Dyes and Pigments 98 (2013) 100-105

Contents lists available at SciVerse ScienceDirect

Dyes and Pigments

Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity

Qi Lin^{a,*}, Pei Chen^a, Juan Liu^b, Yong-Peng Fu^a, You-Ming Zhang^a, Tai-Bao Wei^{a,*}

^a Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
^b College of Chemical Engineering, Northwest University of Nationality, Lanzhou, Gansu 730030, PR China

ARTICLE INFO

Article history: Received 24 September 2012 Received in revised form 5 January 2013 Accepted 30 January 2013 Available online 16 February 2013

Keywords: Copper(II) cations Colorimetric sensor Test strips Specific selectivity High sensitivity Acylthiosemicarbazide

ABSTRACT

The specific colorimetric detection of Cu^{2+} in the context of interference from coexisting metal ions in aqueous solution is a challenge. Therefore, a series of Cu^{2+} colorimetric chemosensors **CS1** ~**CS3**, bearing acylthiosemicarbazide moiety as binding site and nitrophenyl moiety as signal group, were designed and synthesized. Among these sensors, **CS3** showed excellent colorimetric specific selectivity and high sensitivity for Cu^{2+} in DMSO/H₂O binary solutions. When Cu^{2+} was added to the solution of **CS3**, a dramatic color change from brown to green was observed, while the cations Fe^{3+} , Hg^{2+} , Ag^+ , Ca^{2+} , Zn^{2+} , Pb^{2+} , Cd^{2+} , Ni^{2+} , Co^{2+} , Cr^{3+} and Mg^{2+} did not interfere with the recognition process for Cu^{2+} . The detection limits were 5.0×10^{-6} and 1.0×10^{-7} M of Cu^{2+} using the visual color changes and UV–vis changes respectively. Test strips based on **CS3** were fabricated, which could act as a convenient and efficient Cu^{2+} test kit.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Copper is an essential trace element, the third most abundant in humans, which is fundamental in many metabolic processes [1-5]. Excess copper, however, can cause various intoxications. For example, the increasing concentration of copper cations in body causes imbalance in cellular processes resulting in pathogenesis such as Wilson's disease [1,6,7], amyotrophic lateral sclerosis [8], Menkes syndrome [9,10], Alzheimer's disease [11] and Parkinson's disease [12]. According to the U.S. Environmental Protection Agency (EPA), the maximum acceptable level of Cu^{2+} in drinking water is $\sim 2 \times 10^{-5}$ M [13]. Therefore, the rational design and synthesis of efficient sensors to selectively recognize copper cations is an important topic in supramolecular chemistry [14–19]. Although previous work has involved the development of a wide variety of chemical [20–52] and physical [53–55] sensors for the detection of Cu^{2+} , so far, improving the detection selectivity in the context of interference from coexisting metal ions has been challenging. Moreover, most of these methods require expensive equipment and involve time-consuming and laborious procedures that can be

carried out only by trained professionals, which significantly restricting the practical application of these Cu²⁺ sensors. For simplicity, convenience and low cost, easily-prepared Cu²⁺ colorimetric sensors [27–33] are needed. On the other hand, in biological and environmental systems, copper–sensor interactions commonly occur in aqueous solution [15,16,28,29,34–44], therefore, much attention has been paid to developing copper sensors that work in the aqueous phase [34–44].

In view of this requirement and as part of our research effort devoted to ion recognition [56-60], an attempt was made to obtain efficient colorimetric sensors which could sense Cu²⁺ with specific selectivity and high sensitivity in aqueous solutions. This paper details the design and synthesis of a series of Cu²⁺ colorimetric sensors CS1 ~ CS3 bearing acylthiosemicarbazide and nitrophenyl groups (Scheme 1). The strategies for the design of these sensors were as follows. Firstly, a acylthiosemicarbazide group was introduced as the binding site. The C=S and C=O moiety on the acylthiosemicarbazide group possesses a high affinity with Cu^{2+} . Secondly, in order to achieve "naked-eye" colorimetric recognition, we introduced nitrophenyl group as the signal group. Finally, the sensor was designed to be easy to synthesize. In order to establish the signal group's contribution to the sensor's colorimetric sensing abilities for Cu^{2+} , compound **CS1** which without containing the nitro-group was also synthesized.

^{*} Corresponding authors. E-mail addresses: linqi2004@126.com (Q. Lin), weitaibao@126.com (T.-B. Wei).

CS1: X¹=X²=H; CS2:X¹=H, X²=NO₂; CS3: X¹=X²=NO₂

Scheme 1. Synthetic procedures for sensors CS1 ~ CS3.

