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Abstract Alkyl β-D-maltosides are an important class of
sugar-based nonionic surfactants and have been widely
studied. Nevertheless, it is still necessary to investigate fur-
ther their amphiphilic structure-surface property relation-
ships. In this article, we reported a series of properties of
synthetic alkyl β-D-maltosides (6a–6i, n = 6–18) including
their hydrophilic–lipophilic balance (HLB) number, water
solubility, hygroscopicity, moisture-retention capacity,
foaming ability, surface tension, thermotropic phase behav-
ior, and skin irritation. Their HLB number and water solu-
bility decreased with increasing alkyl chain length. Hexyl
β-D-maltoside exhibited the strongest hygroscopicity and
moisture-retention capacity. Decyl β-D-maltoside and
dodecyl β-D-maltoside possessed excellent foaming power
and foaming stability. Furthermore, the critical micelle con-
centration (CMC) of alkyl β-D-maltoside (6a–6g,
n = 6–14) and their surface tension at CMC decreased with
increasing alkyl chain length. At last, alkyl β-D-maltosides
(6a–6g) should be considered as safe surfactants by the
skin irritation assessment.
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Introduction

Alkyl polyglycosides (APG) are a class of nonionic surfac-
tants, they are derived from sugars and fatty alcohols (Abel
et al., 2011; Aripin et al., 2012; Zhao et al., 2017). Apart from
an excellent performance in terms of surface tension,
foamability, and detergency, APG are environmentally
friendly, biodegradable, and low-toxic surfactants. Thereby,
they can be used for various applications such as drug carriers,
intranasal adjuvants, silk degumming agents, and in oil recov-
ery and sludge anaerobic fermentation (Ahmad et al., 2014;
Faramarzi et al., 2017; Karam et al., 2017; Wang and Zhang,
2017; Wu et al., 2017; Xiao et al., 2017; Zhou et al., 2017).
Alkyl D-maltosides could be prepared using a

glycochemistry method from the renewable raw materials, D-
maltose and aliphatic alcohols. They could be categorized as
ecologically safe sugar-based surfactants (Ahmad et al.,
2014; Aripin et al., 2012; Karam et al., 2017; Zhao et al.,
2017). From a chemical point of view, alkyl D-maltosides are
stable under neutral and alkaline conditions because they are
comprised of bulkier and rigid sugar headgroups and flexible
alkyl chain tail groups connected via an ether linkage rather
than an ester linkage or an amide linkage (Faramarzi et al.,
2017). Therefore, they have a wide range of applications and
development in food, cosmetic, pharmaceutical industries,
and scientific research (de Foresta et al., 2011; Jastrzebska
et al., 2006; Ni et al., 2011; Pillion et al., 2002; Raman
et al., 2006; Rifkin et al., 2011; Santonicola et al., 2008;
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Weber and Benning, 1984; Zhang et al., 1996). They have
been used in drug delivery (Ahmad et al., 2014), thermal sta-
bilization (Ahmad et al., 2014), hydrolytic metabolism
(Weber and Benning, 1984), salt tolerance (Zhang et al.,
1996), formation of higher-ordered structure (Jastrzebska
et al., 2006), co-immunoprecipitation (Lee et al., 2018), and
structure analysis (Ni et al., 2011), as well as therapeutic adju-
vants (Rifkin et al., 2011), permeation enhancers (Pillion
et al., 2002), absorption enhancers (Gradauer et al., 2017),
and membrane protein stabilizers against denaturation (Das
et al., 2017; de Foresta et al., 2011; Jastrzebska et al., 2006;
Klammt et al., 2012; Newby et al., 2009; Raman et al., 2006;
Santonicola et al., 2008; Whorton andMacKinnon, 2013).
However, there are not enough data and messages avail-

able to support effectively the application in the field of life
and material sciences although there are some available
features/parameters including critical micelle concentration
(CMC) (Frotscher et al., 2017; Matsuoka et al., 2017;
Santonicola et al., 2008), sugar headgroup structure (Ehsan
et al., 2016), field-induced phase transition (Hashim et al.,
2017), paracellular permeation (Gradauer et al., 2017), and
cell metabolism (Smułek et al., 2017). The corresponding
fairly accurate and feasible screening should rely heavily
on the empirical evidence, exhaustive trial-and-error pro-
cess and rational thinking, and even intuitive approach.
Therefore, it is still indispensable to investigate systemati-
cally the water solubility of glycosides, surface activity,
and other properties to acquire the related data that are con-
venient for scientific research and practical applications.
Based on their bigger hydrophilic disaccharide headgroups,

