# Chiral conflict among different helicenes suppresses formation of one enantiomorph in 2D crystallization

Johannes Seibel,<sup>+</sup> Oliver Allemann,<sup>+</sup> Jay S. Siegel,<sup>+</sup> and Karl-Heinz Ernst<sup>\*,+,+</sup>

<sup>+</sup> Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland

<sup>+</sup> Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland



**Supporting Information Figure S1.** Models for homochiral and heterochiral packing for db[5]H. If heterochiral dimers are constructed at the same packing density as for the homochiral dimer (a), one combination has *a priori* a too strong overlap (b, red ellipse). A second combination (c) can be packed with equal density, but its combinations do not fit to the experimentally observed packing (d, heterochiral arrangements are presented with higher transparency.): Although one arrangement (*P*-*M*<sub>1</sub>) fits the bright protrusions, it contradicts the STM contrast at the lower molecular edge (d, yellow ellipse). In particular, it is not possible to build an extended layer due to strong overlap among the unit cells (*P*-*M*<sub>1</sub>, red ellipse). Like for the homochiral combination the *P*-*M*<sub>2</sub> arrangement fits the STM contrast at the lower molecular edge (blue ellipses), but not the bright protrusion pattern. In order to fit into the unit cell, however, the pair of dimers has to pack so close, that the lower parts of the molecules in the middle show a too strong overlap (*P*-*M*<sub>2</sub> red ellipse). The STM image (d) is identical to the one shown as Fig. 2d (10 nm × 10 nm, U = 2.051 V, I = 28 pA).



Supporting Information Figure S2. Model of a 2 × 3 arrangement of unit cells. A single unit cell consists of two dimers, rotated by 180 degrees with respect to each other. This allows along the  $\begin{bmatrix} 1 & \overline{1} & 0 \end{bmatrix}$ direction a close arrangement by overlap to one side, but not to the other side. No overlap is observed along the  $[11\overline{2}]$  direction (*viz.* perpendicular to  $[1\overline{1}0]$ ). The transformation matrix between

adsorbate lattice and gold substrate is  $\begin{pmatrix} 6 & 2 \\ 0 & 13 \end{pmatrix}$ . A unit cell contains 4 molecules and covers 78 Au

atoms. The lengths of the unit cell vectors are 1.52 nm and 3.74 nm.



Supporting Information Figure S3. STM image ( $150 \text{ nm} \times 150 \text{ nm}$ , U = -2.725 V, I = 31 pA) of a monolayer consisting of 90% *rac*-db[5]H and 10% (*M*)-[7]H. The (*P*)-db[5]H enantiomorph (yellow) covers a smaller area than the (*M*)-db[5]H enantiomorph (blue).



**Supporting Information Figure S4.** Dependence of excess of *M*-db[5]H domains (blue) and overall ordered area (red) on the amount of [7]H mixed into the monolayer. The amount of [7]H is given in percentage of the area covered (coverage, bottom axis) and the relative molar amount of [7]H in the layer ('diastereomeric excess-de').

Supporting Information Table S1. Summary of the statistical analyses.

| Coverage doping | Amount of <i>M</i> -7[H] | Nr of<br>200 x 200 nm<br>images | Total area probed /nm <sup>2</sup> | Ordered area /nm <sup>2</sup> | Percentage of ordered area | Percen-<br>tage M<br>domains | Avg.<br>Domain<br>Size (M) | Avg.<br>Domain<br>Size (P) |
|-----------------|--------------------------|---------------------------------|------------------------------------|-------------------------------|----------------------------|------------------------------|----------------------------|----------------------------|
| 0 %             | 0.00 %                   | 10                              | 400'000                            | 17627                         | $44 \pm 5$                 | 50                           | 1091                       |                            |
| 5 %             | 6.60 %                   | 10                              | 400'000                            | 10876                         | $27 \pm 10$                | 54                           | 655                        | 498                        |
| 10 %            | 13.20 %                  | 10                              | 400'000                            | 9815                          | $25 \pm 8$                 | 67                           | 1119                       | 714                        |
| 15 %            | 19.80 %                  | 10                              | 400'000                            | 6860                          | $17 \pm 11$                | 86                           | 689                        | 250                        |
| 20 %            | 26.40 %                  | 10                              | 400'000                            | 2576                          | $6 \pm 3$                  | 100                          | 447                        |                            |



**Supporting Information Figure S5.** Models for diastereomeric interactions between (P)-db[5]H and (M)-[7]H (a-c) and (M)-db[5]H and (M)-[7]H (d-f). The six examples show the closest arrangements possible for P-M and M-M combinations. The largest overlap between both species is achieved for the P-M pair shown in b.

## Syntheses

$$\square_{Br}^{F} \xrightarrow{a} \bigcirc_{F}^{Br} \xrightarrow{b} \stackrel{F}{\longrightarrow} \stackrel{f}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{c}$$

a 1. nBuLi, THF, -78 °C 2. ZnCl<sub>2</sub> 3. Pd(PPh<sub>3</sub>)<sub>4</sub>, 1-bromo-2-iodobenzene, 50 °C, 12 h, 90 %.

b 1. nBuLi, THF, -78 °C 2. ZnCl<sub>2</sub> 3. PEPPSI-*i*Pr, 1,4-diiodobenzene, 70 °C, 13 h, 61 %.

c [/Pr<sub>3</sub>Si][CHB<sub>11</sub>H<sub>5</sub>Cl<sub>6</sub>], Me<sub>2</sub>SiMes<sub>2</sub>, PhCl, 110 °C, 8 h, 67 %.

