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The synthesis and characterization of a novel cyclometalated Iridium(III) complex [IrCl(H)(PSiP)] containing
monoanionic, tridentate coordinating PSiP-pincer ligands [κ3-(2-tBu2PC6H4)2SiMe]− ([PSiP]) is reported.
Complex (3) is one of the few examples of bis(phosphino)silyl(hydrido)iridium(III) complexes structurally
characterized by single crystal X-ray analysis. This compound has also been shown to catalyze the transfer
hydrogenation of ketones to the corresponding secondary alcohols moderately with 2-propanol as the
hydrogen source instead of using molecular dihydrogen gas or hazardous reducing agents (e.g., NaBH4 and
LiAlH4), and tBuOK as the base.
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Cyclometalated phosphine-based “PCP” pincer complexes of the
transition-metals have been the subject of intense research since the
initial investigations of this type of “PCP” ligands by Shaw et al. [1],
owing to the remarkable stoichiometric and catalytic reactivity
exhibited by such complexes [2,3]. Recently, significant effort has
been devoted to the synthesis of structurally and/or electronically
related systems where strategic alterations have been introduced to
the pincer ligand architecture, including variation of the central and
peripheral donor fragments, as well as the ancillary ligand backbone
[4]. However, the “PSiP” pincer-like transition metal complexes have
rarely been reported [5]. Although metal–silicon chemistry is well-
precedented across the transition series, relatively little attention has
been given to the incorporation of silyl donor fragments into the
framework of a preformed tridentate and tetradentate ancillary
ligand. Silyl ligands have strong σ-donating characters and show a
stronger trans influence than do commonly used ligands in transition
metal chemistry [6]. Silyl ligands would make an electron-rich metal
center and coordinatively unsaturated species by its strong trans-
labilizing effect. Therefore, “ancillary” silyl ligands would provide
transition metal complexes having unique reactivities useful for
catalysis. We have been working on the reaction of chelating disilyl
compounds with group 10 transition metal complexes and obtained a
number of unusual complexes bearing chelating silyl ligands [7]. Over
the course of the research, we found simple silyl ligands usually
have high reactivity and cannot stay on transitionmetals as “ancillary”
ligands. Incorporation of silyl group in a multidentate ligand frame-
work would be a useful strategy to make “ancillary” silyl ligands.
There are two types of approaches for this kind of silyl ligands: 1)
incorporation of one silyl group at the center of muntidentate
framework [8], and 2) attachment of two silyl groups in a rigid
multidentate framework. The second approach is so far rather limited
and the xanthsil ligand by Tobita and co-workers is a representative
example [9]. Recently, transition metal complexes bearing other
tridentate N2Si, and S2Si type ligands as well as tetradentate P3Si and
S3Si type ligands have also been reported [10].

Hydrogen transfer catalysis is an attractive protocol for the
reduction of ketones to alcohols in both academic and industrial
research. The use of a hydrogen donor (e.g., 2-propanol) instead of
using molecular dihydrogen gas or hazardous reducing agents (e.g.,
NaBH4 and LiAlH4) has a potential advantage in terms of mild reaction
conditions and excellent regioselectivity.11 Many pincer-like transi-
tion metal complexes of Ru, Ir, and Rh have been found to be active
catalysts in (a)symmetric hydrogen transfer reactions of polar groups
(e.g., ketones and imines) [11]. In recent years, a number of studies
appeared on the successful use of cyclometalated ruthenium(II)
complexes containing tridentate, cyclometalated PCP−, and NCN− as
catalyst precursors in hydrogen transfer reactions [12]. The great
interest in the use of E,C,E-pincer ligands (E=N, P) arises from the
remarkable stability of the corresponding metal complexes and the
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Scheme 1. Synthetic route of organosilicon complex Ir-(κ3-PSiP) (3).

Table 1
Crystal data and structure refinement parameters for 3.

Structure parameters 3

Empirical formula C29H48ClIrP2Si
fw 714.35
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possibility to modulate the reactivity of the metal center by fine-
tuning and control of the electronic and steric properties of the ligand
framework [13].

We are interested in [{2-(R2P)C6H4}2MeSi]– ligands (=PSiP-R,
R=Cy, tBu, iPr), which would have high electron donating property
and higher rigidity than do [(Ph2P(CH2)n)2MeSi]– ligands [14]. Herein
we report the synthesis and structure of a novel cyclometalated iridium
(III) complex [IrCl(H)(PSiPtBu)] (3) containing monoanionic, tridentate
coordinating PSiP-pincer ligands [κ3-(2-tBu2PC6H4)2SiMe]− ([PSiPtBu])
(Fig. 1), and its catalytic activity in the transferhydrogenationof ketones
with 2-propanol as the hydrogen source and tBuOK as the base. Dialkyl
(aliphatic and cyclic), alkyl aryl, and diaryl ketoneswere all reduced in a
moderate yield by this PSiP Ir(III) complex (3).

