

Journal of Asian Natural Products Research

ISSN: 1028-6020 (Print) 1477-2213 (Online) Journal homepage: http://www.tandfonline.com/loi/ganp20

Coixlachryside B: a new benzoxazinoid glycoside from the roots of *Coix lachryma-jobi* var. *ma-yuen* (Gramineae)

Yun-Hyeok Choi, Chun Whan Choi, Seong Hyun Hong, Se Kyu Park, Joa Sub Oh, Dongho Lee & Seong Su Hong

To cite this article: Yun-Hyeok Choi, Chun Whan Choi, Seong Hyun Hong, Se Kyu Park, Joa Sub Oh, Dongho Lee & Seong Su Hong (2018): Coixlachryside B: a new benzoxazinoid glycoside from the roots of *Coix lachryma-jobi* var. *ma-yuen* (Gramineae), Journal of Asian Natural Products Research, DOI: <u>10.1080/10286020.2018.1497016</u>

To link to this article: <u>https://doi.org/10.1080/10286020.2018.1497016</u>

Published online: 03 Dec 2018.

ſ	
н	4

Submit your article to this journal 🗹

Article views: 18

View Crossmark data 🗹

Check for updates

Coixlachryside B: a new benzoxazinoid glycoside from the roots of *Coix lachryma-jobi* var. *ma-yuen* (Gramineae)

Yun-Hyeok Choi^{a,b}, Chun Whan Choi^a, Seong Hyun Hong^a, Se Kyu Park^c, Joa Sub Oh^d, Dongho Lee^{b*} and Seong Su Hong^{a*}

^aBio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Republic of Korea; ^bDepartment of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; ^cHansolbio Co., Ltd, Seongnam 13215, Republic of Korea; ^dCollege of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea

ABSTRACT

Coix lachryma-jobi L. var. *ma-yuen* has been a source of food and traditional folk medicine in some parts of Asia for thousands of years; however, the roots of this plant have not been phytochemically investigated. Herein, we report the isolation of a new benzoxazinoid glycoside, coixlachryside B (1), along with ten known compounds (2–11), from the roots of *C. lachryma-jobi* var. *ma-yuen* using a variety of chromatographic methods. Among the known compounds, the absolute configuration of compound **4** was determined. The structures of all compounds were elucidated by interpreting NMR spectroscopic data, and experimental and calculated electronic circular dichroism spectra.

ARTICLE HISTORY

Received 31 July 2017 Revised 2 July 2018 Accepted 3 July 2018

KEYWORDS

Gramineae; *Coix lachrymajobi var. ma-yuen*; benzoxazinoid; coixlachryside; phenolic compounds

1. Introduction

Coix lachryma-jobi L. var. ma-yuen Stapf. (Gramineae), commonly known as adlay or Job's tears, is a miscellaneous cereal that has been an important food item in some parts of East and Southeast Asia for thousands of years [1]. Coix seeds have been used as a traditional folk medicine for relieving heat, inducing diuresis, assisting pus drainage, stimulating lung and spleen function, and treating arthritis and diarrhea [1,2]. C. lachryma-jobi var. ma-yuen has been reported to have several chemical constituents, including benzoxazinoids, lactams, lignans, phenolic acids, flavonoids, fatty acids, and phytosterols [3–9]. The chemical constituents of Coix contribute to its range of medical and nutritional benefits. Some of these compounds have shown a wide range of biological activities, including immunomodulatory, anti-cancer, antioxidant, anti-inflammatory, anti-proliferative, and gastroprotection activities [7–12]. The aim of this study was to phytochemically investigate the roots of C. lachryma-jobi var. ma-yuen. Herein we report the isolation of a new benzoxazinoid glycoside, (2R)-2-O-(6-acetyl- β -D-glucopyranosyl)-7-methoxy-1,4(2H)-benzoxazin-3-one (1), as well

CONTACT Dongho Lee 🖾 dongholee@korea.ac.kr; Seong Su Hong 🖾 bestgene@hotmail.com

Usual Supplemental data for this article can be accessed at 10.1080/10286020.2018.1497016.

