Accepted Manuscript

Effect of CO₂ on hydrogen absorption in Ti-Zr-Mn-Cr based AB₂ type alloys

Nobuko Hanada, Hirotaka Asada, Tessui Nakagawa, Hiroki Higa, Masayoshi Ishida, Daichi Heshiki, Tomohiro Toki, Itoko Saita, Kohta Asano, Yumiko Nakamura, Akitoshi Fujisawa, Shinichi Miura

PII: S0925-8388(17)30483-8

DOI: 10.1016/j.jallcom.2017.02.067

Reference: JALCOM 40795

To appear in: Journal of Alloys and Compounds

Received Date: 21 October 2016

Revised Date: 4 February 2017

Accepted Date: 7 February 2017

Please cite this article as: N. Hanada, H. Asada, T. Nakagawa, H. Higa, M. Ishida, D. Heshiki, T. Toki, I. Saita, K. Asano, Y. Nakamura, A. Fujisawa, S. Miura, Effect of CO₂ on hydrogen absorption in Ti-Zr-Mn-Cr based AB₂ type alloys, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.02.067.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effect of CO₂ on hydrogen absorption in Ti-Zr-Mn-Cr based AB₂ type alloys

Nobuko Hanada^{a,*}, Hirotaka Asada^a, Tessui Nakagawa^b, Hiroki Higa^a, Masayoshi Ishida^a, Daichi Heshiki^c, Tomohiro Toki^b, Itoko Saita^d, Kohta Asano^d, Yumiko Nakamura^d, Akitoshi Fujisawa^e, and Shinichi Miura^e

^a Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

^b Faculty of Science, University of Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan

^c Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan

^d National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibraki 305-8565, Japan

^e Kobe Steel Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271, Japan

Abstract

The effect of CO₂ on hydrogen absorption has been investigated for AB₂ type alloys of $Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}$ (Ti-Zr-Mn-Cr) and $Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}M_{0.1}$ (Ti-Zr-Mn-Cr-M, M = Fe, Co, or Ni) in order to develop metal hydrides for a hydrogen purification and storage system. A magnitude of CO₂ poisoning tolerance was evaluated by comparing hydrogen absorption properties before and after CO₂ exposure. As the results, an order of CO₂ tolerance was Ti-Zr-Mn-Cr-Ni < Ti-Zr-Mn-Cr < Ti-Zr-Mn-Cr-Co < Ti-Zr-Mn-Cr-Fe. It suggests that the AB₂ alloys have dependence of additive 3d-transition elements on CO₂ tolerance.

Ti-Zr-Mn-Cr-Fe has the highest CO_2 tolerance among them. The additive of Fe and Co improves tolerance of CO_2 poisoning for hydrogen absorption properties. On the other hand, Ni element in AB₂ alloy decreases CO_2 tolerance. The estimated enthalpy change between CO_2 and the alloys surface was comparable to the formation of metal oxide. And the CO_2 -exposed AB₂ alloys after reacting with hydrogen desorbed methane gas. Therefore, CO_2 would dissociate to CO and O on the surface of alloys, and then oxygen atom reacts with the alloys.

Keywords: hydrogen absorbing materials, carbon dioxide, gas-solid reactions, poisoning tolerance, kinetics

*Corresponding author: Tel&Fax: +81-29-853-5149, E-mail: <u>hanada@kz.tsukuba.ac.jp</u> Address: Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

1. Introduction

Polymer electrolyte fuel cells (PEFC) have advantages like high efficiency, low operating temperature, e.g. 80 °C, and quick response for electric load demand. It is important for PEFCs to provide pure hydrogen since the cell voltage drops when impurities exist in hydrogen gas [1]. When hydrogen is produced by steam reforming and following water-gas shift reaction [2], it involves 20-25% CO₂ and 0.5-1% CO as by-products. A CO Adsorbent and Metal hydride Intermediate-Buffer (COA-MIB) system has been proposed to purify from methane reforming gas and store hydrogen [3-9]. This system can supply pure hydrogen to PEFCs corresponding to electric load demand. The CO adsorbent used in this system decreases CO less than 1 ppm. The metal hydride stores hydrogen from the CO₂-mixed gas, and it desorbs pure hydrogen when required. The metal hydride used currently is LaNi₅-based AB₅ type alloy which contains Misch Metal in A site and mainly Ni in B site because of excellent tolerance of CO_2 poisoning [8]. Here, CO_2 poisoning is defined as the decrease of hydrogen absorption kinetics and hydrogen absorption amount. It is important for practical application of the COA-MIB system to reduce cost and volume of the metal hydride tank by replacing with one of low-cost and large hydrogen capacity. For designing the high functional metal hydrides with high tolerance of CO_2 poisoning, we investigated the CO_2 poisoning factors of constituent elements in AB₅ type alloys of LaNi₅, CaNi₅, and LaCo₅ [10]. As the result, CaNi₅ showed the best tolerance of CO_2 poisoning among them. This means that Ni in B site has more important role to maintain high CO₂ tolerance rather than Co in LaCo₅ and the rare-earth metal of La in LaNi₅. It has been reported that surface modified AB₅-type alloys have higher poisoning tolerance and separates hydrogen from CO₂ and CO containing gas mixtures [11-13]. For other type of metal hydrides, TiFe alloys have been investigated the effects of CO₂ as the impurity gas on hydrogen sorption properties [14-16]. The hydrogen

absorption rate and capacity decreased even under 0.1% CO₂ concentration [15].