2. Experimental section

2.1. Materials and physical methods

¹H NMR spectra were recorded with a Mercury-400BB spectrometer at 400 MHz. ¹H chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, δ scale with the solvent resonances as internal standards). Ultraviolet–visible (UV–vis) spectra were recorded on a Shimadzu UV-2550 spectrometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer.

The inorganic salts $Ca(ClO_4)_2 \cdot 6H_2O$, $Mg(ClO_4)_2 \cdot 6H_2O$, $Cd(ClO_4)_2 \cdot 6H_2O$, $Fe(ClO_4)_3 \cdot 6H_2O$, $Co(ClO_4)_2 \cdot 6H_2O$, $Ni(ClO_4)_2 \cdot 6H_2O$, $Cu(ClO_4)_2 \cdot 6H_2O$, $Zn(ClO_4)_2 \cdot 6H_2O$, $Pb(ClO_4)_2 \cdot 3H_2O$, $AgClO_4 \cdot H_2O$ and $Cr(ClO_4)_3 \cdot 6H_2O$ were purchased from Alfa Aesar Chemical Reagent Co. (Tianjin, China). All solvents and other reagents were of analytical grade.

2.2. General procedure for UV-vis spectroscopy

All the UV—vis experiments were carried out in DMSO solution on a Shimadzu UV-2550 spectrometer. Any changes in the UV—vis spectra of the synthesized compound were recorded on the addition of perchlorate metal salts while the ligand concentration was kept constant in all experiments.

2.3. General procedure for ¹H NMR

For ¹H NMR titrations, two stock solutions were prepared in DMSO- d_6 : one of them contained the host only and the second one contained an appropriate concentration of guest. Aliquots of the two solutions were mixed directly in NMR tubes.

2.4. Synthesis and characterization of sensors CS1 ~ CS3

Coumarin-3-carboxylic acid (3 mmol) and bis(trichlormethyl) carbonate (BTC, 1.5 mmol) were added into dry dichloromethane (15 mL). Then the reaction mixture was stirred at 40 °C for 3 h under reflux. In this process, the coumarin-3-carboxylic acid has been converted to the coumarin-3-carbonyl chloride, which did not need separating. Then, dry and powdered KSCN (4 mmol) and PEG-400 (0.1 mL, as phase transfer catalyst) were added to the reaction solution and stirred it at room temperature for 2 h, and the inorganic salts were filtered out. The filtrate was a solution of the corresponding coumarin-3-carbonyl isothiocyanate, which did not need separating also. Then 2.8 mmol of phenylhydrazine was added to the filtrate solution and stirred at room temperature for 3 h, yielding the precipitate of **CS1**. After evaporating the solvent in a vacuum, the

precipitate was filtered, washed with 75% ethanol three times, and recrystallized with ethanol to get white crystal of **CS1**. The other compounds **CS2** and **CS3** were prepared by similar procedures.

CS1: yield: 81%; m.p. 256–259 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.36 (s, 1H, NH), 8.64 (s, 2H, NH, ArH), 8.37 (s, 1H, ArH), 7.83–7.30 (m, 9H, ArH); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 162.40, 158.89, 153.95, 147.57, 143.10, 134.50, 133.20, 130.21, 129.35, 128.94, 125.21, 124.96, 124.32, 118.84, 118.01, 116.37, 116.25; IR (KBr, cm⁻¹) v: 3215 (N–H), 1717, 1668 (C=O), 1152 (C=S); Anal. Calcd. for C₁₇H₁₃N₃O₃S: C, 60.17; H, 3.86; N, 12.38; Found: C, 60.15; H, 3.84; N, 12.41.

CS2: yield: 85%; m.p. 265–268 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 10.41 (s, 1H, NH), 9.34 (s, 1H, NH), 8.82 (s, 2H, NH, ArH), 8.12–8.09 (d, *J* = 12, 1H, ArH), 8.00–7.97 (d, *J* = 12, 1H, ArH), 7.81–7.76 (m, 1H, ArH), 7.56–7.44 (m, 2H, ArH), 6.92–6.88 (m, 2H, ArH); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 162.06, 159.32, 154.41, 153.98, 147.46, 138.44, 134.35, 130.25, 125.87, 125.26, 119.44, 118.27, 116.30, 111.01; IR (KBr, cm⁻¹) v: 3227 (N–H), 1719, 1681 (C=O), 1154 (C=S); Anal. Calcd. for C₁₇H₁₂N₄O₅S: C, 53.12; H, 3.15; N, 14.58; Found: C, 53.09; H, 3.17; N, 14.56.

