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ABSTRACT: We report a Rh(I)-catalyzed site-selective cou-

pling between ketone β C(sp3)−H bonds and aliphatic alkynes 

using an in-situ-installed directing group (DG). Upon 

hydrogenation or hydration, various β-alkylation or β-aldol 

products of the ketones are obtained with broad functional group 

tolerance. Mechanistic investigations support the involvement of a 

Rh−H intermediate through oxidative addition of Rh(I) into the β 

C−H bonds. Thus, to the best of our knowledge, this 

transformation represents the first example of catalytic couplings 

between unsaturated hydrocarbons and unactivated aliphatic C−H 

bonds via a metal−hydride pathway. 

Direct addition of unactivated C−H bonds across unsaturated 

hydrocarbons, e.g. alkenes and alkynes, offers a byproduct-free 

and redox-neutral method to form carbon−carbon bonds.1 This 

transformation can be possibly realized by two approaches 

(Scheme 1A).2 In the first case, the C–H bond is cleaved through 

a concerted metallation-deprotonation (CMD) pathway,3 which is 

followed by migratory insertion of the alkene or alkyne and then 

protodemetallation to afford the coupling product (left cycle). 

Alternatively, a metal−hydride species can be formed through 

oxidative addition of a low-valent metal catalyst into a C–H 

bond.4 Upon coordination of an unsaturate, the product is formed 

via a sequence involving migratory insertion and reductive elimi-

nation (right cycle). To date, addition of sp2 C–H bonds across 

alkenes or alkynes has been extensively developed with both ap-

proaches,5 often resulting in complementary regioselectivity. In 

contrast, much fewer examples are known for sp3 C–H bonds,6,7 

of which the majority are at activated positions (benzylic,7a-c al-

lylic,7d α-to-heteroatoms7e-h or at activated methylenes7i). It was 

not until recently that alkenylations of unactivated aliphatic C–H 

bonds with alkynes were achieved with amide,8 amine9,10 and 2,6-

(tBu)2phenyl ether substrates,11 exclusively via a CMD pathway 

(Scheme 1B). The direct coupling of unactivated aliphatic C–H 

bonds with unsaturated hydrocarbons via a metal−hydride ap-

proach remained unknown.12 The challenge is three-fold: 1) oxi-

dative addition into unactivated sp3 C–H bonds is often signifi-

cantly slower than sp2 C–H bonds;13 2) reductive elimination in-

volving an alkyl moiety is generally difficult;14 and 3) low-valent 

metals often catalyze oligomerization of unsaturated hydrocar-

bons as a competitive reaction pathway.15 As part of our long-term 

interest in site-selective C−H functionalization of ketones,16,17 we 

herein describe the development of a Rh-catalyzed ketone β-

alkenylation method with aliphatic alkynes using an in-situ-

installed directing group (DG) (Scheme 1C). Our mechanistic 

study demonstrates that this C−H/alkyne coupling reaction pro-

ceeds through a metal−hydride reaction pathway. 

Scheme 1. Transition metal-catalyzed addition of C−H bonds 

across alkenes/alkynes 
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Our prior work involves introducing an enamine DG to gener-

ate a metal−hydride species at ketone α positions, which leads to 

α−alkylation or alkenylation with olefins or alkynes (Scheme 1D, 

left).16a,c-f To form a metal−hydride species at ketone β positions, 

it was hypothesized that a properly selected imine-type DG would 

promote C−H oxidative addition through forming a five-

membered metallocycle.18,19 In addition, we envision that the 

direct coupling of β C–H bonds with alkynes should introduce 

one degree of unsaturation, which can serve as a convenient han-

dle to access other valuable derivatives, such as the β-alkylation 

and β-aldol products (Scheme 1C).  