alkyl D-maltosides should have higher water solubility than
that of alkyl D-glucosides with the same alkyl chain length.
Alkyl D-maltosides with a longer alkyl chain length would
improve the surface properties (for example micelle size) to a
certain extent as a class of sugar-based surfactants/detergents
available for the related research and applications (Smułek
et al., 2017). For the α-anomer and β-anomer micelles with
dodecyl group tails, the computed radii of gyration were 20.2
and 25.4 Å, respectively. Meanwhile, their computed (experi-
mental) average thickness of the polar outer layer was
6.7 � 0.3 Å (5.4 � 0.1 Å) and 7.3 � 0.4 Å (6.2 � 0.1 Å),
respectively. These values were 39.1% (50.9%) and 33.6%
(43.6%) smaller than the calculated length of the maltose in
its extended configuration (�11.0 Å) owing to the partial
folding of the maltose head. In contrast, their computed
(experimental) surface areas were 60.3–61.1 Å2 (58 Å2) and
55.5–65.1 Å2 (52 Å2), respectively. Furthermore, the micelles
containing the β-anomer had a more pronounced ellipsoidal
shape than those containing the α anomer. In addition, the
β-anomer was a linear conformation not only in its micellar
form but also in its solvent form. It should be more suitable
for the membrane protein studies than the α-anomer because
the α-anomer was in a right-angle bent shape formed between

the maltosyl headgroup and the alkyl tail group. The
α-anomer appears to be more folded and constrained on the
micelle surface, and hence it shows less solubility than the
β-anomer (Abel et al., 2011).
There is some literature on alkyl D-maltosides (Ericsson

et al., 2005; Kocherbitov and Söderman, 2004; Koeltzow
and Urefer, 1984; Vill et al., 1989; von Minden et al.,
2000). They can be prepared with SnCl4 or BF3�Et2O as
Lewis acid catalysts of the condensation reaction, but the
condensation time is rather difficult to control to some
extent and the yield was low for the condensation step as
concurrent decomposition and serious α-anomerization take
place (Aripin et al., 2012). Alkyl β-D-maltoside (Pillon
et al., 2002), deuterated dodecyl β-D-maltoside (d39-DDM)
(Hiruma-Shimizu et al., 2014), and dodecyl β-D-
melibioside (Hutchison et al., 2017) were stereoselectively
prepared by the Koenigs and Knorr procedure with silver car-
bonate or silver triflate (AgOTf) as an expensive promoter in
the coupling reaction. However, the Koenigs and Knorr pro-
cedure usually is uneconomic and/or may easily cause the
accumulation of toxic heavy metal and the related environ-
mental pollution in spite of its fairly high efficiency. Because
the first article on the Schmidt’s glycosylation method was
published in 1980, the glycosyl trichloroacetimidates have
been the most widely used glycosyl donors (Gao et al., 2016;
Kinnaert et al., 2017). Their high popularity would be most
likely due to two points: First, the relative ease of the donor
preparation with the addition of base-catalyzed
trichloroacetonitrile to the anomeric hydroxy group; and sec-
ond, the high anomeric selectivity of subsequent coupling
reactions via an eight-membered cyclic transition state (Chen
and Kong, 2003; Kumar et al., 2011).
Herein, to gain more detailed insights into the structure–

property relationships, we investigate the related surface
properties involving solubility, foaming property, surface
tension, hygroscopicity, moisture retention capacity, ther-
motropic liquid crystalline behavior, and skin irritation of
synthetic alkyl β-D-maltosides (6a–6i, n = 6–18) (Fig. 1)
with the homologous series.

Experimental Section

General Methods and Synthesis

1H NMR spectra were recorded using an Avance 400 spec-
trometer (Bruker Daltonics Inc., Fällanden, Switzerland).
Optical activities were obtained using a Perkin-Elmer
model 341-MC automatic polarimeter (Perkin-Elmer, Inc.,
Waltham, MA). Melting points were measured using an X-
4 digital melting point apparatus (Yuhua instruments Co.,
Ltd, Henan, China). Surface tension was determined using
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a DCAT11 Tensiometer (Dataphysics Instruments Ltd, Fil-
derstadt, Germany). Thermotropic liquid crystalline behav-
ior was investigated using a DM-LM-P polarization
microscope (Leica, Wetzlar, Germany) with a Leitz 350 hot
stage. Thermal stability was determined using a TGA Q50
thermogravimetric analyzer (TA Instruments, NewCastle,
DE, USA). All raw materials and solvents were of chemical
grade or analytical grade.
The detailed synthetic process (Fig. 1) and the related

characterization of alkyl β-D-maltosides (6a–6i, n = 6–18)
were compiled in Appendix S1 (Supporting Information)
according to the published glycosidation procedure (Chen
et al., 2016a, 2016b; Chen and Kong, 2003).

Thermal Stability

Thermogravimetric analysis (TGA) curve was recorded for
alkyl β-D-maltoside (6a–6i) under a nitrogen atmosphere at
a heating rate of 20 �C min−1.

Thermotropic Phase Behavior

Thermotropic liquid crystalline behavior was studied using
polarization microscopy (POM) according to the literature
(Chen et al., 2016a).