CS3: yield: 80%; m.p. 273–276 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 10.79 (s, 1H, NH), 10.33(s, 1H, NH), 8.91 (s, 2H, NH, ArH), 8.36–8.32 (d, *J* = 16, 1H, ArH), 8.05–8.03 (d, *J* = 8, 1H, ArH), 7.83–7.79 (m, 1H, ArH), 7.58–7.35 (m, 4H, ArH); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 161.64, 159.34, 154.07, 148.24, 148.11, 137.04, 134.64, 130.43, 130.00, 125.34, 123.09, 118.69, 118.21, 116.32, 115.89; IR (KBr, cm⁻¹) v: 3235 (N–H), 1708, 1617 (C=O), 1159 (C=S); Anal. Calcd. for C₁₇H₁₁N₅O₇S: C, 47.55; H, 2.58; N, 16.31; Found: C, 47.58; H, 2.56; N, 16.33.

3. Results and discussion

In order to investigate the Cu²⁺ recognition abilities of the sensors **CS1~3** in aqueous solution, we carried out a series of Host–Guest recognition experiments in DMSO/H₂O (9:1/v:v) HEPES buffered solution at pH 7.0. The colorimetric sensing abilities were primarily investigated by adding various cations (Ca²⁺, Mg²⁺, Cd²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Hg²⁺, Zn²⁺, Pb²⁺, Ag⁺ and Cr³⁺) to the DMSO/H₂O (9:1/v:v, pH 7.0) solutions of sensor **CS3**. When 5 equivalent (equiv.) of Cu²⁺ was added to the solution of **CS3**

Fig. 1. Color changes observed upon the addition of various cations (5 equiv.) to the solutions of sensor **CS3** (2×10^{-5} M) in DMSO/H₂O (9:1, v:v; HEPES buffered, pH 7.0) solutions. Left to right: free **CS3**, Fe³⁺, Hg²⁺, Ag⁺ Ca²⁺, Cu²⁺, Mg²⁺, Cd²⁺, Co²⁺, Ni²⁺, Zn²⁺, Pb²⁺, and Cr³⁺. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. UV–vis absorption spectra of **CS3** in the presence of 5 equiv. of various cations in DMSO/H₂O (9:1, v:v; HEPES buffered, pH 7.0) solution at room temperature.

 $(2.0\times10^{-5}$ M), the sensor responded with dramatic color changes from brown to green (Fig. 1). In the corresponding UV–vis spectrum (Fig. 2), the absorption peak at 475 nm took place a 25 nm blue shift to 450 nm. Meanwhile, a new peak appeared at 650 nm, which attributed to the color change from brown to green. However, when adding 5 equiv. of other cations Ca²⁺, Mg²⁺, Cd²⁺, Fe³⁺, Co²⁺, Ni²⁺, Hg²⁺, Zn²⁺, Pb²⁺, Ag⁺ and Cr³⁺ into the DMSO/H₂O (9:1/ v:v, pH 7.0) solution of sensor **CS3** respectively, no significant color changes were observed. Meanwhile, in the corresponding UV–vis spectra (Fig. 2), only a slight absorption changes were induced by adding Fe³⁺, Ni²⁺, Hg²⁺, Pb²⁺, and Cr³⁺. Other cations couldn't induce any UV–vis changes. Therefore, in DMSO/H₂O solution, **CS3** showed specific colorimetric selectivity to Cu²⁺.

In order to exclude the possibility of these results being due to Cu^{2+} self absorption, a blank test were carried out *via* adding the same amount of Cu^{2+} to blank DMSO/H₂O solution (without containing **CS3**), as a result, no color change was observed. In corresponding UV–vis spectra, there is no absorption peak appeared at

Fig. 3. UV–vis absorption spectra of **CS2** in the presence of 5 equiv. of various cations in DMSO/H₂O (9:1, v:v; HEPES buffered, pH 7.0) solution at room temperature.

Fig. 4. UV–vis absorption spectra of **CS1** in the presence of 5 equiv. of various cations in DMSO/H₂O (9:1, v:v; HEPES buffered, pH 7.0) solution at room temperature.

Fig. 5. (a) A Job plot of **CS3** and Cu^{2+} , which indicated that the stoichiometry of **CS3**- Cu^{2+} complex was 2:1.

Fig. 6. UV-vis spectral titration of sensor CS3 with Cu²⁺ in DMSO solution.

