Tetrahedron 68 (2012) 8340-8346

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Cu(OTf)₂ catalyzed cross-coupling reaction of 1,3-dicarbonyl derivatives with 2-oxo-1-pyrrolidine compounds

Hai-Yan Xu, Shun-Yi Wang, Ran Jiang, Xiao-Ping Xu*, Xue-Qiang Chu, Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

A R T I C L E I N F O

Article history: Received 18 April 2012 Received in revised form 1 July 2012 Accepted 6 July 2012 Available online 20 July 2012

Keywords: Cu(OTf)₂ Cross-coupling 1,3-Dicarbonyl derivatives 2-Oxo-1-pyrrolidine compound

ABSTRACT

An efficient method for the cross-coupling reactions of 1,3-dicarbonyl compounds with 2-oxo-1pyrrolidine compounds **1** was developed. Cu(OTf)₂ catalyzed C–C bond forming reactions using substrates **1** with 1,3-dicarbonyl compounds in chloroform, providing the corresponding compounds of 2oxo-1-pyrrolidine bearing 1,3-dicarbonyl moiety in moderate to good yields.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The functionalization of activated methylene units, such as 1,3dicarbonyl compounds, is one of the most utilized types of carbon--carbon bond forming reactions.¹ Typically, this transformation is performed with alkyl halides in presence of at least an equimolar amount of base, which results in the generation of large quantities of waste salts² (Scheme 1, Path **A**). Consequently, the development of alternative methods that make use of inexpensive and readily available electrophiles, mild reaction conditions and environmentally friendly catalysts has become very topical. Recently, a lot of works were dedicated to the addition of 1,3-dicarbonyl derivatives to alcohols. It has been reported that addition of β -diketones, and β keto esters to benzhydryl alcohols could be promoted by a stoichiometric amount of Lewis acid, such as BF₃·OEt₂,³ InCl₃,⁴ FeCl₃,⁵ Bi(OTf)₃,¹ Yb(OTf)₃⁶ and a ruthenium complex.⁷ Additionally, molecular iodine⁸ and a series of Brønsted acids, such as H-montmorillote,⁹ *p*-toluenesulfonic acid,¹⁰ triflic acid¹¹ and phosphotungstic acid,¹² have been explored as effective catalysts for this type reaction (Scheme 1, Path B). However, it's not until more recently, the crosscoupling reaction of 1,3-dicarbonyl compounds 2-oxo-1-pyrrolidine compounds to construct carbon-carbon bond has remained unexplored (Scheme 1, Path C).

Scheme 1. State of the art on C–C bond formation of 1,3-dicarbonyl compounds.

2-Oxo-1-pyrrolidine moieties have attracted much attention for their importance as drug molecules and building blocks. 2-Oxo-1-pyrrolidine derivatives, for example, *N*-(2,6dimethylphenyl)-2-(2-oxopyrrolidin-1-yl)acetamide, which is known as Nefiracetam, is a commonly used drug for the treatment of cerebrovascular disease (Fig. 1). Other analogues of above pharmaceuticals, especially in which another biologically active

Fig. 1. Typical structure of pharmaceuticals containing 2-oxo-1-pyrrolidine fragment.

^{*} Corresponding authors. Tel./fax: +86 512 65880307; e-mail addresses: chemjsj@suda.edu.cn, shunjun@suda.edu.cn (S.-J. Ji).

^{0040-4020/\$ -} see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.07.017

alkaloid motif incorporated, also exhibit good activities in the therapy of common diseases, such as attention deficit hyperactivity disorder (ADHD), cardiac arrhythmia and asthmatic syndrome.¹³ Therefore, the discovery of new synthetic methodology and structural modification for the establishment of containing 2oxo-1-pyrrolidine moieties pharmaceutical library was highly desirable. It's not until more recently, only we¹⁴ and Zhang's group¹⁵ have reported Fe(III)-promoted Friedel–Crafts reactions of *tert*-enamides with indoles for the synthesis of 2-oxo-1pyrrolidine compounds, respectively.