^{© 2018} Informa UK Limited, trading as Taylor & Francis Group

Figure 1. Structures of compounds 1-4 isolated from C. lachryma-jobi var. ma-yuen.

as 10 known compounds (2–11, Figure 1). Among the 10 known compounds, the absolute stereochemistry of one previously isolated phenolic derivative was identified for the first time in this study.

2. Results and discussion

Compound 1 was obtained as a colorless amorphous powder, and its molecular formula was determined to be $C_{17}H_{21}NO_{10}$ by HRESIMS (m/z 400.1254 [M+H]⁺), which requires the molecule to have eight degrees of unsaturation. The ¹H and ¹³C NMR data for 1 (Table 1) suggested the presence of one ABX-type aromatic spin system [$\delta_{\rm H}$ 6.83 (1H, d, J = 9.1 Hz, H-5), 6.60 (1H, d, J = 2.1 Hz, H-8), and 6.59 (1H, dd, J = 9.1, 2.1 Hz, H-6); $\delta_{\rm C}$ 156.0, 141.6, 120.3, 116.3, 108.8, and 104.4], an aromatic OCH₃ group [$\delta_{\rm H}$ 3.68 (3H, s, 7-OCH₃); $\delta_{\rm C}$ 55.8], an acetoxyl group [$\delta_{\rm H}$ 2.09 (3H, s, COOCH₃); $\delta_{\rm C}$ 170.8 and 21.2], an acetal methine moiety [$\delta_{\rm H}$ 5.60 (1H, s, H-2); $\delta_{\rm C}$ 96.2], and an amine [$\delta_{\rm H}$ 10.8 (1H, s, NH)]. In addition, the ¹H and ¹³C NMR spectra revealed sets of signals corresponding to a β -glucopyranosyl group [$\delta_{\rm H}$ 4.62 (1H, d, J = 8.4 Hz, H-1'; δ_{C} 103.7 (C-1'), 73.5 (C-2'), 76.8 (C-3'), 70.1 (C-4'), 74.5 (C-5'), 64.2 (C-6')] (Table 1). The ¹³C NMR spectrum of 1 was almost superimposable onto that of HMBOA-Glc (2) except for the presence of one acetoxyl group. The correlation between H-6' and COOCH3 observed in the HMBC spectrum of 1 establishes that the acetoxyl moiety was located at C-6'. The free sugar was confirmed to be Dglucose after acid hydrolysis, optical rotation measurement, and TLC comparison with an authentic sample. In addition, the β -configuration of the sugar moiety was determined from the ¹H-NMR coupling constant of its anomeric proton $(J_{1,2} > 7.0 \text{ Hz})$ [13], while the C-2 connectivity of the sugar was determined on the basis of HMBC correlations between Glc H-1' ($\delta_{\rm H}$ 4.62) and C-2 ($\delta_{\rm C}$ 96.2) (Figure 2). The absolute configuration of C-2 was confirmed as being 2R by the positive opticalrotation ($[\alpha]_D^{25}$ +44.5) and the positive Cotton effects ($\Delta \varepsilon$ +14.8) observed at 216 nm in the circular dichroism (CD) spectrum of 1 [3]. Therefore, the structure of compound 1 was determined to be (2R)-2-O-(6-acetyl- β -D-glucopyranosyl)-7methoxy-1,4(2H)-benzoxazin-3-one, with the trivial name "coixlachryside B."

Compound 4 was obtained as a white amorphous powder that exhibited a quasimolecular ion peak at m/z 379.13971 $[M + H]^+$ by positive-ion HRESIMS, which corresponds to the molecular formula $C_{19}H_{22}O_8$. The 1- and 2-D NMR data for 4 are in agreement with those of the previously reported tarennone (1,2-bis(3,5-dimethoxy-4hydroxyphenyl)-3-hydroxy-propan-1-one) isolated from the whole plant of *Tarenna*