Fig. 7. The proposed reaction mechanism of the sensor CS3 with Cu²⁺.

the visible region (Fig. 2). Which confirmed that **CS3** could colorimetrically detect Cu^{2+} in DMSO/H₂O binary solution.

The same tests were applied to **CS2** and **CS1**. In this case, when various cations were added to the DMSO/H₂O (9:1/v:v, pH 7.0) solutions of **CS2** or **CS1** respectively, no obvious color changes were observed. In corresponding UV–vis spectra of **CS2** or **CS1** (Figs. 3 and 4), although Cu²⁺, Hg²⁺, Pb²⁺ and Fe³⁺ induced the

Fig. 8. (a) UV–vis absorption spectra sensor **CS3** (2.0×10^{-5} M) in DMSO/H₂O solutions in the presence of Cu²⁺ (5 equiv.) and the miscellaneous cations Ca²⁺, Mg²⁺, Cd²⁺, Fe³⁺, Co²⁺, Ni²⁺, Hg²⁺, Zn²⁺, Pb²⁺, Ag⁺ and Cr³⁺ (5 equiv., respectively). (b) UV–vis absorption at 475 nm of sensor **CS3** (2.0×10^{-5} M) in DMSO solutions in the presence of Cu²⁺ (5 equiv.) and the miscellaneous cations Ca²⁺, Mg²⁺, Cd²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Pb²⁺, Ag⁺ and Cr³⁺ (5 equiv., respectively).

absorption peaks at ultraviolet region took place slight shifts, however, at the visible region of these spectra, there is no absorption peak appeared. Which indicated that **CS2** or **CS1** couldn't colorimetric sense any cations under these conditions.

Therefore, according to these results we can find that the nitrophenyl moiety acted as a signal group and played a crucial role in the process of colorimetric recognition. The sensor **CS3** employ 2,4-dinitrophenyl as signal groups, which possess colorimetric response abilities for Cu²⁺ cations. Because the **CS1** doesn't employ nitrophenyl as signal group, it could not colorimetric sense any cations. Although **CS2** employ a nitrophenyl as single group, owing to **CS2** only has one nitrophenyl group, the chromogenic capability of **CS2** is too weak to colorimetric recognize any cations also.

As **CS3** showed specific selectivity for Cu^{2+} , a series of experiments was carried out to investigate the Cu^{2+} recognition capability and mechanism of **CS3**. To gain an insight into the stoichiometry of the **CS3**- Cu^{2+} complex, the method of continuous variations (Job's method) was used (Fig. 5). When the molar fraction of sensor **CS3** was 0.67, the absorbance value approached a maximum, which demonstrated the formation of a 2:1 complex between the sensor **CS3** and Cu^{2+} [61].

The binding properties of sensor **CS3** with Cu^{2+} were further studied by UV–vis titration experiments (Fig. 6). It turned out that in DMSO solution of **CS3**, with an increasing amount of Cu^{2+} , the absorption peak at 480 nm gradually shifted to 454 nm. Meanwhile, at 650 nm, a new peak gradually appeared. Three clear isosbestic points were observed at 311, 387 and 530 nm, which indicated the formation of an **CS3**-Cu²⁺ complex. The binding constant K_s of the metal complex was determined by Equation (1) [61], assuming that the concentration of free metal is about equal to its total concentration ($[M] \approx [M]_t$), where A_0 , A_e , and A_m are the corrected UV–Vis absorbances of the complex at initial, interval, and the final states at which the complex was fully formed upon addition of metal ion,

Fig. 9. Color changes observed upon the addition of varying quantities of Cu^{2+} (from left to right: free **CS3**, 1×10^{-4} M, 1×10^{-5} M, 1×10^{-6} M, 1×10^{-7} M) to the solutions of sensor **CS3** (1×10^{-5} M; DMSO/H₂O, 9:1, v:v; HEPES buffered, pH 7.0). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Photographs of the **CS3** based test strips colorimetric detect Cu²⁺. (a) Left to right: free test strip, test strip + DMSO, test strip + DMSO solution of Cu²⁺. (b) After addition the DMSO solutions of various metal cations respectively and dried them under room temperature. Left to right: free, Cu²⁺, Ca²⁺, Mg²⁺, Cd²⁺, Fe³⁺, Co²⁺, Ni²⁺, Hg²⁺, Zn²⁺, Pb²⁺, Ag⁺ and Cr³⁺.