Hydrophilic–Lipophilic Balance (HLB) Number

The HLB number was calculated using the following
methods.
Method 1: According to Griffin’s method (Ji et al.,

2017), the HLB number of β-D-maltoside (6a–6i) was cal-
culated by Eq. (1):

HLB= 20
W

W +O
ð1Þ

where W is the molecular mass (341.29) of the hydrophilic
sugar headgroup for β-D-maltoside (6a–6i); O is the molec-
ular mass of the lipophilic alkyl group.
Method 2: According to Davies’ group contribution

method (Berger et al., 2005; Zhou et al., 2001), the HLB
number was calculated by Eq. (2):

HLB= 7 +Σ Hð Þ−Σ Lð Þ ð2Þ
where H is the group contributions for the hydrophilic por-
tions in the molecule, L is the contribution from the lipo-
philic portions in β-D-maltoside (6a–6i).
Method 3: According to the empirical relationship

HLB = 60H/(H + 2) from 1H NMR technology (Ben-et
and Tartarsky, 1972; Zheng et al., 2007; Zhou and Cui,
2001), H is the ratio of the hydrogen atom numbers (includ-
ing OH, CH, and CH2 in the sugar ring, and OCH2 in the
alkoxy chain) to total hydrogen atom numbers. Therefore,
the HLB number of β-D-maltoside (6a–6i) was obtained
by Eq. (3):

HLB=
1380
4n + 67

ð3Þ

where n is the number of carbon atoms in the alkyl chain of
β-D-maltoside (6a–6i).
Method 4: The HLB number was calculated by Eq. (4)

based on the small revision of Eq. (3):

HLB=
1380

3:4n + 65:5
+ 4:9× 10−2 n−6ð Þ−3:5× 10−4 n−18ð Þ2

ð4Þ
where n is the carbon atom numbers of the alkyl chain in
β-D-maltoside (6a–6i).
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Fig. 1 Synthetic route for alkyl β-D-maltosides
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Method 5: Because H = 23/(2n + 22), the HLB number
was calculated as shown in Eq. (5) below:

HLB=
49:110H
H + 1:391

−
0:046

H2 +
0:797
H

−1:127 ð5Þ

where H was the same as H in Eq. (3).

Solubility

According to the literature method (Chen et al., 2016a; Ji
et al., 2017), the solubility of alkyl β-D-maltoside (6a–6i)
was determined at 25 �C in water, ethanol, and ethyl ace-
tate, respectively.

Hygroscopicity and Moisture-Retention

According to the literature method (Chen et al.,
2017; Shen et al., 2018), the hygroscopicity capacity
and the moisture-retention capacity were determined
using the weight method in relative humidity
(RH) 81% or RH 43% at 25 �C. The results of
moisture-retention capacity were compared with the
capacity of glycerol.

Foaming Properties

Foaming properties were investigated using the published
method (Li et al., 2016; Poole, 1989; Zhou et al., 2017).
0.25% (mass fraction) β-D-maltoside (6a–6g) aqueous
solutions were prepared at 25 �C and then the aqueous
solutions (10 mL) were transferred into the graduated cyl-
inder (100 mL) with a plug. The solutions were followed
by vigorous shaking for 1 min and the volume of the pro-
duced foam was recorded. The disappearance rate (ν) of the
foams was calculated according to Eq. (6) and their stabil-
ity was assessed:

ν=
H0−H5ð Þ
60× 5

mLs−1
� � ð6Þ

where H0 was the initial volume of the foam that was pro-
duced at the end of shaking, H5 was the volume of the foam
retained at 5 min after shaking.

Surface Tension

The surface tension (γ) of alkyl β-D-maltoside (6a–6g)
aqueous solution was assessed using the literature method
with the Wilhelmy vertical plate technique at constant tem-
perature (25 �C). The related details are shown in Appendix
S1 (Chen et al., 2016a; Shen et al., 2018; Zhang
et al., 1996).

Results and Discussion

Structure Confirmation

1H NMR data of synthetic alkyl β-D-maltosides (6a–6i)
are shown in Appendix S1. As shown in Table 1, the
chemical shifts (the coupling constant) of anomeric pro-
tons of alkyl β-D-maltosides (6a–6g) are 5.33–5.42 ppm
(J1,2 ≤ 3.6 Hz) for H-10 and 4.35–4.48 ppm (J1,2
4.1–8.0 Hz) in D2O for H-1. Meanwhile, the chemical
shifts (the coupling constant) of β-D-maltoside (6h) are
5.03 ppm (J1,2 = 3.4 Hz) for H-10 and 4.16 ppm
(J1,2 = 7.7 Hz) for H-1 in dimethyl sulfoxide-d6/
deuterium oxide (DMSO-d6/D2O). Furthermore, the
chemical shifts (the coupling constant) of β-D-maltoside
(6i) are 5.00 ppm (J1,2 = 3.0 Hz) for H-10 and 4.14 ppm
(J1,2 = 7.7 Hz) for H-1 in DMSO-d6. All data indicate
that the newly formed glycosyl bond (6a–6i) is in a
1,2-trans β-configuration because the configuration is the
1,2-trans β-anomer as 4 Hz < J1,2 ≤ 8 Hz and the config-
uration is the 1,2-cis α-anomer as J1,2 < 4 Hz (Aripin
et al., 2012; Boyd et al., 2000; Chen and Kong, 2003;
Hiruma-Shimizu et al., 2014).