Treatment of the parent tertiary silane, [PSiP]H (2) with 0.5 equiv
of [IrCl(COD)]2 (cod=1,4-cyclooctadiene) in dry toluene at 80 °C
resulted in oxidative addition of the Si–H bond to the Iridium
(I) center to give a 16-electron Ir(III)-(κ3-PSiP) complex in high yields
(Scheme 1; isolated yield ca. 90%) [15]. Crystallization of compound
(3) from benzene afforded X-ray quality single crystals, and its
structure was unambiguously confirmed by single-crystal X-ray struc-
ture analysis (Fig. 1) [16,17]. To the best of our knowledge, there are
only more than 10 examples of bis(phosphino)silyl(hydrido) iridium
(III) complexes structurally characterized by single crystal X-ray
analysis [14]. Complex (3) crystallizes in the monoclinic group P21/c
(Table 1). The pincer-like title compound contains two stable five-
membered cyclometalated rings with the P–Ir–Si angles of 85.92(3)
and 85.70(4) °. The Ir atom is coordinated by two P atoms, one Si
atom, one Cl atom and one H atom in a distorted square-pyramidal
geometry, in which the silyl group occupies the apical coordination
site, while the remaining phosphine arms of the [PSiP] ligand, the Cl
and H atoms occupy basal sites. The bond distances of Ir1-Si1 and Ir1-
Cl1 are 2.2668(9) and 2.3994(8) Å, respectively, which are similar to
the other Ir analogue with pincer-like tridentate PSiP ligand, Ir(H)
[SiMe(CH2CH2CH2 PPh2)2]Cl [14]. The two P donor atoms are almost in
a trans arrangement with a P1-Ir1-P2 angle of 161.99(2) °, the methyl
group on Si1 donor in compound (3) is positioned trans to hydrido
group, and cis to Cl, with a Cl(1)–Ir(1)–H(52) angle of 163.0(13)°.
The two phenyl rings are, of course, planar, which are oriented at a
dihedral angle of 89.49 (2)° (Table 2). 1H NMR spectroscopy of
compound (3) showed the Ir-H signal as triplets with small 2J(P,H)
value of 14 Hz at around−23 ppm suggesting a cis relationship of the
H and the two P atoms.

Based on our synthetic investigations of [PSiP]-ligated metal
complexes, we have begun to examine the utility of such species as
catalysts in a range of substrate transformations. In particular, we are
interested in exploring how the substitution of Si for C in a rigid
tridentate ancillary ligand framework influences metal-mediated
Fig. 1. The structure of 3, showing the coordination environment of Ir atom. The
hydrogen atoms are omitted for clarity.
reactivity, given the strong electron donating and trans-labilizing
abilities of Si. Reduction by means of hydrogen-transfer reactions has
recently attracted much attention because of its practical simplicity
and potential use at ambient pressure. Furthermore, the use of an
alternative source of hydrogen may result in different reactivity
patterns [18]. Recently, several Ru(II) PCP−, NCN−, CNC−, and CNN−

pincer complexes have been shown to catalyze the transfer
hydrogenation of ketones [19], and it has been proposed that the
metal-Cσ-bond plays an important role in the formation of long-lived,
catalytically active species [20]. In this context, we became interested
in surveying the catalytic activity of iridium(III) complex [Ir(H)Cl
(PSiP)] (3) containing monoanionic, tridentate coordinating PSiP-
pincer ligand in the transfer hydrogenation of ketones, employing
basic iPrOH as the hydrogen source. When employing 0.2 mol% of
compound (3)with 5 mol% of KOtBu at 80 °C, moderate conversion to
the corresponding secondary alcohols was observed for several
ketone substrates, including diaryl, dialkyl, and alkyl/aryl ketones
(Scheme 2). Although conditions have not yet been optimised, it is
obvious that the activity of compound (3) as a catalyst in this reaction
is comparable to that observed with phosphinosilyl complexes
that feature an aliphatic or benzylic ligand backbone, and we
found that reduced conformational rigidity associated with the
flexible o-tertbutyl backbone of [PSiP] could provide moderate
stability and selectivity in metal-mediated substrate transformations
and the representative catalytic data obtained in our preliminary
survey are summarized in Table 3. The reactions are slow at room
cryst syst monoclinic
space group P 21/c
a (Å) 12.291(3)
b (Å) 15.050(2)
c (Å) 16.500(3)
α (o) 90.00
β (o) 98.57(3)
γ (o) 90.00
V (Å3) 3017.8(11)
Z 4
T(K) 153(2)
F(000) 1440
ρ (g cm−3) 1.572
absorption coefficient (mm−1) 4.675
goodness of fit on F2 0.941
total no. of data collected 21955
no. of unique data 6935
R indexes [IN2σ(I)] R1=0.0217