As a continual of our previous work,¹⁶ we described Cu(OTf)₂¹⁷ catalyzed C–C bond forming reaction of 1,3-dicarbonyl derivatives with 2-oxo-1-pyrrolidines.

2. Results and discussion

Initial reaction was carried out using **1a** and **2a** under different conditions. As shown in Table 1, the model reaction did not occur in the absence of any catalyst (Table 1, entry 1). After screening a series of catalysts, such as metallic Lewis acid, molecular iodine, as well as Brønsted acid, it was fortunately found that 10 mol % of $Cu(OTf)_2$ was sufficient to promote the reaction (Table 1, entries 2–14). The desired C–C formation product was obtained in 63% yield after 24 h. Further optimization of the reaction conditions by changing the solvent and molar ratio were carried out using 10 mol % $Cu(OTf)_2$ as a catalyst (Table 1, entries 15–21). It was found that the model reaction could proceed effectively in CHCl₃ under reflux conditions. The optimized conditions were that the reaction could perform well in chloroform with a catalytic amount of $Cu(OTf)_2$ (10 mol %) (Table 1, entry 17).

Table 1

Reaction conditions screening^a

Entry	Catalyst (10 mol %)	Time (h)	Solvent	$T(^{\circ}C)$	Yield ^b (%)
1	_	24	DCM	40	n.r
2	Cu(OTf) ₂	24	DCM	40	63
3	In(OTf) ₃	24	DCM	40	n.r ^d
4	La(OTf)3	24	DCM	40	Trace
5	$Zn(OTf)_2$	24	DCM	40	24
6	Bi(NO ₃) ₃	24	DCM	40	n.r
7	FeCl ₃	24	DCM	40	28
8	CuBr ₂	24	DCM	40	Trace
9	InCl ₃	24	DCM	40	<10%
10	AgOTf	24	DCM	40	Trace
11	AgClO ₄	24	DCM	40	Trace
12	SnCl ₂	24	DCM	40	n.r
13	I ₂	24	DCM	40	Trace
14	PTSA ^e	24	DCM	40	Trace
15 ^c	Cu(OTf) ₂	24	Tol.	110	72
16 ^c	Cu(OTf) ₂	24	CH ₃ CN	60	24
17 ^c	Cu(OTf) ₂	24	CHCl ₃	60	79
18 ^c	Cu(OTf) ₂	24	ClCH ₂ CH ₂ Cl	85	74
19 ^c	Cu(OTf) ₂	24	EtOH	78	5
20 ^c	Cu(OTf) ₂	24	THF	65	52
21 ^c	Cu(OTf) ₂	24	CH ₃ NO ₂	100	72
22 ^c	Cu(OTf) ₂	12	CHCl ₃	60	55

^a General conditions: Compound **1a** (0.4 mmol), **2a** (0.4 mmol).

^b Isolated yield.

^c Molar ratio **1a/2a**=1.5: 1. ^d n.r means no reaction.

^e PTSA=*p*-toluenesulfonic acid.

r i s = p - to iu e i e suitonic acid.

With the optimal conditions in hands, the scope of substrates was subsequently investigated. As illustrated in Table 2, the cross-coupling reactions of 1-phenylbutane-1,3-dione **2a** with 2-oxo-1-pyrrolidine derivatives **1** under the established conditions could be accomplished with good generality. The substrate **1** bearing Ar with strong electron-withdrawing groups, such as nitro, cyano and methylsulfonyl, efficiently underwent reactions

Table 2

0

Cu(OTf)₂ catalyzed cross-coupling of 1-phenylbutane-1,3-dione **2a** with 2-oxo-1pyrrolidine derivatives **1** in chloroform^a

