DOI: 10.1002/cjoc.201300346

Copper(II)-Catalyzed Tandem Synthesis of Substituted 3-Methyleneisoindolin-1-ones

Jie Pan, Zhen Xu, Runsheng Zeng,* and Jianping Zou

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China

An efficient strategy for the synthesis of a variety of 3-methyleneisoindolin-1-ones has been developed. The reaction proceeded from coupling of 2-iodobenzamides (or 2-bromobenzamides) and terminal alkynes via $Cu(OAc)_2 \cdot H_2O/2, 2'$ -biimidazole catalyzed in DMF at 60 °C and subsequent additive cyclization produced substituted 3-methyleneisoindolin-1-ones in good to excellent yields.

Keywords 3-methyleneisoindolin-1-ones, Cu(OAc)2•H2O, 2,2'-biimidazole, additive cyclization

Introduction

The 3-methyleneisoindolin-1-one is a core structure of numerous natural products or designed pharmaceutical molecules,^[1] which have attracted much attention due to their unique biological activities, such as anticancer activity, antibacterial activity, *etc.* For example, compound **1**, an alkaloid containing the isoindolinone moiety, isolated from a *Saccharothrise* sp. has antimicrobial, hypotensive and cytotoxic activities.^[2] Compound **2** exhibited sedative activity^[1h] (Figure 1). Considerable efforts have been directed toward the synthesis of 3-methyleneisoindolin-1-ones.

3-Methyleneisoindolin-1-ones have been prepared via using phthalimides as starting materials, which undergo Wittig reaction^[3] or addition of organometallic reagents and subsequent dehydration^[4] to give the target molecules, as well as Grignard^[5] or lithiation^[6] or miscall-aneous^[7,8] procedures, Diels-Alder reactions,^[9] re-arrangement reactions,^[10] and photochemical reactions.^[11] The reduction of *N*-substituted phthalimides^[12] and the condensation of phthalaldehyde^[13] also afford 3-methyleneisoindolin-1-ones. Besides the above classical methods, efficient methods for the synthesis of various 3-methyleneisoindolin-1-ones catalyzed by metal complexes have been reported. Cobalt and rhodium carbonyl complexes can be used as the catalysts to synthesize 3-methyleneisoindolin-1-ones.^[14] Several examples of palladium catalysis have appeared.^[15-19]But copper-catalyzed syntheses of 3-methyleneisoindolin-1ones were rare.^[20] Herein, we wish to report a direct and efficient approach to 3-methyleneisoindolin-1-ones through the coupling reaction of 2-iodobenzamides (or 2-bromobenzamides) and terminal alkynes catalyzed by Cu(OAc)₂•H₂O/2,2'-biimidazole.

Figure 1 The structure of compound 1 and compound 2.

Results and Discussion

Initially, the reaction between N-phenyl-2-iodobenzamide (3a) and phenylacetylene (4a) was selected as a model reaction to screen the optimal reaction conditions (Table 1). We explored the effects of the solvent. The results revealed that the use of DMF as solvent achieved the best result with K_2CO_3 as base under argon at 60 °C for 24 h in the presence of Cu(OAc)₂•H₂O/2,2'-biimidazole, achieving the desired product 5a in 88% yield (Table 1, Entry 4). Similar result was observed when the solvent was changed to DMSO (Table 1, Entry 1). However, poor yields were obtained if the reaction was carried out in *i*-PrOH (Table 1, Entry 2) and the fact that no desired product was isolated in the presence of toluene (Table 1, Entry 3). Next, the base was further investigated. Switching base to Cs₂CO₃ and K₃PO₄ had little influence to this reaction (Table 1, Entries 5 and 6). Replacing K₂CO₃ with KOH (Table 1, Entry 8) resulted in poorer yields, whereas no reaction was observed in NEt₃

^{*} E-mail: zengrunsheng@suda.edu.cn

Received April 24, 2013; accepted May 29, 2013; published online July 5, 2013.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cjoc.201300346 or from the author.

(Table 1, Entry 7). Then, the influences of temperature and time on the reaction were examined. The yield unchanged when temperature decreased to 80 $^{\circ}$ C or 60 $^{\circ}$ C from 100 $^{\circ}$ C (Table 1, Entries 10 and 11). However, a moderate yield was produced at 40 $^{\circ}$ C (Table 1, Entry 13). The yield was decreased to some extent when the reaction was carried out at the elevated temperature (Table 1, Entry 9). Extending the time to 48 h did not improve yield (Table 1, Entry 14). An 80% yield was produced in the absence of argon (Table 1, Entry 12).