Supporting Scheme 1. Scheme of synthesis of db[5]H.

## **Reaction Conditions and Chemicals**

The C–F activation reaction was set up in an MBraun glovebox under a nitrogen atmosphere with  $O_2$ ,  $H_2O < 0.1$  ppm. The reaction mixture was heated outside the glovebox, but still under a nitrogen atmosphere. All glassware was dried at 150 °C for at least 12 hrs and allowed to cool *in vacuo*. The substrates and reagents used for the C–F activation reaction were synthesized and purified. Chlorobenzene was filtered through dry  $Al_2O_3$  and stored over 4 Å molecular sieves. The Negishi cross-coupling reactions were conducted in water- and oxygen-free atmosphere. Dry THF from the solvent system was used, ZnCl<sub>2</sub> was melted under vacuum in order to eliminate water residue, Palldium catalysts were synthesized in the Siegel group. For work-up and purification outside the glovebox, distilled solvents of technical grade were used.

| Compound                         | Quality | Supplier      |
|----------------------------------|---------|---------------|
| chlorobenzene                    | puriss. | Fluka         |
| 1-bromo-2-iodobenzene            | 99 %    | Fluorochem    |
| <i>n</i> -BuLi (2.5 M in hexane) |         | Acros         |
| 1,4-diiodobenzene                | 99 %    | Aldrich       |
| 1-fluoro-2-bromobenzene          | 99 %    | Alfa Aesar    |
| zinc chloride                    | puriss. | Sigma Aldrich |

 Table S1. Suppliers and grade of used chemicals.

## Instruments

**NMR spectra** were recorded on Bruker AV-400 (<sup>19</sup>F), and Bruker AV-500 (<sup>1</sup>H, <sup>13</sup>C) instruments. <sup>13</sup>C NMR spectra are proton decoupled. Data are reported as follows: chemical shift in ppm, multiplicity (s = singlet, d = doublet, m = multiplet, ddd = doublet of doublet of doublet, etc.), coupling constant <sup>a</sup>J in Hz, and integration. The signals were referenced against solvent peaks (<sup>1</sup>H: residual CHCl<sub>3</sub> 7.26 ppm; <sup>13</sup>C, CDCl<sub>3</sub> 77.16 ppm) or external standards (<sup>19</sup>F: CCl<sub>3</sub>F in CDCl<sub>3</sub> 0 ppm).

Mass spectra were recorded by the Laboratory for Mass Spectroscopy of the Organic

Chemistry Institute of the University of Zurich on a Finnigan MAT95 instrument or on a Finnigan Trace DSQ GC-MS. Data are reported as follows: m/z (% relative intensity).

## **Syntheses**

**2-fluoro-2'-bromobiphenyl**: To a solution of 1-fluoro-2-bromobenzene (1.12 g, 6.40 mmol) in THF (10 mL) nBuLi (2.7 mL, 2.5 M in hexane, 6.75 mmol) was added at -78 °C. The slightly yellow solution was stirred for 30 min. When ZnCl<sub>2</sub> (952 mg, 6.99 mmol) in THF (8 mL) was added the solution turned colorless and was allowed to warm to 0 °C. It was then transferred to a flask charged with 1-bromo-2-iodobenzene (1.65 g, 5.83 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (67 mg, 0.06 mmol) and THF (10 mL). The solution was then heated to 50 °C and stirred for 12 h. The reaction was quenched with water. The water was then extracted with DCM (3x), the combined organic phases were dried over MgSO<sub>4</sub>, filtered and concentrated in vacuo. Flash column chromatography (Hex/DCM 99:1) afforded the desired product as a colorless oil (1.32 g, 90 %).

 $R_{f}$  (silica, Hexane)= 0.26.

<sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.69 (dd, J = 8.0, 1.5 Hz, 1 H), 7.41–7.35 (m, 2 H), 7.33–7.20 (m, 3 H), 7.15 (ddd, J = 10, 8.5, 1.5 Hz, 1 H).

<sup>13</sup>C-NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta = 159.70$  (d, <sup>1</sup> $J_{C-F} = 247.3$  Hz), 137.35, 133.01, 131.76, 131.71 (d, <sup>3</sup> $J_{C-F} = 3.1$  Hz), 129.97 (d, <sup>3</sup> $J_{C-F} = 8.0$  Hz), 129.55, 129.03 (d, <sup>2</sup> $J_{C-F} = 16.1$  Hz), 127.31, 123.99, 123.93 (d, <sup>4</sup> $J_{C-F} = 3.6$  Hz), 115.78 (d, <sup>2</sup> $J_{C-F} = 22.1$  Hz).

<sup>19</sup>F-NMR (376.5 MHz, CDCl<sub>3</sub>):  $\delta = -114.68$ .

MS (EI): *m/z* (%): 251.9 (80), 249.9 (84), 171.0 (42), 170.0 (100), 151.0 (20), 85.0 (24), 75.0 (20).