Thermal Stability

TGA is an important and useful method in investigating
the pyrolysis behavior and assessing thermal stability.
The thermal stability of alkyl β-D-maltoside was
achieved by TGA at a rate of 20 �C min−1 under a
nitrogen atmosphere as described in the Appendix S1
(Fig. S3). Alkyl β-D-maltosides (6a–6i) were found to
show typically a first-order pyrolysis behavior. The
related data are shown in Table 2. All β-D-maltosides
decomposed above 220 �C, indicating that they had
excellent thermal stability mainly owing to the intramo-
lecular and multiple intermolecular H-bonding interac-
tions of their headgroup.

Table 1 1H NMR data of anomeric protons of alkyl β-D-maltosides

D-maltoside solvent H-1 δ (d/s, J1,2) H-10 δ (d/s, J1,2)

6a D2O 4.48 (d, 8.0 Hz) 5.42 (d, 3.6 Hz)

6b D2O 4.45 (d, 7.9 Hz) 5.40 (d, 3.0 Hz)

6c D2O 4.45 (d, 7.9 Hz) 5.39 (d, 2.8 Hz)

6d D2O 4.40 (d, 7.6 Hz) 5.36 (d, 2.8 Hz)

6e D2O 4.39 (d, 7.1 Hz) 5.36 (s)

6f D2O 4.37 (d, 6.4 Hz) 5.35 (s)

6g D2O 4.35 (d, 4.1 Hz) 5.33 (d, 1.0 Hz)

6h DMSO-d6/D2O 4.16 (d, 7.7 Hz) 5.03 (d, 3.4 Hz)

6i DMSO-d6 4.14 (d, 7.7 Hz) 5.00 (d, 3.0 Hz)
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Thermotropic Phase Behavior

For the glycosides that are composed of one aliphatic chain
and one sugar group, lamellar smectic A or A* (chiral
smectic A, SA*) phases (Boyd et al., 2000; Calderer, 2001;
Goodby et al., 2007; Yelamaggad et al., 2005), depending
on their stereochemistry, should lead to a microphase segre-
gation between the carbohydrate moieties and the aliphatic
chains. The SA* phase exhibits characteristic defect tex-
tures that were observed using a polarizing microscope
(Goodby et al., 2007). Accordingly, alkyl β-D-maltosides
(6c–6i) show only SA* phases in their pure state. However,
hexyl β-D-maltoside (6a) and heptyl β-D-maltoside (6b)
did not show distinctive A* phases because both glycosides
perhaps had shorter alkyl chains so as to do not effectively
form distinctive SA* phases. The thermotropic phase
behavior of β-D-maltosides (6c–6i) was characterized by
polarizing microscopy and the data are shown in the
Appendix S1 (Fig. S2).
The double melting transition temperatures of alkyl D-

maltosides (6a–6i) are summarized in Table 3. D-
maltosides (6c–6i) possessed sharp melting temperatures
(Tlc, transition temperature from the crystallized solid into
a liquid crystal) and sharp clearing temperatures (Tiso,
transition temperature from a liquid crystal into an isotro-
pic liquid). The mesophase temperature ranges (ΔT = Tiso
– Tlc) of alkyl D-maltosides (6c–6g) increased with
increasing the alkyl chain length. For hexadecyl D-
maltoside (6h) and octadecyl D-maltoside (6i), their
mesophase temperature ranges were near each other
because they had almost the same Tlc and Tiso values and
reached a plateau where there would be an optimal bal-
ance between the hydrophilic part and hydrophobic part
of the liquid crystal.
Such an optical observation of the so-called double melt-

ing points in amphiphilic sugar-based surfactants was also

reported in the literature (Boyd et al., 2000; Ericsson et al.,
2005). Many researchers (Boyd et al., 2000; Ericsson et al.,
2005; Kocherbitov and Söderman, 2004; Koeltzow and
Urefer, 1984; Vill et al., 1989; von Minden et al., 2000;
Wang and Zhang, 2017) found similar data on D-
maltosides (Table 3). However, Bonicelli et al. (1998)
observed that decyl D-maltoside (6e) had a pretransition at
78.6 �C and a solid–liquid crystal phase transition at 96.5
�C. Finally, the mesophase behavior of maltosides is yet not
fully understood in spite of a large amount of experimental
data. Instead, there is no doubt that other techniques such
as differential scanning calorimeter, X-ray diffraction,
TGA, small-angle X-ray scattering, wide-angle X-ray scat-
tering, deuterium NMR, fourier transform infrared spectros-
copy, and small-angle neutron scattering should be used to
elucidate their complex mesophase information in the
future.