Table 1 Coupling of N-phenyl-2-iodobenzamide with phenyl-
acetylene under different conditions^a

Entry	Base	Solvent	Temp (°C)/Time (h)	Yield ^b %
1	K ₂ CO ₃	DMSO	100/24	82
2	K ₂ CO ₃	<i>i</i> -PrOH	100/24	15
3	K_2CO_3	toluene	100/24	trace
4	K_2CO_3	DMF	100/24	88
5	Cs ₂ CO ₃	DMF0	100/24	75
6	K_3PO_4	DMF	100/24	82
7	Et ₃ N	DMF	100/24	trace
8	КОН	DMF	100/24	55
9	K ₂ CO ₃	DMF	120/24	83
10	K ₂ CO ₃	DMF	80/24	88
11	K_2CO_3	DMF	60/24	88
12 ^c	K_2CO_3	DMF	60/24	80
13	K_2CO_3	DMF	40/24	62
14	K ₂ CO ₃	DMF	60/48	88

^{*a*} All reactions were carried out using 1.0 mmol *N*-phenyl-2iodobenzamide (**3a**), 1.2 mmol phenylacetylene (**4a**), 2.0 mmol base, 0.2 mmol Cu(OAc)₂•H₂O, 0.1 mmol 2,2'-biimidazole and 2 mL solvent. ^{*b*} Isolated yield. ^{*c*} The reaction was carried out in the air.

Finally, we optimized the catalyst, ligands and their loading. The results are summarized in Table 2. As evident from the satisfactory yields that were observed when L1, L2, L3, L4 (Figure 2) and no ligand were used (Table 2, Entries 1-5), but L1 gave the highest product yield of 88%. 20 mol% Cu(OAc)₂•H₂O and 10 mol% L1 were found to be sufficient to promote the reaction and increased amounts of the catalyst and ligand did not lead to any changes in the reaction yield (Table 2, Entries 1, 6 and 7). Moderate yields were ob-

tained when the catalyst was changed to CuI or CuSO₄• $5H_2O$ or CuCl₂•H₂O (Table 2, Entries 8–10), whereas no reaction was observed in FeCl₃•6H₂O (Table 2, Entry 11). Based on these results, we chose Cu(OAc)₂•H₂O as the catalyst, L1 as the ligand, K₂CO₃ as the base, and DMF as the solvent under argon in the subsequent studies.

Figure 2 Ligands used in the study.

Table 2 Coupling of N-phenyl-2-iodobenzamide with phenyl-
acetylene under different conditions^a

	$ \begin{array}{c} 0\\ N\\ H\\ 3a\\ 0\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	4a	Cu salt, ligar K ₂ CO ₃ , DMF, 48	nd L h, 60 °C
Entry	Catalyst	Ligand	Cu: L (mmol%)	Yield ^b /%
1	Cu(OAc) ₂ •H ₂ O	L1	20:10	88
2	Cu(OAc) ₂ •H ₂ O	L2	20:10	73
3	Cu(OAc) ₂ •H ₂ O	L3	20:10	68
4	Cu(OAc) ₂ •H ₂ O	L4	20:10	67
5	Cu(OAc) ₂ •H ₂ O	No	20:10	70
6	Cu(OAc) ₂ •H ₂ O	L1	40:20	88
7	Cu(OAc) ₂ •H ₂ O	L1	10:5	82
8	CuI	L1	20:10	75
9	$CuSO_4 \bullet 5H_2O$	L1	20:10	78
10	$CuCl_2 \bullet H_2O$	L1	20:10	78
11	FeCl ₃ •6H ₂ O	L1	20:10	NR

^{*a*} All reactions were carried out using 1.0 mmol *N*-phenyl-2-iodobenzamide (**3a**), 1.2 mmol phenylacetylene (**4a**), 2.0 mmol K_2CO_3 , Cu catalyst, ligand L and 2 mL DMF under 60 °C, 48 h, in argon. ^{*b*} Isolated yield.