**1,4-bis**(**2,2'-difluorobiphenyl-2-yl)benzene**: To a solution of 2-fluoro-2'-bromobiphenyl (599 mg, 2.39 mmol) in THF (12 mL) nBuLi (1.1 mL, 2.5 M in hexane, 2.75 mmol) was added at – 78 °C . The yellow solution was stirred for 30 min. When  $\text{ZnCl}_2$  (386 mg, 2.83 mmol) in THF (4 mL) was added the solution turned almost colorless and was allowed to warm to 0 °C. It was then transferred to a flask charged with 1,4-diiodobenzene (360 mg, 1.09 mmol) and PEPPSI-iPr (21 mg, 0.03 mmol) and THF (4 mL). The solution was then heated to 70 °C and stirred for 13 h. The reaction was quenched with an aqueous solution of NaHCO<sub>3</sub> (10 %). The water phase was then extracted with DCM (3x), the combined organic phases were dried over MgSO<sub>4</sub>, filtered and concentrated in vacuo. Flash column chromatography (Hex/DCM 98:2 to 90:10) afforded the desired product as a white solid (276 mg, 61 %).

 $R_{f}$  (silica, Hex/DCM 9:1) = 0.17.

<sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.46–7.37 (m, 8 H), 7.22–7.16 (m, 2 H), 7.07 (ddd, J = 7.5,

7.5, 2.0 Hz, 2 H), 7.01 (ddd, *J* = 7.5, 7.5, 1.5 Hz, 2 H), 6.97 (s, 4 H), 6.91 (ddd, *J* = 10.0, 8.0, 1.0 Hz, 2 H).

<sup>13</sup>C-NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta = 159.55$  (d, <sup>1</sup> $J_{C-F} = 246.6$  Hz), 141.43, 139.61, 134.51, 132.24 (d, <sup>3</sup> $J_{C-F} = 3.5$  Hz), 131.09, 130.16, 129.18 (d, <sup>2</sup> $J_{C-F} = 15.6$  Hz), 128.83 (d, <sup>3</sup> $J_{C-F} = 7.8$  Hz), 128.83 (2 C), 128.26, 127.24, 123.79 (d, <sup>4</sup> $J_{C-F} = 3.6$  Hz), 115.58 (d, <sup>2</sup> $J_{C-F} = 22.5$  Hz).

<sup>19</sup>F-NMR (376.5 MHz, CDCl<sub>3</sub>):  $\delta = -115.44$ .

MS (EI): *m/z* (%): 418.2 (100), 398.2 (19), 246.1 (20), 207.1 (21), 188.1 (30).

[5,6, 9,10]-dibenzopentahelicene: In the glove box, a vial was charged with 1,4-bis(2,2'-difluorobiphenyl-2-yl)benzene (23 mg, 0.055 mmol),  $[iPr_3Si][CHB_{11}H_3Cl_6]$  (6 mg, 0.011 mmol) and Me<sub>2</sub>SiMes<sub>2</sub> (44 mg, 0.148 mmol). The mixture was dissolved in chlorobenzene (1 mL), heated to 110 °C and stirred for 8 h. The reaction was quenched with ethyl acetate and the solvents were evaporated. Flash column chromatography afforded the product as a white solid (14 mg, 67 %).

 $R_{f}$  (silica, Hex/DCM 4:1) = 0.12.

<sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.68 (m, 6 H), 8.58 (d, *J* = 8.0 Hz, 2 H), 8.27 (d, *J* = 8.0 Hz, 2 H), 7.74 (m, 4 H), 7.53 (ddd, *J* = 8.0, 7.0, 1.5 Hz, 2 H), 7.53 (ddd, *J* = 8.0, 6.5, 1.0 Hz, 2 H).

<sup>13</sup>C-NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta$  = 131.13, 131.04, 130.53, 130.44, 130.05, 129.71, 127.84, 127.64, 127.44, 127.06, 125.37, 123.85, 123.66, 123.37, 121.96.

HR-MS (ESI): m/z: Calculated for C<sub>30</sub>H<sub>19</sub> [M+H]<sup>+</sup>: 379.14813, found: 379.14830.

**Crystal-Structure Determination.** – A crystal of  $C_{30}H_{18}$  was mounted on a glass fibre and used for a low-temperature X-ray structure determination. All measurements were made on an *Agilent Technologies SuperNova* area-detector diffractometer<sup>2</sup> using Cu K $\alpha$  radiation ( $\lambda = 1.54184$  Å) from a micro-focus X-ray source and an *Oxford Instruments Cryojet XL* cooler. The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of 10218 reflections in the range 4° < 20 < 148°. A total of 1884 frames were collected using  $\omega$  scans with  $\kappa$  offsets, 1.5-10.0 seconds exposure time and a rotation angle of 1.0° per frame, and a crystal-detector distance of 55.0 mm.

Data reduction was performed with *CrysAlisPro<sup>2</sup>*. The intensities were corrected for Lorentz and polarization effects, and an empirical absorption correction using spherical harmonics<sup>2</sup> was applied. The space group was uniquely determined by the systematic absences. Equivalent reflections were merged. The data collection and refinement parameters are given in

Table 1. A view of the molecule is shown in the Figure.