We focused on AB_2 type laves phase alloys because of higher hydrogen capacity than AB_5 , rare earth free, and easy activation [17]. There have been a number of publications reporting hydrogen sorption properties for AB_2 type alloys [17-19]. We chose C14 laves phase alloys of Ti-Zr-Mn-Cr [18] as possible candidate for COA-MIB system because it is composed of low cost elements such as Zr and Mn.

In this study, an effect of CO₂ on hydrogen absorption has been investigated for $Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}$ which has a moderate equilibrium pressure of 0.1 MPa at 25 °C for the COA-MIB system. In order to improve tolerance of CO₂ poisoning, 3d-transition elements of Fe, Co, or Ni, which potentially have a catalytic effect on hydrogen molecule dissociation, have been added as $Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}M_{0.1}$ (*M* = Fe, Co, or Ni) and investigated the effect of CO₂ on hydrogen absorption. Furthermore, mechanism of the reaction between CO₂ and the alloys was discussed.

2. Experimental

Alloy samples of AB₂ (Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}) and AB₂-M (Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}M_{0.1}; M = Fe, Co, Ni) were synthesized by arc melting (NEV-AD 03, Nisshin Giken Co.) in an argon atmosphere. Starting materials of Zr (99.7%), Mn (99.99%), Cr (99.99%), Fe (99.9%), Co (99.9%), and Ni (99.9%) were purchased from Furuuchi Chemical Co. Titanium (99.5%) was purchased from The Nilaco Corporation. As-prepared ingots of alloys were annealed at 1100 °C for 24 h in the argon atmosphere for homogenization. The cross sections of the annealed ingots were polished and observed by Scanning Electron Microscope (SEM, S-3400N, High-Technologies). Elemental Hitachi analysis was performed by Energy-Dispersive X-ray Spectroscopy (EDX, APOLLO XP, AMETEK) equipped with SEM. The ingots powders 150-500 diameters. were ground into of μm

Pressure-Composition-Temperature (PCT) curves were measured by using Sieverts-type apparatus. Measurement conditions were at pressure of $0.05 \sim 1.0$ MPa H₂ and temperatures of 20, 30, 40, and 50 °C. The waiting time for each hydrogen absorption/desorption step was at least 20 min. Equilibrium pressures were determined as a point that pressure change during the waiting time became smaller than 0.002 MPa. A van't Hoff plot was obtained using the average of absorption and desorption pressures at a half of maximum amount of hydrogen in PCT curves at each temperature. Powder X-ray diffraction (XRD) with Cu-K α radiation (RINT-2100, Rigaku) was performed to obtain crystallographic information. The powders less than 150 µm diameter was used for the measurements. The lattice constants of the samples were calculated from peak positions.

Measurements for hydrogenation and dehydrogenation, and CO_2 exposure were conducted using semi-continuous flow-type reactor. Each sample of 1 g was loaded into a stainless steel vessel of 14 ml volume with 4.6 mm in inner diameter. The sample vessel was covered with a coolant tube for water cooling, a ribbon heater for electric heating, and a heat insulating material on those. The sample temperature was monitored by a thermocouple located inside the vessel in good contact with the sample powder. The flow rate gas inlet was controlled using a needle valve and measured using a mass flow meter placed in the flow path of gas inlet. More details of the apparatus were reported in our previous paper [10]. For an initial activation process, the sample was heated up to 150 °C under vacuum by a rotary pump. Then H₂ of 0.9 MPa was introduced and kept flowing through the vessel for 1 h with 500 scc/min at 150 °C. After that, the sample was cooled down to 80 °C and vacuumed at 80 °C as a hydrogen desorption. Hydrogen of 0.9 MPa was introduced again at 80 °C as a hydrogen absorption. The hydrogen absorption and desorption was repeated 3 times. Finally, the sample was evacuated (~10 Pa) at 80 °C and then cooled to 20 °C.

For the hydrogenation test, H₂ was introduced into the vessel up to 0.9 MPa at 20 °C with

flow rate of approximately 5 scc/min (1 scc/min is flow rate at 20 °C under 0.1013 MPa). The test was stopped after 80 min or when the flow rate decreased to 0.1 scc/min. A hydrogen absorption rate R_{hy} was calculated by $R_{hy} = R_{in} - R_{cell}$, where R_{in} is a hydrogen flow rate, and R_{cell} is rate of remained gas amount in the cell calculated by PV/RT. The amount of hydrogen absorption was calculated by the integration of R_{hy} . More details were reported in Ref. [10]. For the dehydrogenation test, the sample after hydrogenation was simply evacuated for 30 min at 80 °C.

The CO₂ exposure was performed by the following procedures. First, CO₂ was introduced into the vessel up to 0.9 MPa after the dehydrogenation process. Second, this pressurized condition was kept for 30 min at 20 °C and then CO₂ was evacuated for 30 min. After CO₂ exposure, the hydrogenation and dehydrogenation was cycled for 3 times. The observed properties were discussed comparing to the properties before the CO₂ exposure.

After the CO_2 exposure and hydrogenation property measurement, hydrogenation under CO_2 partial pressure was performed, CO_2 of 0.1 MPa was firstly supplied to the dehydrogenated state of alloys. Then H₂ was supplied with flow rate of approximately 5 scc/min at 20 °C to increase the pressure from 0.1 to 0.9 MPa. This test was stopped after 600 min or when the gas flow rate decreases to 0.01 scc/min. Hydrogen of 7N purity and CO_2 of 99.97% purity were used for all experiments.