HLB Number, Partition Coefficient, and Solubility

The HLB number, as an empirical parameter that was intro-
duced by William C. Griffin in 1949, was originally devel-
oped as a scale to classify the relative effectiveness of
nonionic surfactants at forming stable emulsions at room
temperature. To date, it is one of the most significant prop-
erties of a surfactant.

Table 2 TGA data of alkyl β-D-maltosides

D-
maltoside

Initial
decomposition
temperature

(�C)

Temperature at
maximum thermal
decomposition
velocity (�C)

Last
degradation
temperature

(�C)

Total
weight
loss
(%)

6a 232.2 354.7 405.8 88.7

6b 235.0 363.2 403.5 92.4

6c 228.8 359.3 409.2 94.8

6d 241.8 368.3 409.4 87.5

6e 262.8 336.0 422.1 93.5

6f 244.0 329.6 403.1 89.1

6g 258.3 340.9 409.8 90.3

6h 263.5 357.5 413.0 92.7

6i 250.2 347.1 409.0 90.1

Table 3 Phase transition temperatures of alkyl β-D-maltosides

maltoside R Tlc/
oC Tiso/

oC ΔT/oC

6a n-C6H13 — — —

6b n-C7H15 — — —

6c n-C8H17 86.2
(54a; 89–103b)

118.0
(122.7a; 125b)

31.8

6d n-C9H19 83.2 124.7 41.5

6e n-C10H21 86.4
(58a; 96–100b; 86c)

126.5
(205.9a;
207–208b;
156–159c)

50.1

6f n-C12H25 94.5
(95–105b;

76–76.5c; 102d;
65e; 102f)

241.0
(245b; 125–127c;

244d; 244e;
245f)

146.5

6g n-C14H29 97.4
(107f)

248.3
(264f)

150.9

6h n-C16H33 98.9 259.0 160.1

6i n-C18H37 100.2
(76–91c; 106f)

260.6
(188–210c; 274f)

160.4

a Kocherbitov and Söderman, 2004.
b Boyd et al., 2000.
c Koeltzow and Urefer, 1984.
d Vill et al., 1989.
e Ericsson et al., 2005.
f von Minden et al., 2000.
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There are several methods including obtaining the
HLB number (Ben-et and Tartarsky, 1972; Berger et al.,
2005; Ji et al., 2017; Zheng et al., 2007; Zhou et al.,
2001; Zhou and Cui, 2001). Table 4 and Fig. 2 show the
HLB numbers from Eq. (1), Eq. (2), and Eq. (3), respec-
tively. HLB numbers decrease with increasing alkyl chain
length in the range of C6–C18. However, the HLB num-
ber (by Eq. (3)) was smaller than the HLB numbers
(by Eq. (1) and by Eq. (2)) for the same alkyl chain
length.
In Table 4 and Fig. 2, the HLB numbers in Eq. (3) are very

far away from the values calculated from Eq. (1). When
Eq. (4) is applied, diiferences are reduced (Table 4). Note that
HLB numbers in both Eq. (3) and Eq. (4) are a function of
alkyl chain length (n) in β-D-maltoside (6a–6i)).
Next, we expected to obtain further information directly

from the related 1H NMR spectra and/or the molecular
structures. For β-D-maltoside (6a–6i), we found relation-
ships between the chemical shift (δ) and the alkyl chain
length (n) as follows: (i) δ < 2.50 ppm for the (CH2)n-
2CH3) part of OCH2(CH2)n-2CH3; (ii) δ > 2.50 ppm for
both OH, CH, and CH2 in the sugar ring and the OCH2 part
of OCH2(CH2)n-2CH3 in the alkoxy group. In the 1H NMR
spectrum, the related integrated values of the hydrogen
atom were counted as 23 for δ > 2.50 ppm in β-D-
maltoside (6a–6i). Therefore, H = 23/(2n + 22) where H is
the ratio of particular hydrogen atom numbers (including
OH, CH, and CH2 in the sugar ring, and OCH2 in the alk-
oxy chain) to the total hydrogen atom numbers in β-D-
maltoside (6a–6i). Finally, Eq. (5) was readily obtained
from H = 23/(2n + 22) and Eq. (4) because the H values
can be actually obtained from the related the 1H NMR
spectra and/or the molecular structures.
Herein, DMSO-d6 was used as the 1H NMR deuterated