The structure was solved by direct methods using *SHELXS97*<sup>3</sup>, which revealed the positions of all non-hydrogen atoms. The non-hydrogen atoms were refined anisotropically. All of the H-atoms were placed in geometrically calculated positions and refined by using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to  $1.2U_{eq}$  of its parent atom. The refinement of the structure was carried out on  $F^2$  by using full-matrix least-squares procedures, which minimised the function  $\Sigma w (F_0^2 - F_c^2)^2$ . The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. Plots of  $\Sigma w (F_0^2 - F_c^2)^2$  versus  $F_c/F_c(\max)$  and resolution showed no unusual trends. A correction for secondary extinction was applied.

Neutral atom scattering factors for non-hydrogen atoms were taken from Maslen, Fox and O'Keefe<sup>4a</sup>, and the scattering factors for H-atoms were taken from Stewart, Davidson and Simpson<sup>5</sup>. Anomalous dispersion effects were included in  $F_c^6$ ; the values for f' and f'' were those of Creagh and McAuley<sup>4b</sup>. The values of the mass attenuation coefficients are those of Creagh and Hubbel<sup>4c</sup>. The *SHELXL97* program<sup>3</sup> was used for all calculations.



*ORTEP*<sup>1</sup> representation of the molecule (50% probability ellipsoids; H-atoms given arbitrary displacement parameters for clarity)

#### **Definition of Terms**

Function minimized:  $\Sigma w (F_0^2 - F_c^2)^2$  where

$$w = [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP]^{-1} \text{ and } P = (F_{o}^{2} + 2F_{c}^{2})/3$$

$$F_{o}^{2} = S(C - RB)/Lp$$
and  $\sigma^{2}(F_{o}^{2}) = S^{2}(C + R^{2}B)/Lp^{2}$ 

$$S = Scan rate$$

$$C = Total integrated peak count$$

$$R = Ratio of scan time to background counting time$$

$$B = Total background count$$

$$Lp = Lorentz-polarization factor$$

R-factors:  $R_{int} = \Sigma |\langle F_0^2 \rangle - F_0^2 | / \Sigma F_0^2$  summed only over reflections for which more than one symmetry equivalent was measured.  $R(F) = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$  summed over all observed reflections.  $wR(F^2) = [\Sigma w(F_0^2 - F_c^2)^2 / \Sigma w(F_0^2)^2]^{1/2}$  summed over all reflections. Standard deviation of an observation of unit weight (goodness of fit):  $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$  where  $N_0$  = number of observations;  $N_v$  = number of variables

### References

- Johnson, C. K. ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
- (2) CrysAlisPro, Agilent Technologies, Yarnton, Oxfordshire, England, 2011.
- (3) Sheldrick, G.M. Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- (4) a) Maslen, E. N.; Fox, A.G.; O'Keefe, M. A. in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, pp. 477;
  b) Creagh, D. C.; McAuley, W. J. *ibid*. Table 4.2.6.8, pp. 219;
  c) Creagh, D. C.; Hubbell, J. H. *ibid*. Table 4.2.4.3, pp. 200.
- (5) R. F. Stewart, E.R. Davidson, W.T. Simpson, J. Chem. Phys. 1965, 42, 3175.
- (6) Ibers, J.A. Hamilton, W.C. Acta Crystallogr. 1964, 17, 781.

# Crystallographic data

| Crystallised from                     |                          | ?                                                            |  |  |  |  |
|---------------------------------------|--------------------------|--------------------------------------------------------------|--|--|--|--|
| Empirical formula                     |                          | C <sub>30</sub> H <sub>18</sub>                              |  |  |  |  |
| Formula weight [g mol <sup>-1</sup> ] |                          | 378.47                                                       |  |  |  |  |
| Crystal colour, habit                 |                          | colorless, plate                                             |  |  |  |  |
| Crystal dimensions [                  | mm]                      | $0.04 \cdot 0.28 \cdot 0.44$                                 |  |  |  |  |
| Temperature [K]                       |                          | 100(1)                                                       |  |  |  |  |
| Crystal system                        |                          | monoclinic                                                   |  |  |  |  |
| Space group                           |                          | <i>P</i> 2 <sub>1</sub> / <i>n</i> (#14)                     |  |  |  |  |
| Ζ                                     |                          | 4                                                            |  |  |  |  |
| Reflections for cell d                | etermination             | 10218                                                        |  |  |  |  |
| 2θ range for cell dete                | ermination [°]           | 4-148                                                        |  |  |  |  |
| Unit cell parameters                  | <i>a</i> [Å]             | 19.3549(3)                                                   |  |  |  |  |
|                                       | <i>b</i> [Å]             | 5.12886(5)                                                   |  |  |  |  |
|                                       | <i>c</i> [Å]             | 19.9604(3)                                                   |  |  |  |  |
|                                       | α [°]                    | 90                                                           |  |  |  |  |
|                                       | β [°]                    | 115.0553(19)                                                 |  |  |  |  |
|                                       | γ [°]                    | 90                                                           |  |  |  |  |
|                                       | V[Å <sup>3</sup> ]       | 1794.99(4)                                                   |  |  |  |  |
| <i>F</i> (000)                        |                          | 792                                                          |  |  |  |  |
| $D_x [{ m g \ cm^{-3}}]$              |                          | 1.400                                                        |  |  |  |  |
| μ(Cu <i>K</i> α) [mm <sup>-1</sup> ]  |                          | 0.604                                                        |  |  |  |  |
| Scan type                             |                          | ω                                                            |  |  |  |  |
| 2θ <sub>(max)</sub> [°]               |                          | 148.0                                                        |  |  |  |  |
| Transmission factors                  | (min; max)               | 0.208; 1.000                                                 |  |  |  |  |
| Total reflections mea                 | sured                    | 18317                                                        |  |  |  |  |
| Symmetry independe                    | ent reflections          | 774977329                                                    |  |  |  |  |
| R <sub>int</sub>                      |                          | 0.018                                                        |  |  |  |  |
| Reflections with $I > 2$              | $2\sigma(I)$             | 3308                                                         |  |  |  |  |
| Reflections used in refinement        |                          | 3588                                                         |  |  |  |  |
| Parameters refined                    |                          | 272                                                          |  |  |  |  |
| Final $R(F)$ [ $I > 2\sigma(I)$       | ) reflections]           | 0.0326                                                       |  |  |  |  |
| $wR(F^2)$ (all da                     | ta)                      | 0.0894                                                       |  |  |  |  |
| Weights:                              | $w = [\sigma^2(F_0^2) +$ | $(0.0456P)^2 + 0.6114P]^{-1}$ where $P = (F_0^2 + 2F_c^2)/3$ |  |  |  |  |