18			4 ^c		
Position	δ _H mult. (J Hz)	δ_{C} mult.	Position	δ _H mult. (<i>J</i> Hz)	δ_{C} mult.
2	5.60 s	96.2 d	1		129.0 s
3		160.0 s	2	7.35 s	107.8 d
5	6.83 d (9.1)	116.3 d	3		148.9 s
6	6.59 dd (9.1, 2.1)	108.8 d	4		142.3 s
7		156.0 s	5		148.9 s
8	6.60 d (2.1)	104.4 d	6	7.35 s	107.8 d
9		141.6 s	7		199.4 s
10		120.3 s	8	4.75 dd (8.4, 4.9)	56.8 ^d d
1′	4.62 d (8.4)	103.7 d	9	4.26 dd (10.5, 8.4)	65.4 t
2′	2.91 t (9.1)	73.5 d		3.73 dd (10.5, 4.9)	
3′	3.16 t (9.1)	76.8 d	1′		129.3 s
4′	3.02 t (9.1)	70.1 d	2′	6.63 s	106.6 d
5′	3.42 m	74.5 d	3′		149.6 s
6′	4.31 dd (11.9, 2.1)	64.2 t	4′		136.0 s
	4.01 dd (11.9, 2.1)		5′		149.6 s
NH	10.8 s		6′	6.63 s	106.6 d
7-OCH ₃	3.68 s	55.8 s	3,5-OCH₃	3.85 s	56.8 ^d s
COOCH ₃		170.8 s	3′,5′-OCH ₃	3.80 s	56.7 s
COOCH ₃	2.09 s	21.2 q			

Table 1. ¹H- and ¹³C-NMR spectroscopic data of compounds 1 and 4.^a

^aPeaks were assigned by analyses of the 1D and 2D NMR spectra (Data recorded at 700 and 175 MHz). ^bMeasured in DMSO- d_{6} .

^cMeasured in CD₃OD.

^dOverlapping signals.

Figure 2. Selected COSY and HMBC correlations of compounds 1 and 4.

attenuata [14], but whose absolute stereochemistry was not assigned. Hence, the absolute configuration of **4** was determined by comparing experimental and calculated electronic circular dichroism (ECD) data, which is a method that has been applied for determining the absolute configurations of natural metabolites [15]. Following systematic conformational searching, geometry optimizations, and ECD calculations, the ECD spectrum was generated using the SpecDis 1.64 software. The calculated ECD spectrum of **4** (Figure 3) closely matches the experimental spectrum, which suggests the 8S absolute configuration; consequently, **4** was determined to be (8S)-tarennone, as shown.

The remaining compounds were determined to be (2*R*)-2-hydroxy-7-methoxy-1,4(2*H*)-benzoxazin-3-one glucoside (HMBOA-Glc, **2**) [3], (2*R*)-2-hydroxy-4,7-dime-thoxy-1,4(2*H*)-benzoxazin-3-one glucoside (HDMBOA-Glc, **3**) [16], 8*R*-evofolin B (**5**) [17], 3,4,5-trimethoxybenzyl alcohol (**6**) [18], α -hydroxypropiosyringone (**7**) [19], β -hydroxypropiovanillone (**8**) [20], β -hydroxypropiosyringone (**9**) [21], 1-O-feruloyl-glycerol (**10**) [22], and 10*Z*,13*Z*-nonadecadienoic acid (**11**) [23]; their chemical

4 🕒 Y.-H. CHOI ET AL.

Figure 3. Calculated and experimental ECD spectra of compounds 4 and 5.

structures were elucidated by comparing their spectroscopic and MS data with those reported in the literature. To the best of our knowledge, compounds 4-11 were isolated for the first time from the Coix genus.

3. Experimental

3.1. General experimental procedures

Optical rotations were measured using a JASCO P-2000 polarimeter, and CD spectra were recorded on a JASCO J-715 spectropolarimeter (Tokyo, Japan). NMR spectra were acquired on a Bruker Ascend III 700 spectrometer (Rheinstetten, Germany) using DMSO- d_6 or CD₃OD as solvent. HRESIMS was performed on Triple TOF 5600+ mass spectrometer (AB SCIX, Foster City, CA, USA). Open column chromatography was performed using ODS-A (12 nm S-7 µm, YMC GEL, Kyoto, Japan). Thin-layer chromatography was performed using precoated silica gel 60 F254 (0.25 mm, Merck) plates, and spots were detected using a 10% aqueous vanillin-H₂SO₄ spray reagent. Preparative HPLC was performed on a Shimadzu (LC-8A pump and SPD-20A UV/ VIS detector) using a YMC-Pack ODS A column ($250 \times 20 \text{ mm}$ I.D.), with a mixed MeCN/H₂O solvent system at a flow rate of 10 ml/min. MPLC (Combi Flash RF, Teledyne ISCO, Lincoln, NE, USA) separations were performed using a RediSep® Rf silica-gel column. All other chemicals and reagents were of analytical grade.

