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Abstract: This paper describes two efficient strat-
egies to suppress b-H elimination during the palla-
dium/copper bimetallic system-mediated cross-cou-
pling between alkynamides and alkenes. Remote
donor groups with the terminal olefins, such as tol-
uenesulfonamide, phosphate, sulfone, etc., cooper-
ate with the amide of alkynamides and chelate the
palladium active center, to promote CACHTUNGTRENNUNG(sp3)�O bond
formation by suppressing the b-H elimination. An-
other strategy uses the rigid structure of norbor-
nene to make an intermediate without a syn-b-hy-
drogen to achieve reductive elimination of the
C�Cl bond.

Keywords: bimetallic systems; cross-coupling; palla-
dium; reductive elimination; suppression of b-H
elimination

Palladium chemistry occupies a significant place in
transition metal-catalyzed C�C and C�X bond forma-
tion reactions.[1] Traditionally, the carbon-palladium
species could be formed through oxidative addition or
cycloaddition of low valent Pd(0), transmetallation,
C�H activation, decarboxylation and nucleopallada-
tion of carbon-carbon multiple bonds with a Pd(II)
center (Scheme 1). The C�Pd species captured by the
alkenes through migratory insertion could afford the
alkyl-Pd species B, which is the elementary intermedi-
ate in Heck-type reactions.[2–3] Two strategies were
typically employed to quench the alkyl-Pd species B :
(i) b-H elimination to get C=C double bonds like the
Heck process (Scheme 1, path a);[4–9] (ii) reductive
elimination when there was no hydrogen at the b posi-
tion (Scheme 1, path c).[10–16] The reductive elimina-

tion, especially C�heteroatom reductive elimination,
from CACHTUNGTRENNUNG(sp3)�Pd species usually needs strong oxidants
to form Pd(IV) intermediates,[17–19] while the carbon-
carbon multiple bonds are usually sensitive to strong
oxidants. A key challenge which has attracted chem-
ists� interest was how to suppress the fast b-H elimi-
nation and achieve reductive elimination to form
a C�heteroatom bond under mild reaction conditions
(Scheme 1, paths a and c).

Pd/Cu bimetallic catalysis has made great progress
in the Sonogashira process[20–25] and decarboxylative
cross-coupling.[26–30] And as a part of our interest in
Pd/Cu bimetallic system-mediated oxidative alkyne–
alkene cross-couplings,[31–34] we herein report the de-
velopment of two routes to suppress the b-H elimina-
tion from intermediate A (Scheme 2). Under such
a scenario, the complex A usually serves as the key in-
termediate, followed by b-H elimination to form the
C=C bond (Scheme 2, path a).[33–34] Recently, Lautens
and Tong independently reported the Pd-catalyzed in-
tramolecular carbohalogenation of a-substituted ole-
fins through CACHTUNGTRENNUNG(sp3)-halogen bond reductive elimina-
tion.[10–16] Inspired by this seminal work and our bro-
moalkynylation of norbornene,[35] we have achieved
C�Cl bond formation when norbornene was used as
the substrate in this cross-coupling, due to its rigid
structure norbornene is able to prevent the corre-
sponding b-H elimination (Scheme 2, path b).

Besides, the lack of a syn-b-hydrogen could sup-
press the b-H elimination from intermediate A, and
the coordinative saturation of the Pd center repre-
sents another established strategy to suppress b-H
elimination.[3] Some coordinating groups in the termi-
nal olefins, such as NHTs, vinyl, PO ACHTUNGTRENNUNG(OEt)2, SO2Ph,
were used to cooperate with alkynamide to make the
Pd center coordinatively full and so promote the re-
ductive elimination (path c in Scheme 2). Herein, we
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report the Pd-catalyzed Kaneda-type reaction of
alkyn ACHTUNGTRENNUNGamides with norbornene to construct C-7 func-
tionalized norbornylalkenes (path b in Scheme 2) and
lactonization of the alkenes bearing coordinated

groups with alkynamides to construct a-methylene-g-
lactones (path c in Scheme 2).