Our study initiated with 2-butanone (1a) as a model substrate to 

couple with 3-hexyne (Table S1). We foresaw the advantage of 

using an in situ-generated hydrazone intermediate (i.e. 3a)20 that 
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contains an additional coordinative motif. First, hydrazones 

should exhibit enhanced stability over regular imines; and second, 

the chelation effect would assist oxidative addition of Rh(I) into 

the β C−H bond. After a survey of various DGs, metal precata-

lysts, ligands and other reaction parameters, ultimately the desired 

product (5a) was isolated in 74% yield using Rh(C2H4)2(acac)/(p-

MeOC6H4)3P as the metal/ligand combination, hydrazine 2e to 

form the optimal DG, and Li(acac) as the additive at 120 °C in 

1,4-dioxane. Unsurprisingly, the alkene migrated under the reac-

tion conditions, leading to a mixture of γ,δ- and β,γ-unsaturated 

products.21 In general, the pyridine-derived hydrazone DGs are 

more effective than the corresponding hydrazide or quinoline-

derived DG (entries 2 and 3). A series of control experiments 

were also conducted to understand the role of each reactant. No 

product was observed in the absence of either the DG or the Rh 

pre-catalyst (entries 7-8). The counter anion of the catalyst ap-

pears to be important, as replacing the Rh(C2H4)2(acac) with 

[Rh(C2H4)2Cl]2 (without Li(acac)) provided the desired product in 

a much lower yield (entry 9). (p-MeOC6H4)3P proved to be an 

optimal ligand for this transformation, while using bidentate lig-

ands generally gave no conversion of the starting material, and 

other mono-dentate phosphines were less effective.22 A dimin-

ished yield was observed when less phosphine was used (entry 

11). The excess phosphine ligand is likely beneficial for the cata-

lyst dissociation from the product. The use of a lower catalyst 

loading, e.g. 5 mol% Rh, still afforded 70% yield (entry 12). Fi-

nally, the addition of Li(acac) improved the yield to some extent 

(entry 13), while the addition of water reduced the reaction effi-

ciency (entry 14). 

Scheme 2. Substrate scope with various ketones and alkynes
a
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a Run with 0.5 mmol 1a and 3.0 mmol 4a in 48h. All yields are 

isolated yields. b 15 mol% [Rh]. c 72h. d 72h, 130 °C. e 2.5 ml 1,4-

dioxane, 20 equiv alkyne. f The benzylic alkenylated product and 

the di-alkenylated product were observed in <5% yield. g Use the 

pre-condensed substrate. h no HCl was added in the hydrogenation 

step. i In step 2, the hydrolysis was conducted before the hydro-

genation. brsm = based on recovered starting material. rr: regioi-

somer ratio.  

The scope of the ketone-alkyne coupling was then explored 

(Scheme 2). Both linear and cyclic ketones can couple with ali-

phatic internal alkynes efficiently.23 Simple treatment of the 

alkenylation products with Pd/C and H2, followed by addition of 

aqueous HCl afforded the corresponding β-alkylated ketones in 

one pot. When unsymmetrical ketones were employed as the sub-

strates, alkenylation occurred predominately at the primary C–H 

bonds. However, in the absence of β methyl groups, the benzylic 

methylenes can also be activated (6j). A range of functional 

groups were compatible, including aryl chlorides (6p), free alco-

hols (6l, 6m), ethers (6n, 6w), amides (6k), nitriles (6n) and esters 

(6x). While bulky pinacolone gave a low conversion (6o),24 α-

branches (6e, 6h, 6i) were well tolerated. In addition, various 

symmetrical and unsymmetrical aliphatic alkynes can be used as 

coupling partners (6q-v), including a protected homopropargyl 

alcohol moiety (6s) that is often used as a synthetic handle. Note 

that when a heavier alkyne (e.g. 5-decyne) was employed, the 

alkyne loading can be reduced to 3 equiv without significantly 

affecting the yield (6r). Excellent regioselectivity was achieved 

when the two substituents of alkynes are differentiated by size 

(6u, 6v), favoring C–C bond formation at the less hindered side of 

the alkynes.  