0

Ar

		+ Ph	10 mol Cł	% Cu(OTf) ₂ HCl ₃ ,60°C	►			
	1	2a			3			
Entry		Ar	R ¹	Product	Time (h)	Yield ^b (%)		
1	1a	0 ₂ N-	Et	3aa	24	81(5:2) ^d		
2	1b		Et	3ba	24	87(3:1)		
3	1c		Et	3ca	24	80(10:3)		
4	1d	O ₂ N	Et	3da	24	81(2:1)		
5	1e	Br-	Et	3ea	24	79(3:1)		
6	1f	Br	Et	3fa	24	63(1:1)		
7	1g	F-	Et	3ga	24	77(3:1)		
8	1h	\sim	Et	3ha	48	68(4:1)		
9	1i	~ <u></u>	Et	3ia	48	67(4:1)		
10	1j	H ₃ CO-	Et	3ja	48	81 ^c (3:1)		
11	1k	H ₃ CO	Et	3ka	24	68(5:1)		
12	11	Me ₂ N-	Et	3la	48	45(3:1)		
13	1m	<	Et	3ma	48	73 ^c (3:2)		
14	1n		Et	3na	48	63(5:1)		
15	1a	0 ₂ N-	CH ₃	3aa	24	68(3:1)		
16	1j	H ₃ CO-	CH ₃	3ja	48	80(3:1)		
17	1e	Br-	CH₃	3ea	48	81(3:1)		
18	1a	0 ₂ N-	ⁱ Pr	3aa	48	62(3:1)		
^a Unless otherwise specified, all reactions were performed with pyrrolidin-2-ones								

^a Unless otherwise specified, all reactions were performed with pyrrolidin-2-ones derivatives **1** (0.6 mmol), 1-phenylbutane dione **2a** (0.4 mmol), and Cu(OTf)₂ (10 mol %) in CHCl₃ (2 ml) at 60 °C.

^b Isolated yield after flash column chromatography.

^c A larger amount of **1** (0.8 mmol) was employed.

^d Ratio of the diastereomers determined by ¹H NMR spectroscopic analysis.

with 1-phenylbutane-1,3-dione (2a) to afford the desired products (**3aa-da**) in 80-87% yields (Table 2, entries 1-4). The substrate **1** bearing Ar with weak electron-withdrawing groups, such as halogens, also worked well, while affected a bit by the steric effect (Table 2, entries 5–7). Substrates 1 bearing Ar with electron-donating groups, such as methoxy and dimethylamino, gave the moderate results when compared to those with electron-withdrawing groups, which reflecting the electronic effect on the cross-coupling reactions (Table 2, entries 8-12). Other substrates 1 bearing aryls, such as naphthalene-2-yl and thiophen-2-yl, were also demonstrated to be good candidates for this reaction (Table 2, entries 13-14). Influence of other leaving groups on the cross-coupling of 1-phenylbutane-1,3-dione (2a) was investigated as well. It was found that methoxy and isopropoxy substituents exhibited comparable reactivity to ethoxy group, furnishing the expected products in good yields (Table 2, entries 15-18).

Further expansion to other β -dicarbonyl compounds **2** as nucleophile was also explored. The results were listed in Table 3. Obviously, the reaction of β -diketones including acetylacetone and dibenzoylmethane with 1-(ethoxy(4-nitrophenyl)methyl)pyrrolidin-2-one (**1a**) gave the corresponding products in good yields (Table 3, entries 1 and 3). Unexpectedly, the substrate **1** bearing strong electron-donating groups, such as methoxy in the Ar could not react with acetylacetone under standard conditions to give the target product, which might be due decompose to corresponding aldehyde as a side-product (Table 3, entry 2). What's more, β -keto esters, such as ethyl 3-oxobutanoate and ethyl 3-oxo-3phenylpropanoate, also proceeded smoothly to give the corresponding products in 49% and 81% yields, respectively (Table 3, entries 6–7). The malonate derivatives as candidates for 1,3-

Table 3

Cu(OTf)_2 catalyzed cross-coupling of $\beta\text{-dicarbonyl}$ compounds 2 with 2-oxo-1-pyrrolidine derivatives 1 in chloroform a

5	1j	н₃со-	Et	2c	Ph	Ph	3jc	48	61
6	1a	0 ₂ N-	Et	2d	CH_3	OEt	3ad	24	49(1:1) ^c
7	1a	0 ₂ N-	Et	2e	Ph	OEt	3ae	48	81(3:2)
8	1a	0 ₂ N-	Et	2f	ОН	OH	3af	24	0
9	1a	0 ₂ N-	Et	2g	OEt	OEt	3ag	24	0

^a Unless otherwise specified, all reactions were performed with 2-oxo-1-pyrrolidine derivatives **1a** (0.6 mmol), β -dicarbonyl compounds **2** (0.4 mmol), and Cu(OTf)₂ (10 mol %) in CHCl₃ (2 ml) at 60 °C.