Gas chromatography-Flame Ionization Detector (GC-FID; GC-2014, Shimadzu Co.) analysis was performed in order to detect hydrocarbon in the sample gas which was prepared by following procedures: (1) after the initial activation, three times of hydrogenation at RT (~25 °C) and 0.9 MPa H₂ for 80 min and dehydrogenation at 80 °C under vacuum condition for 30 min; (2) CO₂ was introduced at RT from vacuum condition to 0.9 MPa within 5 min and then kept for 30 min; (3) after removing CO₂ by evacuation at RT for 30 min, hydrogen was pressurized to be 0.9 MPa; and finally (4) the sample was heated up to 200 °C for 3 days.

The gas in the sample vessel was measured by GC-FID. All sample scale was 1 g and vessel volume was \sim 55 mL. Blank data of the gas without CO₂ exposure (procedure 2) were also measured. Amount of detected gas was calculated by subtracting blank data from sample data.

3. Results and discussion

3.1. Composition and crystal structure

Figure 1 and Table 1 show back scattering electron (BSE) images and the elements compositions EDX analysis $Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}$ (AB₂), by SEM and for $Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Fe_{0.1}$ $(AB_2-Fe),$ $Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Co_{0.1}$ $(AB_2-Co),$ and Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Ni_{0.1} (AB₂-Ni), respectively. The observed compositions in all area of the samples almost corresponded to the target compositions. Since a vapor pressure at melting point of Mn is the lowest among contained elements, the Mn ratio in all samples is slightly less than the target one due to evaporation during arc melting. The spot 1 in AB₂ was a Zr-rich part, which was higher Zr concentration and lower Ti concentration than the target, while the spot 2 was a Ti-rich part. The spots 3-8 in AB₂-Fe, AB₂-Co, and AB₂-Ni were also similar tendency with regard to Ti and Zr ratio. In particular, the BSE image of AB₂-Co in Fig. 1 showed light gray (the Zr-rich part) and dark gray (the Ti-rich part) area in spot 5 and 6, respectively. These results indicate that the AB₂ alloys (AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni) contain Ti-rich and Zr-rich components.

Figure 2 shows XRD profiles of the AB_2 alloys. All samples were determined as single phase of C14 Laves phase. No reflections from impurity phase was observed. Therefore, all of Ti-rich and Zr-rich parts in BSE images are corresponding to C14 Laves structure. All peaks were broad, and it can be explained by the variation of compositions as observed by BSE and EDX. Lattice constants and lattice volumes of the AB_2 phases were evaluated using

XRD peaks as shown in Table 2. For the samples added the transition element, lattice constants *a* and *c*, and lattice volumes increased (AB_2 -Ni < AB_2 -Co < AB_2 -Fe) with the atom radius of additive metal (Ni < Co < Fe).

3.2 Hydrogen absorption properties

PCT curves of AB₂ alloys at 20, 30, 40, and 50 °C for hydrogen absorption and desorption are shown in Figure 3. The plateau regions for all samples leaned possibly due to the composition gradient. The equilibrium pressures of AB₂-M (M = Fe, Co, and Ni) were slightly larger than that of AB₂. Table 3 shows maximum hydrogen absorption amounts at 20 °C and 1 MPa of all samples, which were 0.92-0.99 H/M(1.6-1.7 mass%). Their van't Hoff plots are shown in Figure 4. The enthalpy and entropy of hydride formation are shown in Table 3. The absolute value of enthalpy -33 kJ/mol H₂ of AB₂ was slightly larger than that of AB₂-Fe (-30 kJ/mol H₂), AB₂-Co (-29), and AB₂-Ni (-31). The entropies of all AB₂ alloys were almost similar value of -100 J/mol·K H₂.

Figure 5 shows hydrogen absorption properties for all AB₂ alloys at 20 °C. The maximum amounts of hydrogen absorption H/M were 1.02, 0.93, 0.92 and 1.02 for AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni, respectively. These values were slightly larger than PCT results shown in Table 3. The deviations were probably caused due to measurement error of the mass flow meter, which was nominally $\pm 1\%$ of full scale. The hydrogen absorption rates of samples were almost constant at 5–6 scc/min during initial 5 to 20 min, which corresponds to the controlled hydrogen flow rate. After 20 min, these rates gradually decreased and then their hydrogen absorption finished within 60 min. The vessel pressure gradually increased until 60 min for all AB₂ alloys according to the plateau region of hydrogen equilibrium pressure.

3.3. Hydrogen absorption properties after CO₂ exposure

Figure 6 shows hydrogen absorption properties of the AB₂ alloys at 20 °C after CO₂ exposure. The hydrogen absorption properties before CO_2 exposure were also shown for comparison. Amount of hydrogen absorption was normalized using maximum amount of hydrogen absorption before CO₂ exposure. The hydrogenated fraction at 80 min for AB₂ and AB₂-Co gradually decreased to approximately 0.9 within 3 cycles after CO₂ exposure. In the case of AB₂-Ni, the hydrogenated fraction decreased to 0.83 even at the 1st cycle and to 0.77 at the 3rd cycle. On the other hand, the fraction of AB₂-Fe in all 3 cycles were almost identical. The hydrogen absorption rates of AB₂, AB₂-Fe, and AB₂-Co at the 1st cycle were slower than those before CO_2 exposure in the measurement beginning. When the pressure increased more than 0.3 MPa at about 10 min, the rates suddenly increased up to 15–20 scc/min at maximum. It indicates that those AB₂ alloys require hydrogen pressure higher than equilibrium pressure probably due to kinetic barrier by CO_2 chemisorption. In the 2nd and 3rd cycles, the hydrogen absorption rates from 5 to 20 min were almost constant at ~5 scc/min and then gradually decreased. This behavior was almost same to that before CO_2 exposure. In the case of AB₂-Ni, the hydrogen absorption rate in the 1st cycle suddenly increased at 20 min, where the maximum absorption rate was 23 scc/min at 0.6 MPa hydrogen. In the 2nd cycle, a similar peak to 1st cycle appeared at 10 min. In the 3rd cycle, that peak finally disappeared. The chemisorbed CO₂ would remain on AB₂-Ni even after the hydrogen desorption at 80 °C. These results suggest that the CO_2 bonding with AB_2 -Ni is stronger than that with the other AB₂ alloys.