respectively. The binding constant K_s was determined from the plot of the linear regression of $\ln[(A_0 - A_e)/(A_e - A_m)]$ versus $\ln[M]$ in Equation (1), to obtain the intercept as $\ln K_s$ and the slope as n. The association constant K_s of the chemosensors **CS3** toward Cu²⁺ was calculated as $1.5 \times 10^4 \text{ M}^{-1}$.

$$\ln[(A_0 - A_e)/(A_e - A_m)] = \ln K_s + n\ln[M]$$
(1)

The recognition mechanism of the sensor **CS3** with Cu²⁺ were investigated by IR spectra and ¹H NMR titration methods. In the IR spectra (Fig. S-1 in Supplementary data) of **CS3**, the stretching vibration absorption peaks of coumarin C=O, acyl C=O and thiosemicarbazide C=S appeared at 1709, 1616 and 1184 cm⁻¹ respectively. However, when **CS3** coordinated with Cu²⁺, the stretching vibration absorption peaks of thiosemicarbazide C=S shifted to 1143 cm⁻¹, while, other absorption peaks such as the stretching vibration absorption peaks of N–H, coumarin C=O and acyl C=O didn't take place any shift, which indicated that **CS3** complexed with Cu²⁺ *via* Cu²⁺-S coordination bond as shown in Fig. 7.

The results of ¹H NMR titration experiments also support this presumption. As shown in Fig. 7, before addition of Cu^{2+} , there were two intramolecular hydrogen bonds in the molecular structure of **CS3**: one was N–H^a...O=C, and the other was N–H^b...O=C. Owing to the fact that N-H^a...O=C and N-H^b...O=C are very strong intramolecular hydrogen bonds, as shown in Fig. S-2 in Supplementary data, the ¹H NMR chemical shift of N-H^a and N-H^b appeared at the low field of the molecular **CS3** at δ 10.79 and 10.33 ppm respectively. The N–H^c appeared at 8.91 ppm. After the addition of 0.2–2.5 equivalent of Cu^{2+} into the DMSO- d_6 solution of **CS3** gradually, the corresponding ¹H NMR spectra didn't take place any changes. Which indicated that due to the shackle of strong hydrogen bonds N-H^a...O=C and N-H^b...O=C, the coumarin C= O and acyl C=O didn't coordinate with Cu^{2+} . Therefore, the **CS3** coordinated with Cu^{2+} only though C=S and form a CS3- Cu^{2+} complex.

An important feature of the sensor is its high selectivity toward the analyte over other competitive species. The variations of UV– vis spectral and visual color changes of sensor **CS3** in DMSO/H₂O binary solutions caused by the metal ions Ca²⁺, Mg²⁺, Cd²⁺, Fe³⁺, Co²⁺, Ni²⁺, Hg²⁺, Zn²⁺, Pb²⁺, Ag⁺ and Cr³⁺ were recorded in Fig. 8. It is noticeable that the miscellaneous competitive metal ions did not lead to any significant interference. In the presence of these ions, the Cu²⁺ still produced similar color and absorption changes (Fig. 8). These results shown that the selectivity of sensor **CS3** toward Cu²⁺ was not affected by the presence of other cations and suggested that it could be used as a colorimetric chemosensor for Cu²⁺.

The colorimetric and UV–vis limits of sensor **CS3** for Cu²⁺ cation were also tested. As presented in Fig. 9, the detection limit using visual color changes is a concentration of 1.0×10^{-6} M of Cu²⁺ cation in 1.0×10^{-5} M solution of sensor **CS3**. While, as shown in Fig. 6, with the gradual addition of Cu²⁺, a sharp increase in the absorbance at 480 nm and an obvious decrease in the absorbance at 344 nm are observed. Simultaneously, the ratio of A480/A344 increase with the increasing in Cu²⁺ concentrations, which allowing the Cu²⁺ concentration to be determined ratiometrically. The

detection limit of the UV–vis changes calculated on the basis of $3s_B/S$ [62] is 1.0×10^{-7} M for Cu^{2+} cation, which pointing to the high detection sensitivity.

To investigate the practical application of chemosensor CS3, test strips were prepared by immersing filter papers into a DMSO solution of CS3 (0.1 M) and then drying in air. The test strips containing **CS3** were utilized to sense different cations. As shown in Fig. 10, when different cation solutions were added on the test kits respectively, the obvious color change was observed only with Cu^{2+} solution. Therefore, the test strips could directly detect Cu^{2+} in DMSO or DMSO/H₂O binary solutions. In addition, the test strips could detect Cu^{2+} in pure water also, before adding the pure water solution of Cu²⁺ to the test strip, one drop of DMSO has been added to the test strip and the test strip was moistened by DMSO. Then the pure water solution of Cu²⁺ was added to the DMSO moistened test strip, the test strip carried out similar color changes just like the DMSO/H₂O solution of Cu^{2+} added to the dry test strip. Therefore, the DMSO moistened test strip could conveniently detect the Cu²⁺ in pure water.

