · · · · · · ·
Empirical formula		C ₁₇ 1[₂₄ C] ₂ N ₂ O ₃ C ₁₇ H ₂₄ Cl ₂ N ₂ O ₃ C ₁₅ H ₂₆ Cl ₂ N ₂ O ₃ C ₁₅ H ₂₆ Cl ₂ N ₂ O ₃ C ₁₅ H ₂₆ Cl ₂ N ₂ O ₃ C ₅₅ H ₂₇ Cl ₂ N ₃ SO ₃ C ₂₃ H ₁₅₇ Cl ₂ N ₃ SO ₃	C ₁₇ H ₃₄ C ¹ 2N ₂ O ₃ C ₃₀ H ₃₄ Cl ₂ N ₂ SO ₃ C ₃₀ H ₃₄ Cl ₂ N ₃ SO ₃ C ₃₃ H ₃₇ Cl ₂ N ₃ SO ₃ C ₂₃ H ₃₇ Cl ₂ N ₃ SO ₃	C17H24Cl2N2O3 C56H144Cl2N2SO3 C28H37Cl2N3SO3 C28H37Cl2N3SO3	C17H24Cl2N2O3 C15H20Cl2N2O3	CtrHatClaN203 CauHatClaN2503 CatHatClaN3503 CatHarClaN3503 ClaH20ClaN203
	z	7,21 7,26 7,93 8,39 8,39 8,58	7,35 5,09 8,61 77 8,61	$7,65 \\ 4,95 \\ 8,62 \\ 8,62 \\ 100$	7,29 8,01	$\begin{array}{c} 7,32\\ 4,72\\ 8,63\\ 8,03\end{array}$
d, %	H	66,323	7,338 7,338 7,338 7,338 7,338			
Found, %	U	54, 16, 6, 23, 7, 21 54, 176, 23, 7, 21 52, 176, 72, 7, 93 52, 146, 72, 7, 93 51, 185, 66, 8, 11 8, 38	$\begin{array}{c} 61,526,035,09\\ 61,526,035,09\\ 62,485,964,77\\ 54,877,338,61\\ 54,397,428,51\\ \end{array}$			
n e e e e e e e e e e e e e e e e e e e	mp, °C (solvent)	(benzene) (benzene) (benzene) (benzene) (ethyl acetate) (ethyl acetate)	(benzene) (benzene) (ethanol) (ethanol) 2(ethyl acetate	54-52 (benzene) 64-66 (ethanol) 112 (ethyl acetate)	(benzene) (benzene)	(benzene) (ethanol) (ethyl acetate) (benzene)
		$\begin{array}{c} 51 \\ 51 \\ 51 \\ 52 \\ 89 \\ 90 \\ 89 \\ 90 \\ 89 \\ 90 \\ 112 \\ 112 \end{array}$	51-52 64-66 64-66 111-11 111-11	$51-52 \\ 64-66 \\ 112$	51 - 55 85 - 90	51-52 65-66 112 90
۲£ %	opticy.	98 97 98 98 98 98	84 84 79 70 70	67 76 76	00	100 100 100
ftC13	01, CI 01, CI 01, CI	+21,2 +21,0 +12 +12,8 +8,5 -8,7	+48,2 +6,2	$^{+24}_{-8,8}$	00	$^{+21,6}_{-40,1}$ $^{+9,0}_{+12,6}$
nā	Config noises	101010		729	$\frac{DL}{DL}$	1111
· %	, bí si Y	2228860	860 860 860 860 860 860 860 860 860 860	65	52	31 33 33 30 30 30 30
Method of	synthesis	Acid chloride	Carbodi - imide	N -Ethoxy - carbonyl-2- ethoxy - 1, 2-dihydro- quinoline	Activated cyanomer thylesters	Azide
	R2	Н Н Н П. NH2C6Hu П. NH2C6Hu	H CHICARLS CHICARLS CHICARLS CHICARLS H CARLINHS H CARLINHS	II CH(CeH5)2 JI. CeH11NH2	Н	H CH(C ₆ H ₅)2 H-C ₆ H ₁₁ NH2 H
nak in provinci na provinci	ra	CIII(CH ₃) ² CHI(CH ₃) ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	(GH2)25CH3 CH(CH3)2 (GH2)25CH3 (GH2)25CH3 (CH2)25CH3 (CH2)25CH3 (CH2)25CH3	CHI(CHa) ² CHI(CHa) ² CHL ₀) ₂ SCHa (CHL ₀) ₂ SCHa	CH(CH3)2 CH2	CH(CH ₃) ² (CH ₃) ² SCH ₃ (CH ₃) ² SCH ₃ CH ₃
	Com-	EEES			(IVX) (XVI)	(XX) (IIIVX) (IIIVX) (XX)