3.2. Plant material

The roots of Coix lachryma-jobi var. ma-yuen were collected in Yeoncheon-gun, Gyeonggi-do, Korea, in November 2013 and identified by one of the authors (Prof. J. S. Oh). A voucher specimen (G54) was deposited in the herbarium of the Bio-Center, Gyeonggido Business & Science Accelerator, Suwon, Korea.

3.3. Extraction and isolation

The dried roots of C. lachryma-jobi var. ma-yuen (1.9 kg) were extracted with 70% ethanol $(2 \times 14 \text{ L})$ at room temperature. The combined ethanol extracts were then concentrated in vacuo at 40 °C to yield 333.3 g of a residue. The ethanol extract was suspended in distilled water and then partitioned successively with *n*-hexane, CH₂Cl₂, EtOAc, and *n*-BuOH, respectively. The EtOAc-soluble layer (5.5 g) was separated using a Diaion HP-20 column chromatography (CC) eluted with a H₂O/MeOH (20:80-0:100) step gradient to give seven fractions (G54-6-1) to G54-6-7. Fraction G54 - 6 - 3 (1.2 g) was further passed through an RP-18 MPLC column (RediSep[®] Rf silica gold 430 g, 150 ml/min) eluted with a $H_2O/MeCN$ (95:5–50:50, 50 min) step gradient to give eight fractions (G54 - 7 - 1 to G54 - 7 - 8). G54 - 7 - 4(120 mg) was purified by preparative HPLC (YMC-Pack ODS-A, 5 μ m, 250 \times 10 mm I.D., MeCN/H₂O, 10:90–20:80, flow rate 12.0 ml/min) to yield compounds 8 $(t_{\rm R} = 14 \text{ min}, 18.6 \text{ mg})$ and 9 $(t_{\rm R} = 12 \text{ min}, 2.1 \text{ mg})$. G54 – 7–6 (164 mg) was purified further by preparative HPLC (MeCN/H₂O, 15:85 isocratic mode, flow rate 12.0 ml/ min) to afford compounds 2 ($t_{\rm R} = 14 \text{ min}$, 39.6 mg), 3 ($t_{\rm R} = 16 \text{ min}$, 6.4 mg), and 7 $(t_{\rm R} = 20 \text{ min}, 1.0 \text{ mg})$. Subfraction G54 – 7–2 (216 mg) was subjected to reversedphase C₁₈ CC and eluted with MeOH/H₂O (10:90 to 50:50) to obtain eight fractions (G54 - 9 - 1 to G54 - 9 - 8). Fraction G54 - 9 - 2 (65 mg) was purified by preparative HPLC (MeCN/H2O, 15:85 isocratic mode, flow rate 12.0 ml/min) to afford compounds 1 ($t_{\rm R} = 17 \, \text{min}$, 7.8 mg) and 6 ($t_{\rm R} = 14 \, \text{min}$, 4.0 mg). Fraction G54 - 9 - 5 (74 mg) was purified further by preparative HPLC (MeCN/H₂O, 25:75 isocratic mode, flow rate 12.0 ml/min) to afford compounds 4 ($t_{\rm R} = 10 \text{ min}$, 3.2 mg), 5 ($t_{\rm R} = 17 \text{ min}$, 3.6 mg), and 10 ($t_{\rm R} = 13 \text{ min}$, 4.5 mg). Fraction G54 – 6–5 (1.3 g) was separated by MPLC with a silica-gel column (RediSep[®] Rf silica gold 80 g, 85 ml/min) and eluted with a CHCl₃/MeOH gradient system (1:0-0:1) to give seven fractions (G54 - 10 - 1to G54 - 10 - 7). G54 - 10 - 2 (380 mg) was further purified by preparative HPLC $(MeOH/H_2O,$ 95:5-100:0, flow rate 8.0 ml/min) to yield compound 11 $(t_{\rm R} = 21 \, {\rm min}, \, 8 \, {\rm mg}).$