4. Conclusion

An easy-to-make Cu^{2+} colorimetric sensor **CS3**, bearing thiourea moiety as the binding site and nitrophenyl moiety as the signal group, was designed and synthesized. This sensor showed specific selectivity for Cu²⁺ in DMSO/H₂O binary solutions. Comparison with sensor CS1 indicated that the nitrophenyl moiety acted as a signal group and played a crucial role in the process of colorimetric recognition. Investigation of the recognition mechanism indicated that the sensor **CS3** recognized Cu²⁺ by forming a stable 2:1 **CS3**-Cu²⁺ complex. The coexistence of other cations did not interfere with the Cu²⁺ recognition process. Moreover, the detection limit of the sensor **CS3** toward Cu^{2+} was 1.0×10^{-7} M, which indicated that the sensor CS3 may be useful as a colorimetric sensor for monitoring Cu²⁺ levels in physiological and environmental systems. In addition, test strips based on CS3 were fabricated, which also exhibits a good selectivity to Cu²⁺ as in solution. We believe the test strips could act as a convenient and efficient Cu²⁺ test kit.

Acknowledgment

This work was supported by the National Natural Science Foundation of china (NSFC) (Nos. 21064006, 21161018 and 21262032), the Natural Science Foundation of Gansu Province (1010RJZA018) and the Program for Changjian Scholars and Innovative Research Team in University of Ministry of Education of China (IRT1177).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.dyepig.2013.01.024.

References

 Angelova M, Asenova S, Nedkova V, Koleva-Kolarova R. Copper in the human organism. Trakia J Sci 2011;9:88–98.