Goodness of fit

| Secondary extinction coefficient              | 0.0007(2)     |
|-----------------------------------------------|---------------|
| Final $\Delta_{max}/\sigma$                   | 0.004         |
| $\Delta \rho$ (max; min) [e Å <sup>-3</sup> ] | 0.24; -0.17   |
| $\sigma(d_{(C-C)})$ [Å]                       | 0.001 - 0.002 |

TABLE S2. Bond lengths (Å) with standard uncertainties in parentheses.

| C(1)  | -C(2)  | 1.3745(15) | C(11) -C(12) | 1.3772(16) |
|-------|--------|------------|--------------|------------|
| C(1)  | -C(16) | 1.4108(15) | C(12) -C(21) | 1.4056(15) |
| C(2)  | -C(3)  | 1.3936(16) | C(13) -C(14) | 1.3634(15) |
| C(3)  | -C(4)  | 1.3768(15) | C(13) -C(20) | 1.4123(14) |
| C(4)  | -C(17) | 1.4077(15) | C(14) -C(15) | 1.4132(14) |
| C(5)  | -C(30) | 1.4098(15) | C(15) -C(18) | 1.4076(14) |
| C(5)  | -C(6)  | 1.4144(15) | C(15) -C(16) | 1.4612(14) |
| C(5)  | -C(17) | 1.4624(15) | C(16) -C(17) | 1.4115(15) |
| C(6)  | -C(27) | 1.4142(14) | C(18) -C(19) | 1.4411(14) |
| C(6)  | -C(18) | 1.4690(14) | C(19) -C(20) | 1.4059(14) |
| C(7)  | -C(8)  | 1.4112(15) | C(20) -C(21) | 1.4629(15) |
| C(7)  | -C(26) | 1.4134(15) | C(21) -C(22) | 1.4133(15) |
| C(7)  | -C(19) | 1.4666(14) | C(23) -C(24) | 1.3732(16) |
| C(8)  | -C(23) | 1.4129(15) | C(24) -C(25) | 1.3990(17) |
| C(8)  | -C(22) | 1.4586(15) | C(25) -C(26) | 1.3750(15) |
| C(9)  | -C(10) | 1.3759(16) | C(27) -C(28) | 1.3793(15) |
| C(9)  | -C(22) | 1.4097(15) | C(28) -C(29) | 1.3946(16) |
| C(10) | -C(11) | 1.3942(16) | C(29) -C(30) | 1.3799(16) |

TABLE S3. Bond angles (°) with standard uncertainties in parentheses.

| C(2)  | -C(1) | -C(16) | 121.48(10) | C(17) | -C(16) -C(15) | 120.12(9)  |
|-------|-------|--------|------------|-------|---------------|------------|
| C(1)  | -C(2) | -C(3)  | 119.96(10) | C(4)  | -C(17) -C(16) | 118.80(10) |
| C(4)  | -C(3) | -C(2)  | 119.77(10) | C(4)  | -C(17) -C(5)  | 122.30(10) |
| C(3)  | -C(4) | -C(17) | 121.46(10) | C(16) | -C(17) -C(5)  | 118.88(9)  |
| C(30) | -C(5) | -C(6)  | 118.78(10) | C(15) | -C(18) -C(19) | 118.40(9)  |
| C(30) | -C(5) | -C(17) | 120.97(10) | C(15) | -C(18) -C(6)  | 117.93(9)  |
| C(6)  | -C(5) | -C(17) | 120.17(9)  | C(19) | -C(18) -C(6)  | 123.36(9)  |
| C(27) | -C(6) | -C(5)  | 118.21(9)  | C(20) | -C(19) -C(18) | 118.99(9)  |
| C(27) | -C(6) | -C(18) | 121.25(9)  | C(20) | -C(19) -C(7)  | 117.05(9)  |