With the optimal conditions in hand, we explored the scope of substrates (Table 3). A wide range of *N*-substituents were tolerated, including benzyl, allyl, phenyl, proton, and alkyl groups, systems bearing electron-donating and electron-withdrawing substituents performed well (Table 3, Entries 1-13 and 16). Some functionalized arylacetylenes also worked well, giving the corre-

sponding products in good yields (Table 3, Entries 14 and 15). This reaction was also effective with 2-bromobenzamides, but higher temperature (100 °C) was required (Table 3, Entries 17-21). Furthermore, this one-pot reaction was highly stereoselective, and gave the Z-isomer as the main product.

Table 3 Copper-catalyzed tandem synthesis of substituted3-methyleneisoindolin-1-one a

Y	Cu(OAc) ₂ ·H ₂ O (20 mol%)
X H $- p^2$	2,2'-biimidazole (10 mol%)
$N_R^1 + R$	K ₂ CO ₃ (2 equiv.), DMF
0 4 3	60 °C, 24 h, X = I, Br
R^2	
N-R ¹	
5	

Entry	Х	R^1 R^2		Product	Yield ^b /%
1	Ι	Ph	Ph	5a	89
2	Ι	Bn	Ph	5b	89
3	Ι	$2-ClC_6H_4$	Ph	5c	88
4	Ι	$3-ClC_6H_4$	Ph	5d	95
5	Ι	$4-ClC_6H_4$	Ph	5e	94
6	Ι	$2-MeC_6H_4$	Ph	5f	92
7	Ι	4-MeC ₆ H ₄	Ph	5g	84
8	Ι	4-MeOC ₆ H ₄	Ph	5h	90
9	Ι	<i>п</i> -С ₄ Н ₉	Ph	5i	77
10	Ι	<i>n</i> -C ₆ H ₁₃	Ph	5j	54
11	Ι	4-OCH ₂ PhPh	Ph	5k	95
12	Ι	1-naphthyl	Ph	51	87
13	Ι	2,6-Me ₂ C ₆ H ₄	Ph	5m	98
14	Ι	Ph	4-MeOC ₆ H ₄	5n	90
15	Ι	Ph	$4-EtC_6H_4$	50	86
16	Ι	Н	Ph	5p	98
17 ^c	Br	Ph	Ph	5a	82
18 ^c	Br	$3-ClC_6H_4$	Ph	5d	88
19 ^c	Br	$4-ClC_6H_4$	Ph	5e	90
20^c	Br	$2-MeC_6H_4$	Ph	5f	85
21 ^c	Br	$4\text{-}MeOC_6H_4$	Ph	5h	87

^{*a*} All reactions were carried out using 1.0 mmol *N*-substituted-2-iodobenzamide (**3**), 1.2 mmol arylacetylenes (**4**), 2.0 mmol K_2CO_3 , 0.2 mmol Cu(OAc)₂•H₂O, 0.1 mmol ligand L1 and 2 mL DMF under 60 °C, 24 h, in argon. ^{*b*} Isolated yield. ^{*c*} The reaction was carried out in DMF at 100 °C.

Notably, *N*-phenyl-2-iodobenzamide and *N*-phenyl-2-bromobenzamide with various substituents provided high yields of desired products (Table 4, Entries 1-3). However, *N*-phenyl-2-bromo-nicotinamide provided only a moderate yield (Table 4, Entry 4).

On the basis of the above results, we proposed the following reaction mechanism for this cascade sequence

	O N H S S O Ph	+ =F 4	$ \begin{array}{c} \text{Cu(O)} \\ \text{Cu} \\ C$	Ac) ₂ · H ₂ O (2 imidazole (1 O ₃ (2 equiv. ⁰C, 24 h, X =	0 mol%) 0 mol%)), DMF = I, Br
Entry	Х	Y	R	Product	Yield ^b /%
1	Ι	С	5-Me	5q	90
2	Ι	С	4-Cl	5r	94
3	Br	С	4-C1	5r	80
4	Br	Ν	Н	5s	49

Table 4 Copper-catalyzed tandem synthesis of substituted

3-methyleneisoindolin-1-one^a

^{*a*} All reactions were carried out using 1.0 mmol *N*-substituted-2-iodobenzamide (**3**), 1.2 mmol phenylacetylene (**4a**), 2.0 mmol K_2CO_3 , 0.2 mmol Cu(OAc)₂•H₂O, 0.1 mmol ligand L1 and 2 mL DMF under 60 °C, 24 h, in argon. ^{*b*} Isolated yield.