- [2] Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. Am J Clin Nutr 1998.67.9525-95
- [3] Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem 2010; 79:537-62
- Thiele DJ, Gitlin JD. Assembling the pieces. Nat Chem Biol 2008;4:145-7.
- [5] Mathie A, Sutton GL, Clarke CE, Veale EL. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 2006;111:567-83.
- Madsen E. Gitlin ID. Copper and iron disorders of the brain. Annu Rev Neurosci 2007;30:317-37.
- [7] Hirayama T, Van de Bittnera GC, Grav LW, Lutsenko S, Chang CI, Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc Natl Acad Sci U S A 2012;109:2228-33.
- Valentine JS, Hart PJ. Misfolded CuZnSOD and amyotrophic lateral sclerosis. [8] Proc Natl Acad Sci U S A 2003;100:3617-22.
- [9] Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase, Nat Genet 1993:3:7-13.
- [10] Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 2011:7:15-29.
- [11] Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer's disease. I Biol Inorg Chem 2010:15:61-76.
- Lee JC, Gray HB, Winkler JR. Copper(II) binding to α -synuclein, the Parkinson's [12] protein. J Am Chem Soc 2008;130:6898-9.
- [13] Guidelines for drinking-water quality. Geneva: World Health Organization; 1996
- Aragay G. Pons I. Merkoci A. Recent trends in macro-, micro-, and [14] nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 2011:111:3433-58
- Quang DT, Kim JS. Fluoro- and chromogenic chemodosimeters for heavy metal [15] ion detection in solution and biospecimens. Chem Rev 2010;110:6280-301.
- [16] Formica M, Fusi V, Giorgi L, Micheloni M. New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 2012;256:170-92
- [17] Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 2011;40:79-93.
- Yang YM, Zhao Q, Feng W, Li FY. Luminescent chemodosimeters for bio-[18] imaging. Chem Rev 2012. http://dx.doi.org/10.1021/cr2004103
- [19] Vendrell M, Zhai D, Er JC, Chang Y-T. Combinatorial strategies in fluorescent probe development. Chem Rev 2012;112:4391-420.
- [20] Zhang XL, Liu T, Han G, Li HQ, Duan CY. Dual-functional gadolinium-based copper(II) probe for selective magnetic resonance imaging and fluorescence sensing. Inorg Chem 2012;51:2325-31.
- Basa PN, Sykes AG. Differential sensing of Zn(II) and Cu(II) via two indepen-[21] dent mechanisms. J Org Chem 2012. http://dx.doi.org/10.1021/jo301193n.
- Zhang JJ, Riskin M, Tel-Vered R, Tian H, Willner I. Optically activated uptake and release of Cu^{2+} or Ag⁺ ions by or from a photoisomerizable monolayer-[22] modified electrode. Langmuir 2011;27:1380-6.
- Guo ZQ, Zhu WH, Xiong YY, Tian H. Multiple logic fluorescent thermometer [23] system based on N-isopropylmethacrylamide copolymer bearing dicyanomethylene-4H-pyran moiety. Macromolecules 2009;42:1448-53.
- Guo ZQ, Zhu WH, Tian H. Hydrophilic copolymer bearing dicyanomethylene-[24] 4H-pyran moiety as fluorescent film sensor for Cu²⁺ and pyrophosphate anion. Macromolecules 2010;43:739-44.
- Chen SJ, Yang YH, Wu Y, Tian H, Zhu WH. Multi-addressable photochromic [25] terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctional molecular logic gates on unimolecular platform. J Mater Chem 2012;22:5486-94.
- [26] Chamjangali MA, Soltanpanah S, Goudarzi N. Development and characterization of a copper optical sensor based on immobilization of synthesized 1phenyl-1,2-propanedione-2-oxime thiosemicarbazone on a triacetylcellulose membrane. Sens Actuator B 2009;138:251-6.
- Narayanaswamy N, Govindaraju T. Aldazine-based colorimetric sensors for [27] Cu²⁺ and Fe³⁺. Sens Actuator B 2012;161:304–10.
- Chereddy NR, Thennarasu S. Synthesis of a highly selective bis-rhodamine [28] chemosensor for naked-eye detection of Cu2+ ions and its application in bio-imaging. Dye Pigment 2011;91:378-82.
- [29] Chandrasekhar V, Das S, Yadav R, Hossain S, Parihar R, Subramaniam G, et al. Novel chemosensor for the visual detection of copper(II) in aqueous solution at the ppm level. Inorg Chem 2012;51:8664-6.
- [30] Tang LJ, Li FF, Liu MH, Nandhakumar R. Single sensor for two metal ions: colorimetric recognition of Cu²⁺ and fluorescent recognition of Hg²⁺. Spectrochim Acta A 2011;78:1168-72.
- Mahapatra AK, Hazra G, Das NK, Goswami S. A highly selective [31] triphenylamine-based indolylmethane derivatives as colorimetric and turnoff fluorimetric sensor toward Cu²⁺ detection by deprotonation of secondary amines. Sens Actuator B 2011;156:456-62.
- Wang HX, Yang L, Zhang WB, Zhou Y, Zhao B, Li XY. A colorimetric probe for [32] copper(II) ion based on 4-amino-1,8-naphthalimide. Inorg Chim Acta 2012; 381.111-6
- Shao N, Jin JY, Wang H, Zhang Y, Yang RH, Chan WH. Tunable photochromism [33] of spirobenzopyran via selective metal ion coordination: an efficient visual and ratioing fluorescent probe for divalent copper ion. Anal Chem 2008;80: 3466-75.