solvent because of the chemical shifts (δ, ppm) (5.49 (1H),
5.45 (1H), 5.06 (1H), 4.90 (2H), 4.51 (1H), and 4.46 (1H))
of all OH in octadecyl β-D-maltoside (6i). As an example,
it can be just discovered near the chemical shifts (δ, ppm)
(4.14 (H-1) and 5.00(H-10) of both anomeric hydrogens of

the sugar headgroup at a high chemical shift (δ ≥ 4.0 ppm)
(Ben-et and Tartarsky, 1972). For any mixture of alkyl D-
maltoside (n = 6–18) with different alkyl chain lengths and
ratios, the corresponding HLB number should be readily
achieved with DMSO-d6 as a deuterated solvent in 1H
NMR experiment.
In fact, some hydrogen atoms (including CH and CH2 in

the sugar ring, and the OCH2 part of OCH2(CH2)n-2CH3 in
the alkoxy group) were just in the range of δ = 2.9–5.5 ppm
in spite of a lower chemical shift (δ < 2.5 ppm) for (CH2)n-
2CH3) of OCH2(CH2)n-2CH3 in various deuterated solvents
such as D2O, DMSO-d6, and DMSO-d6/D2O (Zheng et al.,
2007). Therefore, Eq. (5) indeed provided effective access to
obtain the HLB number from the molecular structure and/or
the data of the related 1H NMR spectrum.
Figure 3 shows the solubility of alkyl β-D-maltosides

(6a–6i) at 25 �C in water, ethanol, and ethyl acetate, respec-
tively. The maltosyl headgroup of alkyl β-D-maltoside not
only has strong intermolecular hydrogen bonds (inter-HB) in
water, which increases water solubility, but also has strong
and rather stable intramolecular hydrogen bonds (intra-HB)

Table 4 HLB number and water solubility (g per 100 g) of alkyl D-maltoside

D-maltoside 6a, C6 6b, C7 6c, C8 6d, C9 6e, C10 6f, C12 6g, C14 6h, C16 6i, C18

HLB number (by Eq. (1)) 16.01 15.50 15.02 14.57 14.14 13.37 12.67 12.04 11.48

HLB number (by Eq. (2)) 16.95 16.48 16.00 15.53 15.05 14.10 13.15 12.20 11.25

HLB number (by Eq. (3)) 15.16 14.53 13.94 13.40 12.90 12.00 11.22 10.53 9.93

HLB number (by Eq. (4)) 16.01 15.46 14.95 14.48 14.04 13.26 12.59 12.00 11.48

HLB number (by Eq. (5)) 16.02 15.46 14.95 14.48 14.05 13.27 12.59 12.00 11.48

Difference (Eq(1)-Eq(3)) 0.85 0.97 1.08 1.17 1.24 1.37 1.45 1.51 1.55

Difference (Eq(1)-Eq(4)) 0 0.04 0.07 0.09 0.10 0.11 0.08 0.04 0

Difference (Eq(1)-Eq(5)) −0.01 0.04 0.07 0.09 0.09 0.10 0.08 0.04 0

logP −1.68 −1.24 −0.85 −0.43 −0.01 0.82 1.66 2.49 3.33

Water solubility 69.31 55.06 38.36 33.17 15.23 7.04 0.78 0.0012 0

Fig. 2 HLB numbers of alkyl β-D-maltosides
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that may somewhat weaken the inter-HB. The alkyl chain
tail group is a hydrophobic group and, therefore, has an
opposite effect on water solubility. As shown in Fig. 3 and
Table 4, water solubility decreased rapidly with increasing
alkyl chain length. Finally, two of the β-D-maltosides, (6h
(n = 16) and 6i (n = 18)), were water insoluble.
In contrast, the solubility in ethanol, at first, increased

with increasing alkyl chain length for n ≤ 10, then reached
the maximum value for n = 10 and subsequently decreased
with increasing alkyl chain length for n > 10. Nonetheless,
all β-D-maltoside (6a–6i) did not dissolve in ethyl acetate
for n = 6–18.
The octanol–water partition coefficient value (logP) of

alkyl β-D-maltoside (6a–6i) was calculated by
ChemBiodraw (Ultra 14.0), as shown in Table 4.
HLB numbers and the logP values of alkyl β-D-

maltosides (6a–6g) were within the range of 12.67–16.01
(Eq. (1)) and − 1.68–1.66, respectively (Table 4), which
illustrate that they have stronger hydrophilicity and could
be used to stabilize O/W emulsions. However, the HLB
numbers and the logP values of alkyl β-D-maltosides (6h
and 6i) were in the range of 11.48–12.04 (Eq. (1)) and
2.49–3.33, respectively. Such glycosides are considered to
have weaker hydrophilicity although they should perhaps
have the ability to stabilize O/W emulsions to some extent
because their HLB number was bigger than 10.
The literature (Berger et al., 2005) indicates that

surfactants with HLB numbers between 10 and 20 are
water-soluble and generally form stable, oil-in-water (O/W)
emulsions, whereas surfactants with HLB numbers below
10 are oil-soluble and generally form water-in-oil (W/O)
emulsion. Thus, the nonionic amphiphilic surfactants, β-D-
maltosides (6a–6i), probably are, therefore, suitable as
O/W emulsifiers because their HLB numbers are in the
range of 10–17.