(Scheme 1). We envisaged that coupling of 3a with 4a afforded A by Sonogashira reaction, then A might undergo deprotonation of the amide moiety and subsequent addition to C-C triple bond under the action of the copper complex (as intermediate B) to afford intermediate C, then protonation of this intermediate afforded copper salt and released the product 5a. Single crystal X-ray analysis conclusively confirmed the structure of the isolated (Z)-3-benzylidene-2-(4-chlorophenyl)isoindolin-1-one (5e) and an ORTEP diagram of 5e was shown in Figure 3. This result indicated that the Cu(OAc)₂•H₂O-mediated additive cyclization of the amide moiety to the triple bond took place in a 5-exo manner exclusively, which is different with base or Lewis acid-mediated additive cyclization (both 5-exo and 6-endo attacks were observed).^[15f]

Figure 3 ORTEP diagram of 5e.

Conclusions

In conclusion, we have developed a simple and rapid $Cu(OAc)_2 \cdot H_2O/2, 2'$ -biimidazole catalyzed coupling/addative cyclization domino reaction process for the construction of substituted 3-methyleneisoindolin-1-ones in Scheme 1 Tentative mechanism for domino reaction catalyzed by copper(II)

good to excellent yields from various 2-halobenzamides and terminal alkynes. Considering the relatively inexpensive catalytic system and the commercial availability of the starting materials, it should be of great benefit for organic synthesis.

Experimental

General

Column chromatograph was performed with silica gel (300 – 400 mesh) and analytical TLC on silica 60-F254. ¹H NMR spectra were measured on an Inova-400 MHz spectrometer in CDCl₃ (100 MHz, ¹³C NMR) with chemical shift (δ) relative to TMS as internal standard. HRMS was determined by using micromass OA-TOF instrument. All of the reagents were used directly as obtained commercially. Some alkynes were prepared according to literature methods,^[21,22] purified by chromatography.

General procedure for the synthesis of substituted 3-methyleneisoindolin-1-ones

A sealed tube was charged with a magnetic stirrer and 2-iodobenzamide (1.0 mmol), phenylacetylene (1.2 mmol), Cu(OAc)₂•H₂O (0.2 mmol), 2,2'-biimidazole (0.1 mmol), K₂CO₃ (2.0 mmol), DMF (2.0 mL). The reaction mixture was stirred under argon at 60 °C for 24 h. After cooling to room temperature, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by chromatography on silica gel using ethyl acetate/petroleum ether as eluent to afford substituted 3-methyleneisoindolin-1-ones.

(*Z*)-3-Benzylidene-2-phenylisoindolin-1-one (5a)^[15f] White solid, m.p. 197–198 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.96 (d, *J*=7.5 Hz, 1H), 7.87 (d, *J*=7.8 Hz, 1H), 7.68 (t, *J*=7.2 Hz, 1H), 7.55 (t, *J*=7.4 Hz, 1H), 7.08 (s, 5H), 6.83-6.97 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.4, 139.0, 136.3, 134.7, 133.9, 132.8, 129.6, 129.5, 128.6, 128.2, 127.6, 127.1, 127.0, 124.7, 119.6, 108.7; HRMS calcd for C₂₁H₁₅NO (M⁺) 297.1154, found 297.1154.

(*Z*)-3-Benzylidene-2-(4-chlorophenyl)isoindolin-1one (5e)^[23] White solid, m.p. 142–144 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.95 (d, *J*=7.6 Hz, 1H), 7.86 (d, *J*=7.8 Hz, 1H), 7.69 (t, *J*=7.5 Hz, 1H), 7.56 (t, *J*=7.4 Hz, 1H), 7.10–6.92 (m, 7H), 6.87 (d, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.0, 138.7, 134.6, 134.4, 133.5, 132.9, 132.8, 129.6, 129.4, 128.6, 128.4, 127.8, 127.6, 127.1, 124.2, 119.7, 108.0; HRMS calcd for C₂₁H₁₄ClNO (M⁺) 331.0764, found 331.0764.