The hydrogen absorption properties of AB_2 alloys in the 3rd cycle are summarized in Figure 7. Weak CO_2 -metal bonding was supposed to be removed at 3rd dehydrogenation treatment, the strong CO_2 -metal bonding, which causes irreversible poisoning such as strong chemisorption or surface reaction, would degrade hydrogen absorption properties of AB_2 -M. The order of total hydrogenated fraction in 3rd cycle was:

$$AB_2$$
-Ni < $AB_2 \approx AB_2$ -Co < AB_2 -Fe.

On the other hand, the order of hydrogen absorption rate at 5-20 min was AB₂-Ni \approx AB₂-Co < AB₂-Fe < AB₂. It is difficult to directly compare their hydrogen absorption rate regarding to CO₂ poisoning tolerance with each other, because the hydrogen equilibrium pressure effects the hydrogen absorption rate. Therefore, a magnitude of CO₂ poisoning tolerance regarding kinetics was defined by the ratio of the reaction rate constant after CO₂ exposure to that before CO₂ exposure. The following equation for the reaction rate of hydrogen absorption was employed [20],

$$v = \frac{dC}{dt} = \frac{P(C) - P_{eq}(C,T)}{P_0} k f(C),$$
(1)

where v is the reaction rate, *C* is the amount of absorbed hydrogen (H/*M*), *P*(*C*) is hydrogen pressure (MPa), $P_{eq}(C,T)$ is hydrogen equilibrium pressure (MPa), P_0 is atmospheric pressure (MPa), *k* is reaction rate constant (s⁻¹) corresponding to temperature *T* (°C), and *f*(*C*) is function of *C* regarding to reaction process (H/M). The reaction rate before and after CO₂ exposure with elimination of the effect of hydrogen equilibrium pressure are defined as:

$$v'_{\text{bef}} = \left(\frac{dC}{dt}\right)_{\text{bef}} \left/ \frac{P_{\text{bef}}(C) - P_{\text{eq}}(C,T)}{P_0} = k_{bef} f(C),$$
(2)

$$v'_{\text{aft}} = \left(\frac{dC}{dt}\right)_{\text{aft}} / \frac{P_{\text{aft}}(C) - P_{\text{eq}}(C,T)}{P_0} = k_{aft} f(C).$$
(3)

The reaction rate (dC/dt) and P(C) was obtained by hydrogen absorption properties before CO₂ exposure and 3rd cycle, respectively. $P_{eq}(C,T)$ was chosen from a fitting curve of the PCT plots in Fig. 3. If f(C) do not change before and after CO₂ exposure, a ratio of reaction rate constant regarding magnitude of CO₂ poisoning tolerance χ is estimated as:

$$\frac{v'_{\text{aft}}}{v'_{\text{bef}}} = \frac{k_{aft}}{k_{bef}} = \mathcal{X}.$$
(4)

Figure 8(a) shows magnitude of CO₂ poisoning tolerance (χ) at *C* = 0.3, 0.4, 0.5, 0.6, and 0.7 for all samples. The values of χ were less than 0.5 and decreased with increasing amount of

hydrogen absorption. It indicates that effect of CO₂ poisoning becomes strong at higher hydrogen absorption amount. Average values of χ for 0.3-0.7 H/M (Fig. 8(b)) were described in the following order:

$$AB_2$$
-Ni < AB_2 < AB_2 -Co < AB_2 -Fe.

This order was the almost same as the total hydrogenated fraction. From above results, AB₂-Fe has the highest CO₂ tolerance among them. The fact which AB₂-Fe and AB₂-Co have larger χ than that of AB₂ indicates that Fe and Co additive improve tolerance of CO₂ poisoning for hydrogen absorption properties. In contrast, because AB₂-Ni has smaller χ than that of AB₂, Ni additive degrades CO₂ tolerance.

3.4. Hydrogen absorption properties under CO₂ partial pressure

The hydrogen absorption properties of AB₂ alloys under CO₂ partial pressure at 0.1 MPa were evaluated after the CO₂ exposure test as shown in Figure 9. In this condition there are possible effects of both weak CO₂ bonding such as physisorption and strong CO₂ bonding, which is irreversible poisoning, such as chemisorption and surface reaction with alloys. The amount of hydrogenated fractions at 80 min became 0.074, 0.22, 0.14, and 0.066 for AB₂, AB₂-Fe, AB₂-Co and AB₂-Ni, respectively. These values are smaller than the results of hydrogen absorption after CO₂ exposure tests. It indicates that CO₂ adsorption on the surface such as physisorption hinders further the hydrogen absorption kinetics of the AB₂ alloys. The order of hydrogenated fractions at 600 min (not shown) was AB₂-Ni (0.48) < AB₂ (0.55) < AB₂-Co (0.75) < AB₂-Fe (0.86). Moreover, the order of hydrogen absorption rate in Fig. 9 was AB₂-Ni \approx AB₂ < AB₂-Co < AB₂-Fe. From these results, the order of magnitude of CO₂ tolerance under CO₂ partial pressure can be described as

$$AB_2$$
-Ni < AB_2 < AB_2 -Co < AB_2 -Fe.