| -C(6)  | -C(18)                                                                                                                                                                   | 120.04(9)                                                                                                                                                                                            | C(18) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123.63(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -C(7)  | -C(26)                                                                                                                                                                   | 118.48(9)                                                                                                                                                                                            | C(19) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.36(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(7)  | -C(19)                                                                                                                                                                   | 120.24(9)                                                                                                                                                                                            | C(19) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.08(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -C(7)  | -C(19)                                                                                                                                                                   | 120.75(10)                                                                                                                                                                                           | C(13) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.56(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -C(8)  | -C(23)                                                                                                                                                                   | 118.83(10)                                                                                                                                                                                           | C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.52(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(8)  | -C(22)                                                                                                                                                                   | 119.79(9)                                                                                                                                                                                            | C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.48(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(8)  | -C(22)                                                                                                                                                                   | 121.15(10)                                                                                                                                                                                           | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.91(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -C(9)  | -C(22)                                                                                                                                                                   | 121.13(10)                                                                                                                                                                                           | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.99(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(10) | -C(11)                                                                                                                                                                   | 119.87(10)                                                                                                                                                                                           | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122.37(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(11) | -C(10)                                                                                                                                                                   | 120.01(11)                                                                                                                                                                                           | C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.47(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -C(12) | -C(21)                                                                                                                                                                   | 121.41(10)                                                                                                                                                                                           | C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.41(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(13) | -C(20)                                                                                                                                                                   | 121.01(10)                                                                                                                                                                                           | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.63(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(14) | -C(15)                                                                                                                                                                   | 121.24(10)                                                                                                                                                                                           | C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.16(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(15) | -C(14)                                                                                                                                                                   | 118.55(9)                                                                                                                                                                                            | C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.23(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(15) | -C(16)                                                                                                                                                                   | 120.25(9)                                                                                                                                                                                            | C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.66(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(15) | -C(16)                                                                                                                                                                   | 121.19(9)                                                                                                                                                                                            | C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.78(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(16) | -C(17)                                                                                                                                                                   | 118.53(10)                                                                                                                                                                                           | C(30) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.72(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C(16) | -C(15)                                                                                                                                                                   | 121.29(10)                                                                                                                                                                                           | C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.56(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | -C(6)<br>-C(7)<br>-C(7)<br>-C(8)<br>-C(8)<br>-C(8)<br>-C(8)<br>-C(9)<br>-C(10)<br>-C(11)<br>-C(12)<br>-C(12)<br>-C(13)<br>-C(14)<br>-C(15)<br>-C(15)<br>-C(15)<br>-C(16) | -C(6)-C(18)-C(7)-C(26)-C(7)-C(19)-C(7)-C(19)-C(8)-C(23)-C(8)-C(22)-C(8)-C(22)-C(9)-C(22)-C(10)-C(11)-C(11)-C(10)-C(12)-C(21)-C(13)-C(20)-C(14)-C(15)-C(15)-C(14)-C(15)-C(16)-C(16)-C(17)-C(16)-C(15) | -C(6) $-C(18)$ $120.04(9)$ $-C(7)$ $-C(26)$ $118.48(9)$ $-C(7)$ $-C(19)$ $120.24(9)$ $-C(7)$ $-C(19)$ $120.75(10)$ $-C(8)$ $-C(23)$ $118.83(10)$ $-C(8)$ $-C(22)$ $119.79(9)$ $-C(8)$ $-C(22)$ $121.15(10)$ $-C(9)$ $-C(22)$ $121.13(10)$ $-C(10)$ $-C(11)$ $119.87(10)$ $-C(11)$ $-C(10)$ $120.01(11)$ $-C(12)$ $-C(21)$ $121.41(10)$ $-C(13)$ $-C(20)$ $121.01(10)$ $-C(14)$ $-C(15)$ $121.24(10)$ $-C(15)$ $-C(16)$ $120.25(9)$ $-C(16)$ $-C(17)$ $118.53(10)$ $-C(16)$ $-C(15)$ $121.29(10)$ | -C(6) $-C(18)$ $120.04(9)$ $C(18)$ $-C(7)$ $-C(26)$ $118.48(9)$ $C(19)$ $-C(7)$ $-C(19)$ $120.24(9)$ $C(19)$ $-C(7)$ $-C(19)$ $120.75(10)$ $C(13)$ $-C(8)$ $-C(23)$ $118.83(10)$ $C(12)$ $-C(8)$ $-C(22)$ $119.79(9)$ $C(12)$ $-C(8)$ $-C(22)$ $121.15(10)$ $C(22)$ $-C(9)$ $-C(22)$ $121.13(10)$ $C(9)$ $-C(10)$ $-C(11)$ $119.87(10)$ $C(9)$ $-C(11)$ $-C(10)$ $120.01(11)$ $C(21)$ $-C(12)$ $-C(21)$ $121.41(10)$ $C(24)$ $-C(13)$ $-C(20)$ $121.01(10)$ $C(23)$ $-C(14)$ $-C(15)$ $121.24(10)$ $C(25)$ $-C(15)$ $-C(16)$ $120.25(9)$ $C(28)$ $-C(15)$ $-C(16)$ $121.19(9)$ $C(27)$ $-C(16)$ $-C(17)$ $118.53(10)$ $C(30)$ $-C(16)$ $-C(15)$ $121.29(10)$ $C(29)$ | -C(6) $-C(18)$ $120.04(9)$ $C(18)$ $-C(19)$ $-C(7)$ $-C(26)$ $118.48(9)$ $C(19)$ $-C(20)$ $-C(7)$ $-C(19)$ $120.24(9)$ $C(19)$ $-C(20)$ $-C(7)$ $-C(19)$ $120.75(10)$ $C(13)$ $-C(20)$ $-C(7)$ $-C(19)$ $120.75(10)$ $C(12)$ $-C(21)$ $-C(8)$ $-C(23)$ $118.83(10)$ $C(12)$ $-C(21)$ $-C(8)$ $-C(22)$ $119.79(9)$ $C(12)$ $-C(21)$ $-C(8)$ $-C(22)$ $121.15(10)$ $C(22)$ $-C(21)$ $-C(9)$ $-C(22)$ $121.13(10)$ $C(9)$ $-C(22)$ $-C(10)$ $-C(11)$ $119.87(10)$ $C(9)$ $-C(22)$ $-C(11)$ $-C(10)$ $120.01(11)$ $C(21)$ $-C(22)$ $-C(11)$ $-C(10)$ $121.01(10)$ $C(24)$ $-C(23)$ $-C(13)$ $-C(20)$ $121.01(10)$ $C(26)$ $-C(25)$ $-C(15)$ $-C(16)$ $120.25(9)$ $C(28)$ $-C(27)$ $-C(15)$ $-C(16)$ $121.19(9)$ $C(27)$ $-C(28)$ $-C(16)$ $-C(17)$ $118.53(10)$ $C(30)$ $-C(29)$ $-C(16)$ $-C(15)$ $121.29(10)$ $C(29)$ $-C(30)$ | -C(6) $-C(18)$ $120.04(9)$ $C(18)$ $-C(19)$ $-C(7)$ $-C(7)$ $-C(26)$ $118.48(9)$ $C(19)$ $-C(20)$ $-C(21)$ $-C(7)$ $-C(19)$ $120.75(10)$ $C(13)$ $-C(20)$ $-C(21)$ $-C(8)$ $-C(23)$ $118.83(10)$ $C(12)$ $-C(21)$ $-C(22)$ $-C(8)$ $-C(22)$ $119.79(9)$ $C(12)$ $-C(21)$ $-C(20)$ $-C(8)$ $-C(22)$ $121.15(10)$ $C(22)$ $-C(21)$ $-C(20)$ $-C(9)$ $-C(22)$ $121.13(10)$ $C(9)$ $-C(22)$ $-C(21)$ $-C(10)$ $-C(11)$ $119.87(10)$ $C(9)$ $-C(22)$ $-C(8)$ $-C(11)$ $-C(10)$ $120.01(11)$ $C(21)$ $-C(22)$ $-C(8)$ $-C(12)$ $-C(21)$ $121.01(10)$ $C(24)$ $-C(25)$ $-C(13)$ $-C(20)$ $121.01(10)$ $C(26)$ $-C(27)$ $-C(24)$ $-C(15)$ $-C(16)$ $120.25(9)$ $C(28)$ $-C(27)$ $-C(6)$ $-C(15)$ $-C(16)$ $121.19(9)$ $C(27)$ $-C(28)$ $-C(29)$ $-C(16)$ $-C(17)$ $118.53(10)$ $C(30)$ $-C(29)$ $-C(28)$ |