In this sense, the HLB numbers from Eq. (4) and Eq. (5)
should also be reasonable. Table 4 shows that the
maltosides (6a–6g) are water-soluble and their HLB num-
bers are bigger than 12.50, whereas the maltosides (6h and
6i) have poor water solubility and their HLB numbers are
within the range of 11.5–12. In fact, hexadecyl β-D-
maltoside (6h, n = 16) is almost water insoluble (only
0.0012 g per 100 g (water), a value that is smaller than the
common threshold (0.1 g per 100 g (water)). Octadecyl
β-D-maltoside (6i, n = 18) is completely insoluble in water.

Hygroscopicity

The hygroscopicities of alkyl β-D-maltoside (6a–6i) were
determined with different humidity (RH43 and RH81%) at
25 �C. The results are shown in Fig. 4. The experiments show
that the hygroscopicity (Rh) value increases with time, but
decreases with increasing alkyl chain length. The Rh value
reaches a maximum value at 48 h. The Rh value at RH43%
was bigger than that at RH81%. The Rh value of dodecyl β-D-
maltoside (6f) reaches 14.8% (RH81%) and 23.2% (RH43%),
respectively, at 48 h mainly attributed to the intermolecular H-
bonding network of its polyhydroxy group in water.

Moisture-Retention Capacity

β-D-maltosides (6a–6e) and glycerol were selected to
investigate their moisture-retention capacity (Rm), and the
results are shown in Fig. 5. Rm values of glycerol decrease
with the time, and also decreased faster at RH81% than that
at RH43%. The decreasing tendency of Rm values of D-
maltosides (6a–6e) is similar to that of glycerol at RH43%
and at RH81%. The Rm value of D-maltoside (6a–6e)
decreases with increasing alkyl chain length. The Rm values
of D-maltosides (6a–6e) at RH81% are smaller and
decrease faster than at RH43%.

Foaming Properties

The foaming behavior of alkyl β-D-maltoside (6a–6g)
aqueous solutions was evaluated at 25 �C, and the results
are presented in Fig. 6. The initial foam volume (H0)
increases with the alkyl chain length for n ≤ 9. Nonyl β-D-
maltoside (6d, n = 9) shows the strongest foaming power
(H0). However, the H0 value subsequently decreased with
increasing alkyl chain length for n > 9. The volume (H5) of
the foam retained at 5 min after shaking was high, for
n = 9–12, but decreased for n < 9 and n > 12. The disap-
pearance rate (ν) of the foam decreased with increasing
alkyl chain length for 6 ≤ n ≤ 14. The smaller the disap-
pearance rate (ν) of foam, the higher the foam stability. The
disappearance rate (ν) was almost equal to zero for
tetradecyl β-D-maltoside (6g, n = 14), meaning high foamFig. 3 Solubility of maltosides in ethyl acetate, ethanol, and water
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stability. In a practical way, nonyl β-D-maltoside (6d,
n = 9), decyl β-D-maltoside (6e, n = 10), and dodecyl β-D-
maltoside (6f, n = 12) should be considered as good
foaming agents as they showed the highest foaming power
and better stability.

Surface Tension

Figure 7 shows the relationship between the surface tension
(γ) of alkyl β-D-maltoside (6a–6g) and the logarithm of the
concentration (C). The corresponding CMC and γCMC

(surface tension at CMC) obtained from Fig.7 are presented
in Table 5.
CMC and γCMC values decrease with increasing alkyl

chain length. Accordingly, tetradecyl β-D-maltoside (6g)
shows the lowest CMC and γCMC values.

Table 5 also shows the surface excess concentration
(Γmax) and the minimum area (Amin) data. The Γmax value
of alkyl β-D-maltoside (6a–6g) decreases slowly with
increasing alkyl chain length. Amin values increase slightly
with increasing alkyl chain length. Indeed, the longer the
hydrophobic alkyl chain length, the bigger Amin, and the
smaller Γmax.
Furthermore, the values of effectiveness (πCMC) were

obtained with Eq. (S5) in Appendix S1 and are listed in
Table 5. The πCMC value increases with increasing hydro-
phobic chain length. Accordingly, the πCMC value is the
highest (38.16 mN m−1) for tetradecyl β-D-maltoside (6g),
and, therefore, it shows the best ability to decrease surface
tension.
In addition, Table 5 also provides the efficiency (pC20) data