wR2=0.0435
R (all data) R1=0.0263

wR2=0.0441
largest diff map hole and peak (e Å−3) 0.099 and −0.515
R1=∑||Fo|− |Fc||/∑|Fo|; wR2=[∑w(Fo2−Fc

2)2/∑w(Fo2)2]1/2.
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Table 2
Selected bond lengths and angles for 3.

Ir(1)–P(1) 2.3251(7) Ir(1)–P(2) 2.3270(8)
Ir(1)–Cl(1) 2.3994(8) Ir(1)–Si(1) 2.2668(9)
Si(1)–C(1) 1.886(3) Si(1)–C(2) 1.898(3)
Si(1)–C(8) 1.897(3) Ir(1)–H(52) 1.43(3)
C(2)–Si(1)–C(8) 105.04(15) P(1)–Ir(1)–P(2) 161.99(2)
P(1)–Ir(1)–Cl(1) 99.19(3) P(2)–Ir(1)–Cl(1) 98.60(3)
C(1)–Si(1)–C(2) 104.63(12) P(1)–Ir(1)–Si(1) 85.92(3)
P(2)–Ir(1)–Si(1) 85.70(4) C(1)–Si(1)–Ir(1) 120.62(10)
C(2)–Si(1)–Ir(1) 106.29(9) Cl(1)–Ir(1)–H(52) 163.0(13)
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temperature but proceed at good rates at 80 °C and the catalyst
system hydrogenates aliphatic ketones faster that aromatic ones. As is
the case for most metal-catalyzed transfer hydrogenation processes
conducted in iPrOH, less than 5% conversion was observed in the
absence of KOtBu as base. The preformed Ir complex (3)was similarly
inactive for transfer hydrogenation of cyclohexanone in the absence of
added KOtBu, although 82% conversion was obtained when using
5 mol% KOtBu along with 0.2 mol% 3 (entry 6, Table 3). Furthermore,
these data show that the stability provided by the chelate ligand, and
the potential for electronic/coordinative unsaturation are possible
reasons for the activity observed. These preliminary results establish
[PSiP]Ir complexes as a promising class of precatalysts for transfer
hydrogenation. Further mechanistic studies of this reaction, as well as
catalytic studies featuring these and other [PSiP] derivatives, are
currently in progress.

In this contribution, convenient access to an Ir-(κ3-PSiP) complex
with the bulky ligand [κ3-(2- tBu2PC6H4)2SiMe]− has been estab-
lished from [IrCl(COD)]2. We report the synthesis and preliminary
coordination chemistry studies of the new coordinatively unsaturated
group 9 pincer-like complex supported by the bis(phosphino)silyl
ligand [κ3-(2- tBu2PC6H4)2SiMe]−, as well as a preliminary investi-
gation of the catalytic utility of [PSiP]Ir species in the transfer
hydrogenation of ketones. The pincer-like iridium(III) complex (3)
has been found to display a moderate catalytic activity in the
reduction of various ketones to the corresponding alcohols with
iPrOH as the hydrogen source and KOtBu as the promoter. Under these
conditions, the Ir–Si σ bond is stable and the [Ir(PSiP)Cl] fragment is
preserved. The isolation of free ‘pincer’ type bis(phosphino)silyl
ligands has opened new and easy synthetic routes to a variety of
complexes with wide scope for functionalisation and catalyst
optimisation and tuning. The synthesis of other ‘pincer’ complexes
with catalytically important metals using this methodology is under
way.
Scheme 2. Transfer Hydrogenation of Ketones.

Table 3
Transfer Hydrogenation of Ketones.

entry catalyst substrate time (h) conversion (%)

1 3 acetophenone 6 72
2 3 benzophenone 5 70
3 3 p-methyl acetophenone 6.5 69
4 3 2-heptanone 4 78
5 3 cyclopentanone 3 80
6 3 cyclohexanone 3 82
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Appendix A. Supplementary data

CCDC-821325 contains the supplementary crystallographic data for
compound (3). These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.
uk/data_request/cif. Supplementary data associatedwith this article can
be found in the online version, at doi:10.1016/j.inoche.2011.05.018.
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