TABLE S4. Torsion angles (°) with standard uncertainties in parentheses.

| C(16) | -C(1)  | -C(2)  | -C(3)  | 0.6(2)     | C(15) | -C(18) | -C(19) | -C(7)  | -151.2(1)  |
|-------|--------|--------|--------|------------|-------|--------|--------|--------|------------|
| C(1)  | -C(2)  | -C(3)  | -C(4)  | -0.2(2)    | C(6)  | -C(18) | -C(19) | -C(7)  | 35.2(2)    |
| C(2)  | -C(3)  | -C(4)  | -C(17) | -0.1(2)    | C(8)  | -C(7)  | -C(19) | -C(20) | 20.0(1)    |
| C(30) | -C(5)  | -C(6)  | -C(27) | -5.7(1)    | C(26) | -C(7)  | -C(19) | -C(20) | -151.5(1)  |
| C(17) | -C(5)  | -C(6)  | -C(27) | 171.22(9)  | C(8)  | -C(7)  | -C(19) | -C(18) | -166.75(9) |
| C(30) | -C(5)  | -C(6)  | -C(18) | -177.71(9) | C(26) | -C(7)  | -C(19) | -C(18) | 21.8(2)    |
| C(17) | -C(5)  | -C(6)  | -C(18) | -0.8(1)    | C(18) | -C(19) | -C(20) | -C(13) | -15.0(1)   |
| C(26) | -C(7)  | -C(8)  | -C(23) | -5.9(1)    | C(7)  | -C(19) | -C(20) | -C(13) | 158.64(9)  |
| C(19) | -C(7)  | -C(8)  | -C(23) | -177.56(9) | C(18) | -C(19) | -C(20) | -C(21) | 165.00(9)  |
| C(26) | -C(7)  | -C(8)  | -C(22) | 168.70(9)  | C(7)  | -C(19) | -C(20) | -C(21) | -21.4(1)   |
| C(19) | -C(7)  | -C(8)  | -C(22) | -3.0(1)    | C(14) | -C(13) | -C(20) | -C(19) | -0.7(2)    |
| C(22) | -C(9)  | -C(10) | -C(11) | 0.3(2)     | C(14) | -C(13) | -C(20) | -C(21) | 179.4(1)   |
| C(9)  | -C(10) | -C(11) | -C(12) | 1.3(2)     | C(11) | -C(12) | -C(21) | -C(22) | -1.7(2)    |
| C(10) | -C(11) | -C(12) | -C(21) | -0.6(2)    | C(11) | -C(12) | -C(21) | -C(20) | 174.8(1)   |
| C(20) | -C(13) | -C(14) | -C(15) | 9.6(2)     | C(19) | -C(20) | -C(21) | -C(12) | -170.4(1)  |
| C(13) | -C(14) | -C(15) | -C(18) | -2.4(2)    | C(13) | -C(20) | -C(21) | -C(12) | 9.6(2)     |
| C(13) | -C(14) | -C(15) | -C(16) | 176.7(1)   | C(19) | -C(20) | -C(21) | -C(22) | 6.1(2)     |
| C(2)  | -C(1)  | -C(16) | -C(17) | -0.7(2)    | C(13) | -C(20) | -C(21) | -C(22) | -173.94(9) |
| C(2)  | -C(1)  | -C(16) | -C(15) | 176.3(1)   | C(10) | -C(9)  | -C(22) | -C(21) | -2.5(2)    |