obtained from Eq. (S6) in Appendix S1. The pC20 value of

Fig. 4 Hygroscopicity (Rh) of D-maltosides (a) RH = 43%; (b) RH = 81%

Fig. 5 Moisture-retention capacity (Rm) of D-maltosides and glycerol (a) RH = 43% (left); (b) RH = 81% (right)
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hexyl β-D-maltoside (6a) was only 2.14 mol L−1, suggesting
that its efficiency was the lowest. The pC20 value increased
gradually with increasing alkyl chain length, so that the effi-
ciency of tetradecyl β-D-maltoside (6g) should be the highest.
The standard free energy of micellization (ΔGmic) and

the standard free energy of adsorption (ΔGads) values of D-
maltosides (6a–6g) are negative as shown in Table 5. Their
ΔGmic and the ΔGads values became gradually more nega-
tive with increasing alkyl chain length. Because the alkyl
chains of the D-maltosides are hydrophobic, the entropic
effect is the most important contribution to the overall
Gibbs free energy of aggregation. Because ΔGads values
are more negative than ΔGmic for the same alkyl chain,
adsorption at the air/water interface appears to be more
favorable than the micellization in solution.
Ogawa’s group (Ogawa et al., 2013) investigated the

surface activities of a series of alkyl β-glucopyranosides
(n = 5–10) (Table6). For n = 6–8, the CMC values of
maltosides are smaller than the critical aggregation con-
centration values of glucosides with the same alkyl chain

length; For n = 9 and 10, the CMC values of maltosides
are greater than the CAC values of glucosides with the
same alkyl chain length. All surface tension values at the
CMC (γCMC) of alkyl maltoside are greater than surface
tension values at the CAC (γCAC) value of glucoside with
the same alkyl chain length. The Amin value of maltoside
increases with increasing alkyl chain length, but the
change of the Amin value of alkyl glucoside shows no defi-
nite trend with increasing alkyl chain length.

Acute Skin Irritation

Alkyl β-D-maltosides (6a–6g) were tested for acute skin irri-
tation including erythema, edema at 1, 24, and 48 h on mice.
The corresponding stimulating effects on the local skin
were summarized according to the scoring system (i.e., the
experimental mean score 0–0.4 was classified as the non-
irritation reaction, 0.5–1.9 was light stimulation, 2.0–5.9
was moderate stimulation, and 6.0–8.0 was strong stimula-
tion) (British Standard Institution, 2010; General Adminis-
tration of Quality Supervision, Inspection and Quarantine
of P.R.C., 2000). The experimental results are shown in
Appendix S1 (Table S1). The total scores were as low as
0.1, which is classified as the nonirritation reaction. There-
fore, alkyl β-D-maltosides (6a–6g) produce no skin irrita-
tion, and they should be considered as safe sugar-based
surfactants.

Conclusion

Alkyl β-D-maltosides (6a–6i, n = 6–18) are nonionic
amphiphilic disaccharide-based surfactants. To validate
their potential application, their structure–property relation-
ships were investigated. Their calculated HLB number and
water solubility at 25 �C decrease with increasing alkyl
chain length. Their hygroscopicity and moisture retention
capacity also decrease gradually with increasing alkyl chain
length. Hexyl β-D-maltoside (6a) and heptyl β-D-maltoside
(6b) have good moisture retention capacity. Decyl β-D-
maltoside (6e) and dodecyl β-D-maltoside (6f) have
outstanding foaming power and foaming stability. Alkyl
β-D-maltosides (6a–6g) have excellent surface activity.
The CMC, γCMC, and the Γmax values decrease monoto-
nously with increasing alkyl chain length. Amin, πCMC, and
the pC20 values increase gradually with alkyl chain length.
ΔGmic and ΔGads become more negative with increasing
alkyl chain length. Furthermore, the ΔGads values are more
negative than ΔGmic for the same alkyl chain length. Con-
cerning thermotropic behavior, a distinctive thermotropic
A* phase for β-D-maltoside (6c–6i) was found. The melt-
ing temperature, the clearing temperature, and theFig. 7 Surface tension of aqueous alkyl D-maltoside solution

Fig. 6 Foaming ability of alkyl D-maltosides
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mesophase temperature ranges of D-maltosides (6c–6g)
increase with alkyl chain length.
Overall, this study showed that the alkyl β-D-maltosides

(6a–6i, n = 6–18) obtained are safe, amphiphilic, and sur-
face active. Because their maltosyl headgroup is bigger
than the glucosyl headgroup of alkyl D-glucopyranoside,
their solubilities are higher than that of alkyl D-
glucopyranosides with the same alkyl chain length. The
experimental results are expected to provide the scientific
basis and are useful reference. The obtained products are
expected to have potential applications in a wide variety of
fields, as detergents, fine chemicals, cosmetics, food addi-
tives, and pharmaceutical products, as well as in biochemis-
try research and supramolecular research.
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