During the optimization of the reaction conditions,
we focused our attention on the cross-coupling of 3-
phenylpropiolamide 1a and norbornene 2a (Table 1).
After exploring a wide array of conditions, we deter-
mined that CH3CN was the best solvent for this trans-
formation (see the Supporting Information for de-
tails). When 1a and 2a were treated with 5 mol%
PdCl2 and 2 equiv. of CuCl2·2 H2O in CH3CN under
air at 50 8C for 14 h, a satisfying isolated yield of 73%
of 3a could be obtained (Table 1, entry 1). And the
structure of 3a was confirmed by X-ray crystallo-
graphic analysis (Figure 1).[36] The screening of vari-
ous Pd catalysts led to very similar results and PdCl2

was found to be best for this reaction (Table 1, en-
tries 2–4). A higher isolated yield (83%) could be ob-
tained by increasing the amount of CuCl2·2 H2O to
3 equiv. (Table 1, entries 4 and 5). Gratifyingly, a use
of a lower reaction temperature (room temperature)
gave 3a in 88% yield (Table 1, entry 6). However, the
reaction using CuBr2 instead of CuCl2 gave a trans-di-
brominated alkene product exclusively upon addition
of bromide to the alkynyl group of 1a. Therefore, the
best condition consisted of 5 mol% PdCl2, 3 equiv. of

Scheme 1. Three typical strategies to form C�C or C�X bonds.

Scheme 2. Nucleopalladation-initiated oxidative cross-coupling between alkynes and alkenes.

Table 1. Optimization of the reaction conditions.[a]

Entry Catalyst CuCl2·2H2O
(equiv.)

Temp.
[oC]

Yield
[%]

1 PdCl2 2 50 73
2 Pd ACHTUNGTRENNUNG(OAc)2 2 50 63
3
4
5
6

PdCl2ACHTUNGTRENNUNG(MeCN)2

PdCl2

PdCl2

PdCl2

2
3
4
3

50
50
50
r.t.

68
83
78
88

[a] Reaction conditions: 1a (0.5 mmol) and 2a (0.6 mmol),
Pd catalyst (5 mol%), CuCl2·2 H2O (2–4 equiv.) and
0.5 mL of acetonitrile for 12 h. Yields of isolated prod-
ucts are given.
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CuCl2·2 H2O, in CH3CN at room temperature for
12 h.

With the optimized reaction conditions in hand, we
next expanded the substrate scope of the Pd-catalyzed
cross-couplings between alkynamides and norbornene
(Scheme 3). Alkynamides substituted with electron-
donating groups, such as methyl and methoxy, afford-
ed the corresponding products in good yields
(Scheme 3, 3b, 3c, 3e). The 4-CN-substituted alkyn-ACHTUNGTRENNUNGamide could be converted into the corresponding C-7
functionalized norbornylalkene in excellent yield
(Scheme 3, 3f). Bromide on the aromatic ring was
well tolerated, which provides the possibility for fur-

ther functionalization (Scheme 3, 3g). In contrast with
the para- and meta-substituted alkynamides, the
ortho-substituted substrate failed to convert to the
product (Scheme 3, 3d). When oct-2-ynamide was
used in this transformation, the corresponding prod-
uct was obtained in good yield (Scheme 3, 3h).

Encouraged by these promising results, we further
applied these conditions to Pd-catalyzed cross-cou-
pling of N-substituted alkynamides (Scheme 4). A
series of N-benzyl-substituted alkynamides could be
transformed to the corresponding products in good
yields. For example, 3i and 3j were smoothly obtained
in 84% and 66% yields, respectively (Scheme 4). In
addition, halide functional groups, such as F, Cl, Br,
were tolerated in this transformation and the corre-
sponding products were obtained in moderate yields
(Scheme 4, 3k–3m). N-substituted alkynamides with
alkyl groups, such as methyl, propyl and n-butyl, also

Figure 1. X-ray structure of 3a.

Scheme 3. Pd-catalyzed cross-coupling of alkynamides with
norbornene. Reaction conditions: the reactions were carried
out with norbornene (0.6 mmol), alkynamide (0.5 mmol),
PdCl2 (5 mol%), CuCl2·2 H2O (3 equiv.) in 0.5 mL of aceto-
nitrile at room temperature for 12 h. Yields of isolated prod-
ucts are given.

Scheme 4. Pd-catalyzed coupling of N-substituted alkyn-ACHTUNGTRENNUNGamides with norbornene. Reaction conditions: the reactions
were carried out with norbornene (0.6 mmol), alkynamide
(0.5 mmol), PdCl2 (5 mol%), CuCl2·2 H2O (3 equiv.) in
0.5 mL of acetonitrile at room temperature for 12 h. Yields
of isolated products are given.
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afforded the respective products in satisfying isolated
yields (Scheme 4, 3n–3p).