| C(18) | -C(15) | -C(16) | -C(1) -168.10(9)  | C(10) | -C(9)  | -C(22) | -C(8)  | 172.6(1)   |
|-------|--------|--------|-------------------|-------|--------|--------|--------|------------|
| C(14) | -C(15) | -C(16) | -C(1) 12.9(2)     | C(12) | -C(21) | -C(22) | -C(9)  | 3.2(2)     |
| C(18) | -C(15) | -C(16) | -C(17) 8.8(2)     | C(20) | -C(21) | -C(22) | -C(9)  | -173.39(9) |
| C(14) | -C(15) | -C(16) | -C(17) -170.19(9) | C(12) | -C(21) | -C(22) | -C(8)  | -172.15(9) |
| C(3)  | -C(4)  | -C(17) | -C(16) 0.1(2)     | C(20) | -C(21) | -C(22) | -C(8)  | 11.3(1)    |
| C(3)  | -C(4)  | -C(17) | -C(5) 178.3(1)    | C(7)  | -C(8)  | -C(22) | -C(9)  | 172.16(9)  |
| C(1)  | -C(16) | -C(17) | -C(4) 0.3(1)      | C(23) | -C(8)  | -C(22) | -C(9)  | -13.4(2)   |
| C(15) | -C(16) | -C(17) | -C(4) -176.69(9)  | C(7)  | -C(8)  | -C(22) | -C(21) | -12.7(1)   |
| C(1)  | -C(16) | -C(17) | -C(5) -177.95(9)  | C(23) | -C(8)  | -C(22) | -C(21) | 161.8(1)   |
| C(15) | -C(16) | -C(17) | -C(5) 5.0(1)      | C(7)  | -C(8)  | -C(23) | -C(24) | 3.3(2)     |
| C(30) | -C(5)  | -C(17) | -C(4) -10.3(2)    | C(22) | -C(8)  | -C(23) | -C(24) | -171.2(1)  |
| C(6)  | -C(5)  | -C(17) | -C(4) 172.90(9)   | C(8)  | -C(23) | -C(24) | -C(25) | 1.0(2)     |
| C(30) | -C(5)  | -C(17) | -C(16) 167.95(9)  | C(23) | -C(24) | -C(25) | -C(26) | -2.7(2)    |
| C(6)  | -C(5)  | -C(17) | -C(16) -8.9(1)    | C(24) | -C(25) | -C(26) | -C(7)  | -0.1(2)    |
| C(14) | -C(15) | -C(18) | -C(19) -13.2(1)   | C(8)  | -C(7)  | -C(26) | -C(25) | 4.4(2)     |
| C(16) | -C(15) | -C(18) | -C(19) 167.79(9)  | C(19) | -C(7)  | -C(26) | -C(25) | 176.0(1)   |
| C(14) | -C(15) | -C(18) | -C(6) 160.73(9)   | C(5)  | -C(6)  | -C(27) | -C(28) | 4.9(2)     |
| C(16) | -C(15) | -C(18) | -C(6) -18.3(1)    | C(18) | -C(6)  | -C(27) | -C(28) | 176.83(9)  |
| C(27) | -C(6)  | -C(18) | -C(15) -157.39(9) | C(6)  | -C(27) | -C(28) | -C(29) | -0.5(2)    |
| C(5)  | -C(6)  | -C(18) | -C(15) 14.4(1)    | C(27) | -C(28) | -C(29) | -C(30) | -3.1(2)    |
| C(27) | -C(6)  | -C(18) | -C(19) 16.2(2)    | C(28) | -C(29) | -C(30) | -C(5)  | 2.2(2)     |
| C(5)  | -C(6)  | -C(18) | -C(19) -172.05(9) | C(6)  | -C(5)  | -C(30) | -C(29) | 2.3(2)     |
| C(15) | -C(18) | -C(19) | -C(20) 21.9(1)    | C(17) | -C(5)  | -C(30) | -C(29) | -174.6(1)  |
| C(6)  | -C(18) | -C(19) | -C(20) -151.6(1)  |       |        |        |        |            |