(*Z*)-3-Benzylidene-2-butylisoindolin-1-one (5i)^[20] Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ : 7.83 (d, *J*=7.5 Hz, 1H), 7.38–7.45 (m, 6H), 7.28–7.29 (m, 2H), 6.54 (s, 1H), 3.89 (t, *J*=7.4 Hz, 2H), 1.70–1.77 (m, 2H), 1.40–1.48 (m, 2H), 0.99 (t, *J*=7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.6, 137.3, 133.9, 130.7, 128.5, 128.4, 127.9, 127.6, 127.0, 126.5, 122.1, 118.2, 105.5, 40.1, 29.2, 18.6, 12.4; HRMS calcd for C₁₉H₁₉NO (M⁺) 277.1467, found 277.1466.

(Z)-3-Benzylidene-2-(4-(benzyloxy)phenyl)isoindolin-1-one (5k) Yellow solid, m.p. 124-126 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.93–7.95 (m, 1H), 7.83–7.86 (m, 1H), 7.64–7.67 (m, 1H), 7.54–7.57 (m, 1H), 7.31–7.38 (m, 5H), 6.70–6.93 (m, 10H), 4.98 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.7, 158.9, 139.0, 137.4, 135.1, 134.1, 132.8, 129.6, 129.4, 129.0, 128.7, 128.4, 128.3, 127.6, 127.4, 126.1, 124.2, 120.1, 115.2, 108.0, 70.5; HRMS calcd for C₂₈H₂₁NO₂ (M⁺) 403.1572, found 403.1572.

(*Z*)-3-Benzylidene-2-(2,6-dimethylphenyl)isoindolin-1-one (5m)^[24] White solid, m.p. 115–116 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.97 (d, *J*=7.5 Hz, 1H), 7.86 (d, *J*=7.7 Hz, 1H), 7.69 (t, *J*=7.1 Hz, 1H), 7.56 (t,

FULL PAPER_

J=7.5 Hz, 1H), 6.70–6.99 (m, 9H), 2.05 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.7, 139.0, 136.4, 134.9, 133.9, 133.2, 132.6, 129.6, 128.8, 128.5, 128.4, 127.8, 126.7, 124.2, 120.1, 108.1, 18.6; HRMS calcd for C₂₃H₁₉NO (M⁺) 325.1467, found 325.1468.

(*Z*)-3-(4-Ethylbenzylidene)-2-phenylisoindolin-1one (50) White solid, m.p. 130–132 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.95 (d, *J*=7.4 Hz, 1H), 7.85 (d, *J*=7.6 Hz, 1H), 7.67 (t, *J*=7.6 Hz, 1H), 7.54 (t, *J*=7.4 Hz, 1H), 7.07 (s, 5H), 6.82 (s, 1H), 6.72–6.78 (m, 4H), 2.45–2.50 (m, 2H), 1.11 (t, *J*=7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.2, 143.9, 138.1, 136.3, 134.2, 132.9, 131.6, 129.7, 129.3, 128.9, 127.6, 127.3, 126.6, 126.2, 124.1, 119.2, 108.0, 28.8, 16.7; HRMS calcd for C₂₃H₁₉NO (M⁺) 325.1467, found 325.1466.

(*Z*)-3-Benzylidene-6-methyl-2-phenylisoindolin-1one (5q) White solid, m.p. 179–180 °C; ¹H NMR (300 MHz, DMSO- d_6) δ : 8.01 (d, *J*=7.6 Hz, 1H), 7.63 (s, 1H), 7.57 (d, *J*=7.2 Hz, 1H), 7.08 (s, 5H), 7.00 (s, 1H), 6.77–6.94 (m, 5H), 2.47 (s, 3H); ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.85, 140.15, 136.84, 136.72, 134.50, 134.31, 129.73, 128.63, 127.94, 127.71, 127.20, 127.00, 123.76, 120.79, 107.96, 21.71; HRMS calcd for C₂₂H₁₇NO (M⁺) 311.1310, found 311.1215.

(*Z*)-3-Benzylidene-5-chloro-2-phenylisoindolin-1one (5r) Pale green solid, m.p. 177-178 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (d, *J*=8.1 Hz, 1H), 7.82 (s, 1H), 7.51 (dd, *J*=8.1, 1.2 Hz, 1H), 7.14-7.04 (m, 5H), 7.00 (t, *J*=7.2 Hz, 1H), 6.93 (t, *J*=7.5 Hz, 2H), 6.85 (d, *J*=7.5 Hz, 2H), 6.80 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 165.42, 138.59, 137.35, 134.03, 131.66, 131.52, 128.04, 127.57, 126.71, 125.74, 125.55, 125.36, 124.55, 123.59, 118.26, 107.30; HRMS calcd for C₂₁H₁₄CINO (M⁺) 331.1764, found 331.1665.