CICILCII2 CICIL2CH2 CICH2CH2 R1

TABLE 1

871

To remove the benzhydryl groups 0.01 mole of the benzhydryl ester of DChAPhA was treated at ~ 20° with 20 ml of glac. CH₃COOH saturated with HCl and left overnight. The mixture was evaporated in vacuum; the residue was dissolved in 30 ml of methanol and poured into an aqueous solution of CH₃COONa. The precipitated oil was extracted with CHCl₃ and dried over MgSO₄. The filtrate was evaporated in vacuum and the residue was recrystallized [see Table 1, compounds (VII), (X)–(XII), (XIV)–(XVII), (XIX), (XX)].

Upon using the N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline method to a solution of 0.02 mole of DChAPhAc and 0.02 mole of benzhydryl ester of the corresponding amino acid in 35 ml of abs. THF with stirring was added 0.02 mole of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline [5]. The reaction mixture was mixed for 8 h at 30-40° and left overnight at ~20°. The THF was evaporated in vacuum and the obtained benzhydryl esters of DChAPhA were recrystallized [see Table 1, compounds (XII), (XIII)].

Upon obtaining DChAPhA by the azide method 0.01 mole of DChAPhAc hydrazide [6] was dissolved in 30 ml of glac. CH_3COOH , 75 ml of water was added, and the mixture was cooled in ice. Then 3 ml of conc. HCl and a solution of 0.081 g of NaNO₂ in 5 ml of water were added. The precipitated oil was extracted with cold ethyl acetate, washed with cold saturated NaHCO₃ solution, water, and then with 0.01 N HCl and water, dried with MgSO₄ at 0°, and filtered. To the filtrate was added a solution of 0.01 mole of benzhydryl ester of the amino acid in ethyl acetate and the reaction mixture was left in the refrigerator for 72 h. The solution was washed with 0.1 N HCl, saturated NaHCO₃ solution, water, and dried over MgSO₄. The ethyl acetate was evaporated in vacuum and the residue was recrystallized [see Table 1, compounds (XVII), (XVIII), (XX)].

Upon using the activated cyanomethyl ester method 0.01 mole of the cyanomethyl ester of DChAPhA-(DChAPhC) in 10 ml of THF was added with stirring to a solution of 0.01 mole of benzhydryl ester of the amino acid in 10 ml of THF containing 2 drops of glac. CH_3COOH . The reaction mixture was left at 20° for 48 h, the THF was evaporated in vacuum, and the residue was dissolved in ethyl acetate. The solution was washed with 0.01 N HCl, cold 3% NaHCO₃, water, and dried over MgSO₄. The filtrate was evaporated in vacuum and the residue was recrystallized [see Table 1, compounds (XV), (XVI)].

To obtain DChAPhC 0.02 mole of DChAPhA was mixed with 4.16 ml of triethylamine and 3.82 g of chloroacetonitrile was added. The reaction mixture was maintained for 30 min at 70°, then left overnight. After adding 30 ml of ethyl acetate the triethylamine hydrochloride was filtered. The filtrate was evaporated in vacuum and the residue was recrystallized twice from ethanol. We obtained 4.7 g of DChAPhC with mp $35-37^{\circ}$, yield 75%. Found: C 53.43; H 5.32; Cl 21.90; N 8.89%. C₁₄H₁₆Cl₂N₂O₂. Calculated: C 53.38; H 5.15; Cl 22.6; N 8.94%.

CONCLUSIONS

The optical antipodes of N-p-[di-(2-chloroethyl)amino]phenacetylvaline, methionine, and alanine were obtained by the acid chloride and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline methods; the carbodiimide method and the activated cyanomethyl ester method give significant or complete racemization.

LITERATURE CITED

- 1. A. Elson, A. Haddow, F. Bergell, and J. Stock, Biochem. Pharmacol., <u>11</u>, 1079 (1962).
- 2. N. E. Golubeva, O. V. Kil'disheva, and I. L. Knunyants, Dokl. Akad. Nauk SSSR, 119, 83 (1958).
- 3. A. A. Aboderin, G. R. Delpierre, and J. S. Fruton, J. Amer. Chem. Soc., 87, 5469 (1965).
- 4. K. I. Karpavichyus, N. E. Golubeva, O. V. Kil'disheva, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1299 (1961).
- 5. J. Muren and A. Weissman, J. Med. Chem., 14, 49 (1971).
- 6. Yu. Degutis and D. Dzhyuvene, Zh. Obshch. Khim., <u>33</u>, 3746 (1963).