3.3.1. (2R)-2-O-(6-Acetyl- β -D-glucopyranosyl)-7-methoxy-1,4(2H)-benzoxazin-3-one (coixlachryside B, 1)

Colorless amorphous powder; $[\alpha]_{D}^{25}$ +44.5 (*c* 0.8, MeOH); CD (MeOH) $\Delta \varepsilon_{216 \text{ nm}}$ +14.8; ¹H-NMR (700 MHz, DMSO-*d*₆) and ¹³C-NMR (175 MHz, DMSO-*d*₆) spectral data see Table 1; ESIMS: *m*/*z* 422 [M + Na]⁺, 369 [M – H]⁻; HRESIMS (positive mode): *m*/*z* 400.1245 [M + H]⁺ (calcd for C₁₇H₂₂NO₁₀, 400.1238).

3.3.2. 8S-Tarennone (4)

White amorphous powder; $[\alpha]_D^{25}$ +21.3 (*c* 0.5, MeOH); CD (MeOH) $\Delta \varepsilon_{237 \text{ nm}}$ +4.64, $\Delta \varepsilon_{268 \text{ nm}}$ -1.97, $\Delta \varepsilon_{311 \text{ nm}}$ +2.75; ¹H-NMR (700 MHz, CD₃OD) and ¹³C-NMR (175 MHz, CD₃OD) spectral data see Table 1; ESI-MS: *m*/*z* 379 [M+H]⁺, 401 [M+Na]⁺, 779 [2M+Na]⁺, 377 [M - H]⁻; HRESI-MS (positive ion mode): *m*/*z* 379.1397 [M + H]⁺ (calcd for C₁₉H₂₃O₈, 379.1387).

3.4. Acid hydrolysis of 1, and absolute configuration determination of sugar

A solution of compound 1 (3 mg) in 2M HCl (MeOH/H₂O 4:1, 5 ml) was refluxed at 90 °C for 6 h. After cooling, the reaction mixture was diluted with H₂O (20 ml) and neutralized with NaHCO₃, followed by extraction with CHCl₃ (3 × 20 ml). The aqueous layer was concentrated to an appropriate volume (1 ml) and examined by TLC (silica gel) (CHCl₃/MeOH/H₂O solvent system, 65:35:10) for sugar analysis. The *Rf* value of the D-glucose spot was 0.25, which was detected by spraying with vanillin-sulfuric acid followed by heating. The specific rotation of the free sugar obtained from the aqueous residue was as follow: $[\alpha]_D^{25}$ +47 (c 0.05, H₂O) of D-glucose from 1 [24].

3.5. Computational methods

Starting with the conformation of compound 4 created by Chem3D modeling, a conformational search was first performed using Chem3D with the MMFF94 force field, and several conformers were selected for further geometry optimization. Geometries were optimized and reoptimized at the B3LYP/6–31 + G(d,p) level using the Gaussian 09 software package. TDDFT CD calculations were performed at the CAM–B3LYP/ SVP level on the optimized conformers using a CPCM solvent model in methanol. The calculated CD spectra were simulated and generated with a half-bandwidth of 0.3 eV using SpecDis 1.64 software [25]. The CD curve of the compound was Boltzmann weighted follow UV correction.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was financially supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (114144-3).