(*Z*)-5-Benzylidene-6-phenyl-5,6-dihydropyrrolo[3, 4-*b*]pyridin-7-one (5s) White solid, m.p. 130–132 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.86 (d, *J*=4.7 Hz, 1H), 8.22 (d, *J*=7.7 Hz, 1H), 7.46 (dd, *J*=8.4, 5.7 Hz, 2H), 7.13 (s, 5H), 6.94 (dt, *J*=17.5, 7.2 Hz, 5H); ¹³C NMR (75 MHz, CDCl₃) δ : 165.93, 156.99, 153.95, 135.55, 133.41, 133.24, 132.23, 129.61, 128.61, 127.51, 127.33, 124.16, 121.68, 110.41; HRMS calcd for C₂₀H₁₄N₂O (M⁺) 298.1106, found 298.1013.

Acknowledgement

This work was supported by the Team Innovation Project of Suzhou University.

References

 (a) Blaskó, G.; Gula, D. J.; Shamma, M. J. Nat. Prod. 1982, 45, 105; (b) Laboratori Baldacci S. p. A. JP 59046268, 1984 [Chem. Abstr. 1984, 101, 54922]; (c) Kato, Y.; Ebiike, H.; Achiwa, K.; Ashizawa, N.; Kurihara, T.; Kobayashi, F. Chem. Pharm. Bull. 1990, 38, 2060; (d) Kato, Y.; Takemoto, M.; Achiwa, K. Chem. Pharm. Bull. 1999, 47, 529; (e) Chia, Y. C.; Chang, F. R.; Teng, C. M.; Wu, Y. C. J. Nat. Prod. 2000, 63, 1160; (f) Botero Cid, H. M.; Tränkle, C.; Baumann, K.; Pick, R.; Mies-Klomfass, E.; Kostenis, E.; Mohr, K.; Holzgrabe, U. J. Med. Chem. 2000, 43, 2155; (g) Couture, A.; Deniau, E.; Grandclaudon, P.; Rybalko-Rosen, H.; Léonce, S.; Pfeiffer, B.; Renard, P. Bioorg. Med. *Chem. Lett.* **2002**, *12*, 3557; (h) Hulin, B.; Parker, J. C.; Piotrowski, D. W. *US 2005234065*, **2005**; (i) Toyooka, K.; Kanamitsu, N.; Yoshimura, M.; Kuriyama, H.; Tamura, T. *WO 2004048332*, **2004**.