The dependency of the additive element is the same order as the CO₂ exposure test.

3.5. Analysis of bonding state between CO₂ and alloy

The hydrogen absorption properties of all samples were not recovered from CO_2 exposure test even after 3 cycles as mentioned in section 3.3. The possible bonding types between CO_2 and AB_2 are strong chemical adsorption, chemical dissociation, surface reaction, and bulk reaction with the alloys. Here, we investigated the bonding state by analyzing the structure and surface condition.

Firstly, in order to investigate the bonding state between the bulk and CO_2 , the samples after hydrogen absorption under 0.1 MPa of CO_2 and subsequently hydrogen desorption were measured by XRD for AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni as shown in Fig. 10. All samples showed peaks of C14 laves phase. There were also hydride peaks of C14 laves phase in AB₂, AB₂-Fe, and AB₂-Co. Since hydrogen desorption was performed at the atmospheric pressure, not vacuum condition, the hydride phase remained in the samples. The peaks of C14 laves phase and the hydride phase were relatively broad comparing to those just after heat treatment as shown in Fig. 2. It is indicated that the hydrogen absorption and desorption cause the pulverization accompanying by the decrease of crystalline size and induction of lattice strain. Other peaks that indicates the reaction between CO_2 and AB_2 alloys were not observed. It is concluded that the reaction between CO_2 and the AB_2 alloys occurs only on the surface.

Secondly, to investigate the CO₂ bonding state on the surface, a reaction heat between CO₂ gas and the surface was estimated. Figure 11(a) shows temperature changes for all samples during the CO₂ exposure. Just after CO₂ introduction, the temperatures increased around 15 °C in 10-20 sec. The blank data in empty vessel was also shown in Fig. 11. Since the temperature increased only 0.8 °C, the adiabatic effect by the pressure increase was enough negligible. A reaction heat Q(J) of the sample based on the temperature change is estimated

as:

$$Q = \sum_{t} \Delta Q(t) = \sum_{t} \Delta Q_{s}(t) + \sum_{t} \Delta Q_{v}(t).$$
⁽⁵⁾

A heat flow rate into and out of the sample $\Delta Q_s(t)$ is deduced as:

$$\Delta Q_s(t) = c_s m_s \frac{T_s(t + \Delta t) - T_s(t)}{\Delta t},$$
(6)

where *t* is time, c_s is specific heat capacity of the sample (J/K·g), which is determined by the Neumann-Kopp rule that molar heat capacity is approximately equal to the total piece of the atomic heat capacity [21], m_s is sample weight (g), $T_s(t)$ is sample temperature (°C), and Δt is interval of measurement (sec). The conductive heat transfer rate from inside to outside of the sample vessel $\Delta Q_v(t)$ is defined as follow.

$$\Delta Q_{\nu}(t) = A\lambda \frac{T_{s}(t) - T_{\nu}}{L}.$$
(7)

where *t* is time, λ is a thermal conductivity of sample vessel (J/s·m·K), *A* is heat transfer area (m²), and L is a thickness of vessel wall (m). *T*_v is regarded as the temperature of outside the vessel, which is kept approximately at 20 °C by water cooling. Here, the temperature distribution of the sample in the vessel was assumed to be homogenous because the sample amount of 1g is enough small. Heat transfer by convection and thermal radiation was negligible in this case. The constant value of $A\lambda/L$ in Eq. (7) was optimized to 0.035 for all samples which the reaction heat rate $\Delta Q(t)$ did not be negative value in all measured time. Fig. 11 (b) shows the estimated $\Delta Q(t)$, $\Delta Q_s(t)$, and $\Delta Q_v(t)$ for AB₂ sample. The reaction heat *Q* of AB₂ was calculated to 9.7 J. When it is assumed that CO₂ gas adsorbs on the surface, enthalpy change for CO₂ adsorption ΔH_{CO_2} (J/mol CO₂) is estimated by dividing the reaction heat *Q* by adsorbed CO₂ amount of n_{CO_2} (mol),

$$\Delta H_{co_2} = \frac{Q}{n_{co_2}} \quad . \tag{8}$$

It is difficult to quantify adsorbed CO₂ amount, because the amount is too little to detect as a

pressure change. Therefore, adsorbed CO₂ amount of n_{CO_2} was calculated by using specific surface area *S* (m²/g) of the sample.

$$n_{\rm CO_2} = \frac{Sm_{\rm s}}{N_{\rm A}A_{\rm CO_2}} \quad , \tag{9}$$

where A_{CO2} is occupation area (m²) of one CO₂ molecule on the surface and N_A is Avogadro constant. The *S* was estimated by SEM image of AB₂ after all the experiments. Particle boundary was separated by the lines indicated in Fig. S1. The large particles were agglomerates of small particles. The average diameter of the particles was 1.3 µm. The calculated specific surface area was 0.68 m²/g when the particles were assumed sphere shape. The enthalpy change for CO₂ adsorption was estimated to be 1800 kJ/mol CO₂ by assigning the values to Eq. (8) and (9). The enthalpy of other alloys were also evaluated using the same method as shown in Table 4. The estimated ΔQ (*t*), $\Delta Q_s(t)$, and $\Delta Q_v(t)$ and SEM images are also shown in Fig. S2 and S1, respectively for AB₂-Fe, AB₂-Co, and AB₂-Ni. The enthalpy values were much larger than the CO₂ adsorption enthalpy of titanium or zirconium metal oxide [25]. It indicates that oxidation of AB₂ alloys surface occurs via CO₂ dissociation to CO and O. Therefore, the surface reaction is assumed as follows:

$$\operatorname{CO}_2 + M_{\operatorname{surf}} \to \operatorname{CO}_{\operatorname{ads}} + M_{\operatorname{surf}} \operatorname{O},$$
 (10)

where M_{surf} is surface atom of AB₂ alloys, CO_{ads} is CO molecule adsorbed on the alloys, M_{surf} O is metal oxide of surface atom. In order to prove CO adsorption, methanation (CO_{ads} + $3H_2 \rightarrow CH_4 + H_2O$) was tested. AB₂-Fe and AB₂-Ni after CO₂ exposure were kept under 0.9 MPa H₂ at 200 °C for 3 days. As a result, hydrocarbons especially methane were detected in the gas of the sample vessel by GC-FID analysis as shown in Fig. 12. Blank data without CO₂ exposure showed small hydrocarbon peaks, which could originate from unremoved CO₂ species on the surface of AB₂ alloys during activation. Table 5 showed amounts of hydrocarbons by GC-FID analysis. Heavier hydrocarbons than methane such as ethane,

propane, and butane were also detected, although their amounts were less than one tenth of methane. These hydrocarbons were probably generated by the reaction between adsorbed CO and hydrogen. The results are an evidence of CO adsorption on AB_2 alloys. Moreover, the amount of hydrocarbons of AB_2 -Fe was smaller than that of AB_2 -Ni. It indicates that the amount of CO₂ dissociation correlates with magnitude of CO₂ tolerance.

From these results, CO_2 would dissociate to CO and O on the surface of AB₂ alloys, and then oxygen atom reacts with AB₂ alloys. The CO adsorption and generation of metal oxide on the surface might decrease their hydrogen absorption kinetics. Therefore, additive element in AB₂ alloys, which effects on magnitude of CO₂ tolerance, probably controls the amount of CO₂ dissociation.

4. Conclusion

The effect of CO_2 on hydrogen absorption has been investigated for AB_2 and AB_2 - $M_{0.1}$ (M = Fe, Co, or Ni). All samples were single phase of C14 laves structure and had no impurity phase. The ratio of reaction rate constant of hydrogen absorption after CO_2 exposure to that before CO_2 exposure was evaluated as the magnitude of CO_2 poisoning tolerance. An order of CO_2 tolerance was obtained as,

$$AB_2$$
-Ni < AB_2 < AB_2 -Co < AB_2 -Fe.

Moreover, the hydrogen absorption properties under CO_2 partial pressure at 0.1 MPa showed the same order of CO_2 tolerance. The results suggest that AB_2 alloy has dependence of additive elements on CO_2 tolerance. AB_2 -Fe has the highest CO_2 tolerance among them. The additive of Fe and Co improves tolerance of CO_2 poisoning for hydrogen absorption properties. On the other hand, Ni element in AB_2 alloy decreases CO_2 tolerance. The CO_2 -exposed AB_2 alloys after reacting with hydrogen desorbed methane gas. It is suggested that CO adsorbs on the surface via CO_2 dissociation. Moreover, the estimated enthalpy

change between CO_2 and the alloys surface was comparable to the formation of metal oxide. Therefore, CO_2 would dissociate to CO and O on the surface of AB₂ alloys, and then oxygen atom reacts with AB₂ alloys. Additive element in AB₂ alloys probably controls the amount of CO_2 dissociation corresponding to magnitude of CO_2 tolerance.

Acknowledgement

This work has been partially supported by Ministry of the Environment under "Research and development program of countermeasures against global warming in 2011-2012".

References

- [1] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang D. Song, Z. Liu, H. Wang, J. Shen, A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, J. Power Sources 165 (2007) 739-756.
- [2] A. Boyano, A.M. Blanco-Marigorta, T. Morosuk, G. Tsatsaronis, Exergoenvironmental analysis of a steam methane reforming process for hydrogen production, Energy 36 (2011) 2202-2214.
- [3] M. Ishida, Passive load following method by purifying hydrogen from reformed gas with metal hydride for fuel cell, T. IEE 121-B (2001) 1036-1043 (in Japanese).
- [4] Y. Taniguchi, M. Ishida, Passive load following method for PEFC system with reformer and its efficiency improvement evaluated by using the concept of exergy, IEEJ Trans. PE 124 (2004) 851-858 (in Japanese).
- [5] R. Sasaki, M. Ishida, Effect of CO in reformed gas on fluorinated metal hydride, IEEJ Trans. PE 124 (2004) 965-970 (in Japanese).
- [6] Y. Taniguchi, M. Ishida, Hydrogen purification method from reformed gas containing high concentration of CO by using metal hydride, IEEJ Trans. PE 126 (2006) 1267-1274

(in Japanese).