References

- [1] H. Corke, Y. Huang, and J.S. Li, *Encyclopedia of Food Grains* (Oxford Academic Press, Oxford, 2016), p. 184.
- [2] S. Yang, L.M. Wang, Z.L. Wang, X.J. Guo, and D.M. Ren, J. Chin. Med. Mater. 34, 1306 (2011).
- [3] T. Nagao, H. Otsuka, H. Kohda, T. Sato, and K. Yamasaki, *Phytochemistry* 26, 2959 (1985).
- [4] S.S. Hong, C.W. Choi, Y.H. Choi, and J.S. Oh, Phytochem. Lett. 17, 152 (2016).
- [5] A.R. Han, Y.S. Kil, U. Kang, I.S. Youn, G. Choi, Y.J. Lee, J.W. Nam, J.H. Lee, J. Hong, and S.K. Lee, *Bull. Korean Chem. Soc.* 34, 1269 (2013).
- [6] M. Takahashi, C. Konno, and H. Hikino, Planta Med. 52, 64 (1986).
- [7] H. Otsuka, Y. Hirai, T. Nagao, and K. Yamasaki, J. Nat. Prod. 51, 74 (1988).

- [8] C.P. Chung, C.Y. Hsu, J.H. Lin, Y.H. Kuo, W. Chiang, and Y.L. Lin, J. Agric. Food Chem. 59, 1185 (2011).
- [9] M.Y. Lee, H.Y. Lin, F. Cheng, W. Chiang, and Y.H. Kuo, Food Chem. Toxicol. 46, 1933 (2008).
- [10] H.Y. Hsu, B.F. Lin, J.Y. Lin, C.C. Kuo, and W. Chiang, J. Agric. Food Chem. 51, 3763 (2003).
- [11] H.H. Chen, W. Chiang, J.Y. Chang, Y.L. Chien, C.K. Lee, K.J. Liu, Y.T. Cheng, T.F. Chen, Y.H. Kuo, and C.C. Kuo, *J. Agric. Food Chem.* 59, 6444 (2011).
- [12] C.P. Chung, S.M. Hsia, M.Y. Lee, H.J. Chen, F. Cheng, L.C. Chan, Y.H. Kuo, Y.L. Lin, and W. Chiang, J. Agric. Food Chem. 59, 6025 (2011).
- [13] S.S. Hong, Y.H. Choi, W. Jeong, J.G. Kwon, J.K. Kim, C. Seo, E.K. Anh, H.H. Lee, H.J. Ko, D.W. Seo, and J.S. Oh, *Tetrahedron Lett.* 54, 3967 (2013).
- [14] X.W. Yang, J.S. Wang, Y.H. Wang, H.T. Xiao, X.J. Hu, S.Z. Mu, Y.L. Ma, H. Lin, H.P. He, L. Li, and X.J. Hao, *Planta Med.* 73, 496 (2007).
- [15] A.E. Nugroho and H. Morita, J. Nat. Med. 68, 1 (2014).
- [16] A. Baumeler, M. Hesse, and C. Werner, Phytochemistry 53, 213 (2000).
- [17] T.S. Wu, J.H. Yeh, and P.L. Wu, *Phytochemistry* **40**, 121 (1995).
- [18] T. Ozawa and Y. Takino, Agric. Biol. Chem. 43, 1173 (1979).
- [19] X. Zhang, H. Gao, N. Wang, and X.S. Yao, Chin. Tradit. Herb. Drugs 37, 652 (2006).
- [20] M. Karonen, M. Hämäläinen, R. Nieminen, K.D. Klika, J. Loponen, V.V. Ovcharenko, E. Moilanen, and K. Pihlaja, J. Agric. Food Chem. 52, 7532 (2004).
- [21] Y. Nakasone, K. Takara, K. Wada, J. Tanaka, and S. Yogi, *Biosci. Biotech. Biochem.* 60, 1714 (1996).
- [22] J.G. Luo, L. Li, and L.Y. Kong, Food Chem. 131, 1056 (2012).
- [23] D. Liu, G. Kong, Q.C. Chen, G. Wang, J. Li, Y. Xu, T. Lin, Y. Tian, X. Zhang, X. Yao, G. Feng, Z. Lu, and H. Chen, *Bioorg. Med. Chem. Lett.* 21, 6833 (2011).
- [24] Z. Yue, P. Xie, H. Qin, Y. Pan, X. Zhang, M. Zhang, X. Song, F. Feng, Z. Tang, J. Duan, *Phytochem. Lett.* 21, 146 (2017).
- [25] T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, SpecDis, Version 1.64, University of Würzburg, Germany (2015).