Scheme 3. Synthesis of β-aldol adducts through the Rh-

catalyzed C–H alkenylation/hydration sequence
a
 

 

a All yields are isolated yields. b 72h. c from > 20:1 rr. d 15 

mol% [Rh]. e The benzylic alkenylated product and the di-

alkenylated product were observed in <5% yield. 

While the initial alkenylation products contain olefin isomers, 

the olefins generally share the same tertiary carbon at the γ-

position. Thus, a Markovnikov hydration is expected to yield a γ-

ketol, formally a β-aldol adduct, as a unified product. Indeed, 

after simply treating the alkenylation products in aqueous H2SO4 
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at 0 oC for 1h, the hydration products (in equilibrium between γ-

ketol and hemiketal forms) were readily obtained in moderate to 

good yields, and gratifyingly, the DG was removed at the same 

time (Scheme 3). Interestingly, when 2-methylcyclohexanone was 

used as the substrate, the final hydration product underwent sim-

ultaneous cyclization and dehydration to afford dihydrofuran 7fb.  

Regarding the reaction mechanism, the key question is whether 

the C−H activation occurs through a metal−hydride pathway or a 

CMD pathway. To address this question, first, the deuterium-

labeling experiments were carried out with a β-d9-pinacolone 

derivative (Scheme 4A). A tertiary alkyl ketone substrate was 

specifically chosen to avoid potential H/D scrambling between the 

α and β positions through a β-H elimination and re-insertion 

pathway. If the reaction follows a metal−hydride pathway, the 

deuterium at the original β position should be transferred to the δ 

position of the product (the vinyl hydrogen in major product 

5ob).7g However, in the case of a CMD pathway, the reaction 

should end with a protodemetalation step, thus it is expected that 

significant deuterium erosion at the δ position would occur in the 

presence of external proton sources.9 Our experiments showed 

that complete deuterium incorporation was found at the vinyl 

position of product 5ob with either acetylacetone (100 mol%) or 

MeOH (800 mol%). In addition, almost no deuterium loss was 

found at either the unreacted methyl groups or the recycled start-

ing material. All of these observations support a metal−hydride 

pathway and disfavor a CMD pathway.25 Second, as a control 

experiment, when non-deuterated substrate 3o was subjected to 

the reaction with excess d4-methanol, nearly no deuterium incor-

poration was observed at either the β or vinyl position of the 

products or the recycled starting material (Scheme 4B). This re-

sult further ruled out a CMD pathway.  

Scheme 4. Preliminary mechanistic studies 
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Attempts to capture the Rh–H intermediate via NMR experi-

ments were unfruitful; however, the corresponding Ir–H complex 

was successfully isolated and characterized, which is likely driven 

by forming a stronger Ir–H bond (Scheme 4C). While this specific 

Ir complex was found catalytically inactive, this result neverthe-

less demonstrates the feasibility of oxidative addition of a low-

valent group-9 metal into unactivated β C–H bonds with this spe-

cific hydrazone type of DG. Finally, the observed regioselectivity 

for insertion of unsymmetrical alkynes (6u, 6v and 7e) is con-

sistent with a hydride-migratory insertion pathway instead of an 

alkyl-migratory insertion pathway.26 Altogether, our mechanistic 

investigations strongly support a metal−hydride reaction pathway.  

Scheme 5. Proposed catalytic cycle 
 
 

 

Accordingly, a plausible catalytic cycle is proposed (Scheme 

5). First, upon hydrazone formation (step A), coordination with 

Rh(I) through chelation with the DG facilitates oxidative addition 

into the β-C(sp3)–H bond to generate a Rh(III)−hydride species 

(step C).  The hydride intermediate then undergoes alkyne migra-

tory insertion (step D), sp2-sp3 reductive elimination (step E), and 

ligand exchange with a new substrate (step B) to yield the 

alkenylation product and resume the catalytic cycle. Further olefin 

migration of the product may take place, which can also be cata-

lyzed by Rh (step F).21 Efforts toward enabling use of catalytic 

DGs as well as coupling with alkenes are ongoing. 
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