On the other hand, some terminal olefins were
evaluated under the optimized conditions for the Pd-
catalyzed lactonization with alkynamides (Scheme 5).

Firstly, but-3-en-1-amine was chosen for this trans-
formation. Unfortunately, a complicated result was
obtained, and no target product could be isolated
(Scheme 5). However the N-Ts-substituted but-3-en-
1-amine was a suitable coupling partner with alkyn-ACHTUNGTRENNUNGamide to afford the corresponding a-methylene-g-lac-
tone 5a with 65% yield. Buta-1,3-dienes also reacted
well, giving 5b and 5c in high yields. Delightfully, di-
ethyl allylphosphonate could react well with alkyn-ACHTUNGTRENNUNGamides to generate the corresponding products
(Scheme 5, 5d–5f). It is known that the increasing im-
portance of phosphorus compounds in organic synthe-
sis, materials science, and biology demands efficient
methods to functionalize phosphorus compounds.[37,38]

Furthermore, the chelate effect of sulfone was proven
to be feasible for these transformations (Scheme 5,
5g–5i). A structural motif bearing both a-methylene-
g-lactone and sulfone units would be a useful synthet-
ic intermediate and a privileged medicinal target.[39–44]

On the basis of the above results, a possible reac-
tion mechanism for this Pd-catalyzed cross-coupling
was proposed (Scheme 6). The righthand pathway was
initiated by trans-halopalladation of alkynamide,
which gave the vinylpalladium intermediate I. Subse-
quently, I was captured by the norbornene through
migratory insertion to produce intermediate II. The
isomer IV was generated through the “bridging” pal-
ladium intermediate III.[35,45,46] Then reductive elimi-
nation of IV afforded the product 3a. The Pd(II)
active species was regenerated via oxidation by
Cu(II). For the lefthand pathway, I was captured by
alkene to produce intermediate V. The amide of the
alkynamide cooperated with group A [NHTs, vinyl,
PO ACHTUNGTRENNUNG(OEt)2, SO2Ph] in the olefin to chelate the Pd
center. It is known that the coordinative saturation of

Scheme 5. Pd-catalyzed lactonization of electronically non-
biased olefins with alkynamides. Reaction conditions: the re-
actions were carried out with norbornene (0.6 mmol), alkyn-ACHTUNGTRENNUNGamide (0.5 mmol), PdCl2 (5 mol%), CuCl2·2 H2O (3 equiv.)
in 0.5 mL of acetonitrile at room temperature for 12 h.
Yields of isolated products are given.

Scheme 6. Proposed mechanism.
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the metal center represents one established strategy
to suppress b-H elimination. The five- or six-mem-
bered palladacycle intermediate V was transformed
to the intermediate VI by isomerization, which was
followed by CACHTUNGTRENNUNG(sp3)�O bond formation and hydrolysis
to give the five-membered lactones. Finally, the Pd(II)
active species was regenerated via oxidation by
Cu(II).

In conclusion, we have developed two efficient
methods to suppress the b-H elimination during con-
struction of C-7 functionalized norbornylalkenes and
a-methylene-g-lactone via Pd-catalyzed cross-cou-
pling reactions between alkynamides and alkenes.
This transformation features high reactivity under
mild conditions from easily available materials. Fur-
thermore, the highly functionalized a-methylene-g-
lactone is an important moiety existing in numerous
natural products with biological activities, which also
illustrates that the remote group-assisted strategy is
highly interesting and useful. Therefore, the search
for methods to suppress b-H elimination is still attrac-
tive and further study is underway in our laboratory.

Experimental Section

Typical Experimental Procedure for the Pd/Cu-
Catalyzed Cross-Coupling of Alkynes and Alkenes

The mixture of alkynamide (0.5 mmol), PdCl2 (5 mol%) or
Pd ACHTUNGTRENNUNG(OAc)2 (5 mol%), olefin (0.6 mmol), CuCl2·2 H2O
(3 equiv.) and acetonitrile (0.5 mL) was stirred at room tem-
perature for 12 h. After completion, the reaction was
quenched by the addition of water (10 mL), and the mixture
was extracted with ethyl acetate (3� 10 mL), the combined
extract was dried with MgSO4 and the solvent was evaporat-
ed under vacuum. The residue was separated by chromatog-
raphy on silica gel to give the pure product.
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