- [7] S. Miura, A. Fujisawa, M. Ishida, A hydrogen purification and storage system using metal hydride, Int. J. Hydrogen Energy 37 (2012) 2794-2799.
- [8] S. Miura, A. Fujisawa, S. Tomekawa, Y. Taniguchi, N. Hanada and M. Ishida, A hydrogen purification and storage system using CO adsorbent and metal hydride, J. Alloys Comp. 580 (2013) S414-S417.
- [9] A. Fujisawa, S. Miura, Y. Mitsutake, M. Monde, Simulation study of hydrogen purification using metal hydride, J. Alloys Comp. 580 (2013) S423-426.
- [10] N. Hanada, T. Nakagawa, H. Asada, M. Ishida, K. Takahashi, S. Isobe, I. Saita, K. Asano,
 Y. Nakamura, A. Fujisawa and S. Miura, Dependence of constituent elements of AB₅
 type metal hydrides on hydrogenation degradation by CO₂ poisoning, J. Alloys Comp.
 647 (2015) 198-203
- [11] M. V. Lototsky, M. Williams, V. A. Yartys, Ye. V. Klochko, V. M. Linkov, Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification, J. Alloys Comp. 509 (2011) S555-S561
- [12] M. Lototskyy, K. D. Modibane, M. Williams, Ye. Klochko, V. Linkov, B. G. Pollet, Application of surface-modified metal hydrides for hydrogen separation from gas mixtures containing carbon dioxide and monoxide, J. Alloys Comp. 580 (2013) S382-S385
- [13] K. D. Modibane, M. Williams, M. Lototskyy, M. W. Davids, Ye. Klochko, B. G. Pollet, Poisoning-tolerant metal hydride materials and their application for hydrogen separation from CO₂/CO containing gas mixtures, Int. J. Hydrogen Energy 38 (2013) 9800-9810
- [14] F. R. Block, H. –J. Bahs, Investigation of selective absorption of hydrogen by LaNi₅ and FeTi, J. Less-Common Met. 89 (1983) 77-84.
- [15] G. D. Sandrock, P. D. Goodell, Cyclic life of metal hydrides with impure hydrogen:

Overview and engineering considerations, J. Less-Common Met. 104 (1984) 159-173.

- [16] T. Hirata, Hydrogen absorption and desorption properties of FeTi_{1.14}O_{0.03} in impure hydrogen containing CO, CO₂ and oxygen, J. Less-Common Met. 107 (1985) 23-33.
- [17] D. G. Ivey, R. I. Chittim, K. J. Chittim, D. O. Northwood, Metal hydrides for energy storage, J. Materials for Energy Systems, 3 (1981) 3-19
- [18] S. Fang, Z. Zhou, J. Zhang, M. Yao, F. Feng, S. O. Northwood, The application of mathematical models to the calculation of selected hydrogen storage properties (formation enthalpy and hysteresis) of AB₂-type alloys, Int. J. Hydrogen Energy 25 (2000) 143-149
- [19] X. Guo and E. Wu, Thermodynamics of hydrogenation for Ti_{1-x}Zr_xMnCr laves phase alloys, J. Alloys Comp. 455 (2008) 191-196
- [20] A. Yoshida, Y. Naka, and T. Ohkita, Experimental study on thermophysical and kinetic properties of the LaNi₅-H₂ system, Transactions of the Japan Society of Mechanical Engineers Series B 56 (1990) 536-540 (in Japanese)
- [21] H. Kopp, Investigations of the specific heat of solid bodies, Phil. Trans. R. Soc. Lond. 155 (1865) 71-202.
- [22] E. Hahne, J. Kallweit, Int. J. Hydrogen energy, Thermal conductivity of metal hydride materials for storage of hydrogen: experimental investigation, 23 (1998) 107-114
- [23] C. Liu, T. R. Cundari, and A. K. Wilson, CO₂ reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: in comparison with homogeneous catalysis, J. Phys. Chem. C 116 (2012) 5681-5688
- [24] A. E. Aksoylu, A. N. Akin, S. G. Sunol, Z. İ, Önsan, The effect of metal loading on the adsorption parameters of carbon dioxide on coprecipitated nickel-alumina catalysts, Tr. J. of Chemistry 20 (1996) 88-94
- [25] Handbook of electrochemistry Ver.6, The electrochemical society of Japan (Eds.),

Maruzen, Tokyo, 2013, pp.32-48 (in Japanese)

Fig. 1 Back scattering electron (BSE) images of Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8} (AB₂),

Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Fe_{0.1} (AB₂-Fe), Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Co_{0.1} (AB₂-Co) and

Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Ni_{0.1} (AB₂-Ni). Cross marks in the images are the spots analyzed by

EDX.

Fig. 2 X-ray diffraction profiles of AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni.

Fig. 3 PCT curves of hydrogen absorption and desorption at 20, 30, 40 and 50 °C for AB₂,

AB₂-Fe, AB₂-Co, and AB₂-Ni.

Fig. 4 Van't Hoff plots for AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni.

Fig. 5 Pure hydrogen absorption properties at 20 °C for AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni.

Fig. 6 Hydrogen absorption properties of 1^{st} , 2^{nd} and 3^{rd} cycles at 20 °C for (a)AB₂, (b)AB₂-Fe, (c)AB₂-Co, and (d)AB₂-Ni after CO₂ exposure.

Fig. 7 Hydrogen absorption properties of 3rd cycle at 20 °C for AB₂, AB₂-Fe, AB₂-Co, and

AB₂-Ni after CO₂ exposure.

Fig. 8 Ratio of reaction rate constant after CO₂ exposure to that before CO₂ exposure (χ) regarding magnitude of CO₂ poisoning tolerance at (a) H/M= 0.3-0.7 and (b) average values

at H/M= 0.3-0.7 for AB_2 , AB_2 -Fe, AB_2 -Co, and AB_2 -Ni.