- [2] (a) Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275; (b) Omura, S.; Iwai, Y.; Hirano, A. JP 53073501, 1978 [Chem. Abstr. 1978, 89, 178086b]; (c) Tamaoki, T.; Nomoto, H.; Takahashi, I.; Kato, Y.; Morimoto, M.; Tomita, F. Biochem. Biophys. Res. Commun. 1986, 135, 397; (d) Oka, S.; Kodama, M.; Takeda, H.; Tomizuka, N.; Suzuki, H. Agric. Biol. Chem. 1986, 50, 2723.
- [3] Flitsch, W.; Peters, H. Tetrahedron Lett. 1969, 10, 1161.
- [4] (a) Pigeon, P.; Decroix, B. *Tetrahedron Lett.* 1996, *37*, 7707; (b) Griesbeck, A. G.; Warzecha, K. D.; Neudörfl, J. M.; Görner, H. *Synlett* 2004, *13*, 2347; (c) Bousquet, T.; Fleury, J. F.; Daïch, A.; Netchitaïlo, P. *Tetrahedron* 2006, *62*, 706.
- [5] (a) Heidenbluth, V. K.; Tonjes, H.; Scheffier, R. J. Prakt. Chem. 1965, 30, 204; (b) Ang, W. S.; Halton, B. B. Aust. J. Chem. 1971, 24, 851.
- [6] (a) Watanabe, H.; Mao, C.-L.; Barnish, I. T.; Hauser, C. R. J. Org. Chem.
 1969, 34, 919; (b) Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 1188; (c) Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron 1997, 53, 10313; (d) Couture, A.; Deniau, E.; Ionescu, D.; Grandclaudon, P. Tetrahedron Lett. 1998, 39, 2319.
- [7] Rowe, F. M.; McFadyen, W. T.; Peters, A. T. J. Chem. Soc. 1947, 468.
- [8] (a) Pojer, P. M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1968, 21, 1375;
 (b) Camilleri, P.; Cassola, A. J. Chem. Soc., Chem. Commun. 1978, 807;
 (c) Rowe, R. K.; Shelton, B. R. J. Org. Chem. 1990, 55, 4603; (d) Takeuchi, H.; Eguchi, S. J. Chem. Soc., Perkin Trans. 1989, 2149.
- [9] (a) Taylor, E. C.; Zhou, P.; Jenning, L. D.; Mao, Z.; Hu, B.; Jun, J. G. *Tetrahedron Lett.* **1997**, *38*, 521; (b) Gutierrez, A. J.; Shea, K. J.; Svoboda, J. J. J. Org. Chem. **1989**, *54*, 4335.
- [10] Guillaumel, J.; Boccara, N.; Demersemann, P.; Royer, R. J. Chem. Soc., Chem. Commun. 1988, 1604.
- [11] (a) Freccero, M.; Fasani, E.; Albini, A. J. Org. Chem. 1993, 58, 1740; (b)
 Weidner-Wells, M. A.; Oda, K.; Mazzocchi, P. H. Tetrahedron 1997, 53, 3475.
- [12] (a) Brewster, J. H.; Fusco, A. M.; Carosino, L. E.; Corman, B. G. J. Org. Chem. 1963, 28, 498; (b) Milewska, M. J.; Bytner, T.; Polonski, T. Synthesis 1996, 1485.
- [13] (a) Yamamoto, I.; Tabo, Y.; Gotoh, H. *Tetrahedron Lett.* **1971**, 2295; (b) Dominh, T.; Johnson, A. L.; Jones, J. E.; Senise, P. P. Jr. *J. Org. Chem.* **1977**, *42*, 4217; (c) Grigg, R.; Gunaratne, H. Q. N.; Sridharan, V. *J. Chem. Soc., Chem. Commun.* **1985**, 1183; (d) Takahashi, I.; Kawakami, T.; Hirano, E.; Yokota, H.; Kitajima, H. *Synlett* **1996**, 353; (e) Takahashi, I.; Hatanaka, M. *Heterocycles* **1997**, *45*, 2475.
- [14] Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organometallic Chemistry, 1st ed., Pergamon, Oxford, 1982, p. 1.
- [15] (a) Mori, M.; Chiba, K.; Ban, Y. J. Org. Chem. 1978, 43, 1684; (b) Larock, R. C.; Liu, C.-L.; Lau, H. H.; Varaprath, S. Tetrahedron Lett. 1984, 25, 4459; (c) Burns, B.; Grigg, R.; Santhakumar, V.; Sridharan, V.; Stevenson, P.; Worakun, T. Tetrahedron 1992, 48, 7297; (e) Cho, C. S.; Jiang, L. H.; Shim, S. C. Synth. Commun. 1998, 28, 849; (f) Kundu, N. G.; Khan, M. W. Tetrahedron 2000, 56, 4777; (g) Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H. Tetrahedron 1994, 50, 11803.
- [16] Hellal, M.; Cuny, G. D. Tetrahedron Lett. 2011, 52, 5508.
- [17] Khan, M. W.; Kundu, N. G. Synlett 1997, 1435.
- [18] Sarkar, S.; Dutta, S.; Dey, R.; Naskar, S. Tetrahedron Lett. 2012, 53, 6789.
- [19] Bubar, A.; Estey, P.; Lawson, M.; Eisler, S. J. Org. Chem. 2012, 77, 1572.
- [20] Li, L.; Wang, M.; Zhang, X.; Jiang, Y.; Ma, D.-W. Org. Lett. 2009, 11, 1309.
- [21] Che, C.; Yu, W. J. Am. Chem. Soc. 2000, 122, 11380.
- [22] Xu, Y. P.; Hu, R. H.; Cai, M. Z. Chin. Chem. Lett. 2008, 19, 783.
- [23] Hannout, I. B.; Hassan, E. A.; Islam, A. M.; Ismail, I. M. U. A. R. J. Chem. 1970, 13, 199.
- [24] Bedair, A. H.; Lamphon, R. Q.; Ghazal, S. A. El. J. Prakt. Chem. 1987, 329, 675.

(Pan, B.; Fan, Y.)