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Abstract: C2-Symmetric bissulfoximines 2 have been used as
chiral ligands in palladium-catalyzed asymmetric allylic alkyla-
tions. With 2c enantioselectivities of up to 98% ee have been
achieved in the reaction of 1,3-diphenylpropenyl acetate with mal-
onates as nucleophiles.
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Since their discovery by Bentley and Whitehead,1 sulfox-
imines have emerged as versatile reagents in organic syn-
thesis.2 Their application ranges from the use as chiral
auxiliaries3 and ligands4 in catalysis to incorporations as
modules in pseudopeptidic structures.5 Recently, we in-
troduced a new aryl-bridged C2-symmetric bissulfox-
imine 1 and demonstrated its potential as ligand in highly
enantioselective copper(II)-catalyzed hetero Diels–Alder
reactions.6 As part of the ongoing study we now found that
structurally related bissulfoximines 2 having an alkyl
backbone can be applied in palladium-catalyzed allylic
alkylations7 furnishing products with very high enantio-
meric excesses (Figure 1).

Figure 1

The syntheses of the new alkyl-bridged C2-symmetric bis-
sulfoximines 2 followed a synthetic strategy described
earlier.8 Thus, treatment of the corresponding sulfoximine
39 with oxalyl chloride followed by borane reduction of
the carbonyl groups of the resulting bridged compounds 4
gave the desired bissulfoximines 2 in good yields
(Table 1).

The potential of the new bissulfoximines to serve as
ligands in Pd-catalyzed nucleophilic substitution reac-
tions was first  investigated with 1,3-diphenylpropenyl
acetate (5) and dimethylmalonate (6) as substrates. In all
catalyses the yield of 7 was good ( 72%) and the enantio-
selectivities ranged from 8 to 93% ee (Table 2).10,11

The best results (93% ee at 0 °C) were obtained with bis-
sulfoximine 2c having a cyclopentyl group as aliphatic
substituent at sulfur (entries 3 and 7). Using the S,S-enan-
tiomer of 2c led to R-configurated 7 predominately. Low-
ering the reaction temperature had a positive effect on the
ee of 7. To our surprise use of 2d gave 7 only with 8% ee.
This result was unexpected, because in the previously
studied HDA reaction, catalyses with 2d gave products
with > 90% ee. Along with the low ee in the reaction with
2d a remarkable high reactivity was observed. Thus in this
case the conversion was complete after 2 hours, whereas
in catalyses with 2a–c reaction times of several days were
required to afford 7 in high yield. Raising the reaction
temperature to 50 °C effected an increase in yield at sig-
nificantly shorter reaction times, but lowered the ee of 7
(entries 8 and 9).

With the notion that an increased steric bulk at the sulfur
atoms of 2 would be beneficial for the enantioselectivity
of the catalysis, we attempted to prepare bis(tert-butyl)-
substituted bissulfoximine 2e according to the synthetic
strategy described above (coupling of two sulfoximines
with oxalyl chloride followed by borane reduction).
Whereas the first step starting from (S)-S-tert-butyl-S-
phenyl sulfoximine (3e)9 proceeded well to give 4e, the
subsequent selective reduction of the two carbonyl groups
failed. Instead of the desired bissulfoximine 2e compound
8 was obtained in 60% yield.12,13 Finally, 2e became ac-
cessable on another route involving a double deprotona-
tion of 2b followed by alkylation of the intermediate
dianion with iodomethane (50% yield) (Figure 2).
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Table 1 Synthesis of Ethylene-bridged Bissulfoximines 2a–d via 
an Acylation Reduction Sequence

Entry R1 R2 Yields of 
3 � 4 [%]

Yields of 
4 � 2 [%]

Bissulfox-
imine

1 Me Ph 90 68 2a

2 i-Pr Ph 88 66 2b

3 c-Pen Ph 85 65 2c

4 2-MeO-Ph Me 93 69 2d
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a) (COCl)2 (0.5 equiv), DMAP (cat.), CH2Cl2, 0 °C. b) BH3•THF, CH2Cl2.
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Figure 2

Contrary to our expectations, use of 2e as ligand in the de-
scribed allylic alkylation with 5 and 6 did not improve the
catalysis at all. Thus, even after one week reaction time
only 15% conversion of 5 was observed and finally 7 was
isolated as a racemate. Most likely, the attack of the inter-
mediate Pd-allyl complex by the nucleophile is sterically
too hindered due to the presence of the bulky tert-butyl
groups in 2e, which in consequence causes the low con-
version compared to the catalyses with the other bissul-
foximines.

Since bissulfoximine 2c gave the best results in the catal-
ysis, we also studied its use in the reaction of 1,3-diphe-
nylpropenyl acetate (5) with other malonates. Table 3
summarizes the most significant results.

To our delight we found that with methyl malonic acid
dimethylester (9a) the corresponding substitution product
(S)-10a had 94% ee. Use of the acetamido derivative 9b
afforded (S)-10b with 98% ee.14,15

In summary, we demonstrated the use of C2-symmetric
bissulfoximines as ligands in the palladium-catalyzed
asymmetric alkylations and achieved enantioselectivities
of up to 98% ee.
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Table 2 Enantioselective allylic Alkylation of 1,3-Diphenylprope-
nyl Acetate using Bissulfoximines 2a–da

Entry Ligand Yield 
[%]

Temp 
[°C]

Time ee of 7 
[%]

1 2a 73 r.t. 5 d 72

2 2b 78 r.t. 5 d 76

3 2c 78 r.t. 5 d 90

4 2d 99 r.t. 2 h 8

5 2a 70 0 11 d 76

6 2b 72 0 11 d 81

7 2c 75 0 11 d 93

8c 2c 99 +50 1.5 h 84

9d 2c 99 +50 2 h 82

a Conditions: [Pd(allyl)Cl]2 (5 mol%), ligand (10 mol%), 3 equiv 
BSA, 3 equiv malonate, cat. KOAc.
b Determined by HPLC using a chiral column (Chiralcel AD;
heptane:i-PrOH = 95:5).
c 7.5 mol% of [Pd(allyl)Cl]2.
d 5 mol% of 2c and 2.5 mol% of [Pd(allyl)Cl]2 was used.
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CH2(CO2Me)2 (6),
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BH3•THF, CH2Cl2

4e

2e2b

n-BuLi (2 equiv),
THF, 0 °C, 30 min;
then MeI (2 equiv)

Table 3 Use of substituted Malonates in the enantioselective allylic 
Alkylation of 1,3-Diphenylpropenyl Acetate (5)

Entry Nucleophile Yield 
[%]

Temp 
[°C]

Time 
[h]

ee of 10 
[%]

1 MeCH(CO2Me)2, 
(9a)

79 45 30 94a

2 AcNHCH(CO2Et)2, 
(9b)

89 45 96 98b

a Determined by 1H NMR using 15 mol% Eu(hfc)3.
b Determined by HPLC using a chiral column (Chiralcel OJ;
heptane:i-PrOH = 3:1).

Ph Ph

OAc

Ph Ph

(R'O2C)2C[Pd(allyl)Cl]2 (5 mol%)

10 mol% 2c, cat. KOAc

nucleophile, BSA, CH2Cl25 10

a: R = R' = Me
b: R = NHAc, R' = Et

R
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