Fig. 9 Hydrogen absorption properties at 20 °C for AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni under

CO₂ partial pressure at 0.1 MPa.

Fig. 10 X-ray diffraction profiles of AB₂, AB₂-Fe, AB₂-Co, and AB₂-Ni after hydrogen absorption under CO₂ 0.1 MPa and subsequently hydrogen desorption.

Fig. 11 (a) Temperature during CO₂ induction from vacuum to 0.9 MPa for AB₂, AB₂-Fe, AB₂-Co, AB₂-Ni, and blank of empty vessel and (b) reaction heat rate (ΔQ), heat flow rate into and out of the sample vessel (ΔQ_s), and heat transfer rate from inside to outside of sample vessel (ΔQ_v) during CO₂ induction for AB₂.

Fig. 12 GC-FID profiles after CO_2 exposure test and keeping under 0.9 MPa H₂ at 200 °C for 3 days for AB₂-Fe, AB₂-Ni. Blank was the measurement without CO_2 exposure test.

Comple	Analyzed	Ti	Zr	Mn	Cr	Fe, Co, or Ni
Sample	place	(at%)	(at%)	(at%)	(at%)	(at%)
	Target	17.2	16.2	40.0	26.7	R- '
$Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}$	All area	18.5	17.1	37.4	27.1	-
(AB ₂)	Spot 1	13.0	21.9	35.9	29.1	-
	Spot 2	23.1	12.7	38.4	25.8	_
	Target	16.6	15.6	38.7	25.8	3.2
$Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Fe_{0.1}$	All area	16.9	15.8	37.5	26.6	3.2
(AB ₂ -Fe)	Spot 3	13.8	19.6	35.8	27.1	3.7
	Spot 4	21.7	10.9	38.2	25.9	3.3
	Target	16.6	15.6	38.7	25.8	3.2
$Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Co_{0.1}$	All area	18.3	15.5	37.2	25.8	3.2
(AB ₂ -Co)	Spot 5	14.5	18.6	35.5	28.1	3.3
	Spot 6	20.8	11.7	38.6	25.3	3.7
Q	Target	16.6	15.6	38.7	25.8	3.2
$Ti_{0.515}Zr_{0.485}Mn_{1.2}Cr_{0.8}Ni_{0.1}$	All area	17.1	15.9	36.5	26.7	3.7
(AB ₂ -Ni)	Spot 7	13.9	18.7	36.6	26.9	3.9
	Spot 8	21.3	10.6	38.4	25.7	4.0

Table 1 Element c	ompositions	by EDX	analysis of all	area and spot 1-8 of	f BSE images
-------------------	-------------	--------	-----------------	----------------------	--------------

corresponding to Fig. 1 for AB₂, AB₂-Fe, AB₂-Co and AB₂-Ni.

	Lattice constant	Lattice constant	Lattice volume	
sample	a [Å]	c [Å]	V [Å ³]	
AB_2	4.9518	8.1398	172.849	
AB ₂ -Fe	4.9495	8.1365	172.619	
AB ₂ -Co	4.9472	8.1284	172.291	
AB ₂ -Ni	4.9425	8.1186	171.752	

Table 2 Lattice constants and lattice volumes of AB₂, AB₂-Fe, AB₂-Co and AB₂-Ni.

Table 3 Maximum hydrogen absorption amount at 20 °C and 1 MPa, enthalpy and entropy of hydride formation for AB₂, AB₂-Fe, AB₂-Co and AB₂-Ni.

	Maximum hydrogen absorption		Enthalpy of hydride	Entropy of hydride	
sample	amount at 20 °C and 1 MPa		formation (ΔH)	formation (ΔS)	
	H/M	mass%	(kJ/mol H ₂)	(J/mol·K H ₂)	
AB_2	0.99	1.69	-33±2	-103±7	
AB ₂ -Fe	0.92	1.58	-30±2	-99±7	
AB ₂ -Co	0.92	1.57	-29±1	-97±5	
AB ₂ -Ni	0.95	1.63	-31±3	-105±9	

Table 4 Reaction heat, specific surface area and CO₂ adsorption enthalpy for AB₂, AB₂-Fe,

	Reaction heat (Q)	Specific surface area (S)	CO_2 adsorption enthalpy (ΔH)
sample	(J)	(m ² /g)	(kJ/mol CO ₂)
AB ₂	9.7	0.68	1800
AB ₂ -Fe	9.6	0.73	1650
AB ₂ -Co	9.2	0.79	1485
AB ₂ -Ni	8.2	0.61	1690

Table 5 Amount of hydrocarbon detected by GC-FID analysis after CO₂ exposure test and keeping under 0.9 MPa H₂ at 200 °C for 3 days for AB₂-Fe and AB₂-Ni.

G	AB ₂ -Fe	AB ₂ -Ni
Species	(mL/g alloy)	(mL/g alloy)
CH ₄	0.517	0.387
C ₂ H ₆	0.037	0.025
C ₃ H ₈	0.029	0.016
<i>i</i> -C ₄ H ₁₀	0.010	0.004
n-C ₄ H ₁₀	0.015	0.005
	I	

- The effect of CO₂ on hydrogen absorption has been investigated for AB₂ type alloys.
- An order of CO₂ tolerance was Ti-Zr-Mn-Cr (AB₂)-Ni < AB₂ < AB₂-Co < AB₂-Fe.
- Fe and Co improve CO₂ poisoning tolerance for hydrogen absorption properties.
- CO₂ would dissociate to CO and O on the surface of AB₂ alloys.

Chilling Mark