- [34] Yang X, Wang EK. A nanoparticle autocatalytic sensor for Ag⁺ and Cu²⁺ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Anal Chem 2011;83:5005-11.
- Wang WD, Fu AF, You JS, Gao G, Lan JB. Squaraine-based colorimetric and [35] fluorescent sensors for Cu²⁺-specific detection and fluorescence imaging in living cells. Tetrahedron 2010;66:3695–701.
- [36] Ballesteros E, Moreno D, Gómez T, Rodríguez T, Rojo J, García-Valverde M, et al. A new selective chromogenic and turn-on fluorogenic probe for copper(II) in water-acetonitrile 1:1 solution. Org Lett 2009;11:1269–72. [37] Hu Z-Q, Wang X-M, Feng Y-C, Ding L, Lu H-Y. Sulfonyl rhodamine hydrazide: a
- sensitive and selective chromogenic and fluorescent chemodosimeter for copper ion in aqueous media. Dye Pigment 2011;88:257-61.
- [38] Zhang J, Yu CW, Qian SY, Lu G, Chen JL. A selective fluorescent chemosensor with 1, 2, 4-triazole as subunit for Cu(II) and its application in imaging Cu(II) in living cells. Dye Pigment 2012;92:1370–5.
- Yuan L, Lin WY, Chen B, Xie YN. Development of FRET-based ratiometric [39] fluorescent Cu²⁺ chemodosimeters and the applications for living cell imaging. Org Lett 2012;14:432–5.
- Wang LN, Yan JX, Qin WW, Liu WS, Wang R. A new rhodamine-based single molecule multianalyte (Cu^{2+} , Hg^{2+}) sensor and its application in the biological [40] system. Dye Pigment 2012;92:1083-90.
- [41] Qi JJ, Han MS, Tung C. A benzothiazole alkyne fluorescent sensor for Cu detection in living cell. Bioorg Med Chem Lett 2012;22:1747-9.
- Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. A selective turn-on fluores-[42] cent sensor for imaging copper in living cells. J Am Chem Soc 2006;128:10-1.
- [43] Domaille DW, Zeng L, Chang CJ. Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J Am Chem Soc 2010:132:1194-5.
- Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu²⁺ lons in [44] aqueous solution with high sensitivity and selectivity. J Am Chem Soc 2007; 129.9838 - 9
- [45] Liu ZP, Zhang CL, Wang XQ, He WJ, Guo ZJ. Design and synthesis of a ratiometric fluorescent chemosensor for Cu(II) with a fluorophore hybridization approach. Org Lett 2012;14:4378-81.
- Yu CW, Wang T, Xu K, Zhao J, Li MH, Weng SX, et al. Characterization of a [46] highly Cu²⁺-selective fluorescent probe derived from rhodamine B. Dye Pigment 2013;96:38-44.
- Aksuner N, Henden E, Yilmaz I, Cukurovali A. A highly sensitive and selective [47] fluorescent sensor for the determination of copper(II) based on a schiff base. Dye Pigment 2009;83:211-7
- [48] Wang JZ, Zhou XP, Ma HB, Tao GH. Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection. Spectrochim Acta A 2011;81:178-83.
- Koneswaran M, Narayanaswamy R. l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu^{2+} ion. Sens Actuator B 2009;139:104–9. Strasser CE, Catalano VJ. "On-Off" Au(1)...Cu(1) interactions in a Au(NHC)₂ [49]
- [50] luminescent vapochromic sensor. J Am Chem Soc 2010;132:10009-11.
- Viswanathan K. Utilizing a tripeptide conjugated fluorescent hybrid nano-[51 particles as a fluorescence sensor for the determination of copper ions. Sens . Actuator A 2012;175:15—8.
- [52] Barja BC, Bari SE, Marchi MC, Iglesias FL, Bernardi M. Luminescent Eu(III) hybrid sensors for in situ copper detection. Sens Actuator B 2011;158: 214-22
- Meuccia V, Laschib S, Minunnib M, Prettic C, Intorrea L, Soldania G, et al. An [53] optimized digestion method coupled to electrochemical sensor for the determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping voltammetry. Talanta 2009;77:1143-8.
- [54] Oztekin Y, Ramanaviciene A, Ramanavicius A. Electrochemical copper (II) sensor based on self-assembled 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate. Sens Actuator B 2011;155:612-7.
- Shirmardi-Dezaki A, Shamsipur M, Akhond M, Sharghi H, Doroodmand MM. [55] Array of potentiometric sensors for simultaneous determination of copper, silver, and cadmium ions in complex mixtures. Electrochim Acta 2012;62: 84-90.
- [56] Zhang Y-M, Lin Q, Wei T-B, Wang D-D, Yao H, Wang Y-L. Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution. Sens Actuator B 2009;137:447-55.
- Zhang Y-M, Lin Q, Wei T-B, Qin X-P, Li Y. A novel smart organogel which could allow a two channel anion response by proton controlled reversible sol-gel transition and color changes. Chem Commun 2009:6074-6.
- [58] Liu M-X, Wei T-B, Lin Q, Zhang Y-M. A novel 5-mercapto triazole schiff base as a selective chromogenic chemosensor for Cu²⁺. Spectrochim Acta A 2011;79: 1837-42.
- [59] Li J-Q, Wei T-B, Lin Q, Li P, Zhang Y-M. Mercapto thiadiazole-based sensor with colorimetric specific selectivity for AcO- in aqueous solution. Spectrochim Acta A 2011;83:187-93.
- Lin Q, Fu Y-P, Chen P, Wei T-B, Zhang Y-M. Colorimetric chemosensors designed to provide high sensitivity for Hg^{2+} in aqueous solutions. Dye [60] Pigment 2013;96:1-6.
- Liu Y, You C, Zhang H. Supramolecular chemistry, molecular recognition and [61] assembly of synthetic receptors. Tianjin: Nankai University Press; 2001.
- [62] Analytical Methods Committee. Recommendations for the definition, estimation and use of the detection limit. Analyst 1987;112:199-204.