^b Isolated yield after flash column chromatography.

^c Ratio of the diastereomers determined by ¹H NMR spectroscopic analysis.

dicarbonyl were selected to reacted with 1-(methoxy(4-nitrophenyl)methyl)pyrrolidin-2-one (**1a**), but no desired products were obtained (Table 3, entries 8–9).

The mechanism of addition of β -dicarbonyl compounds to alcohols by Lewis acids is generally thought to involve the formation of a carbocation intermediate and subsequent S_N1 attack on the β -dicarbonyl compounds to yield the addition product. To better understand the mechanism of our reaction, five control reactions were carried out in different conditions (Scheme 2). When the reaction of **1a** and **2a** catalyzed by 10 mol % TfOH, only 53% desired product was obtained. When 10 mol % CuBr₂ was used as the catalyst instead of Cu(OTf)₂ and HOTf, only trace desired product was formed. However, an 83% yield of 3aa was obtained by co-catalysts of 10 mol % CuBr₂ and 10 mol % HOTf. Then, when we carried out the reaction of **1a** and **2f** catalyzed by not only 10 mol % Cu(OTf)₂ but also 10 mol % HOTf under standard conditions, almost no desired product was formed. Basing on these results, a possible mechanism for this Cu(OTf)₂ catalyzed cross-coupling reaction of 1,3-dicarbonyl compounds was suggested in Scheme 3. By strong coordination of 1,3-dicarbonyl compounds to Cu(OTf)₂, the intermediate **A** was facilely formed via a ligand-exchange reaction. At the same time, elimination of one molecular HOTf occurred. Then, the C-O bond of 1-(ethoxy(4-nitrophenyl)methyl)pyrrolidin-2-one (1a) was activated by HOTf to generate a stable *N*-acyliminium species **B** accompanying

^a Isolated yield after flash column chromatography. ^b The desired product was monitored by LCMS.

Scheme 2. Mechanism study.

Scheme 3. Proposed mechanism.

with formation of one molecular EtOH. Under this circumstance, **B** was fast attacked by the enolate fragment from **A** to afford final product.

3. Conclusion

In summary, we have reported an efficient method for the cross-coupling of β -dicarbonyl compounds with 2-oxo-1-pyrrolidine derivatives. The reactions proceeded efficiently in the presence of a catalytic amount of Cu(OTf)₂ (10 mol %) in chloroform, generating 2-oxo-1-pyrrolidine derivatives bearing β -dicarbonyl moiety in moderate to good yields. The method using *N*,*O*-acetal compound as alkylating reagent provides a new way to synthesize of a wide variety of potential pharmaceutically active compounds bearing 2-oxo-1-pyrrolidine scaffold. Asymmetric synergistic catalyzed cross-coupling reaction of 1,3-dicarbonyl derivatives with 2-oxo-1-pyrrolidine compounds will be reported in due course.

4. Experimental section

4.1. General

Melting points were recorded on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a Varian FT-1000 spectrophotometer using KBr optics. ¹H NMR and ¹³C NMR spectra were recorded on a Varian INOVA 300 or 400 MHz (¹H NMR) and 75 or 100 MHz (¹³C NMR) spectrometer using CDCl₃ or DMSO-*d*₆ as solvent and TMS as internal standard. High resolution mass spectra were obtained using GCT-TOF instrument with El or ESI source.

4.2. Typical experimental procedure for Cu(OTf)₂ catalyzed cross-coupling of β -dicarbonyl derivatives with 2-oxo-1-pyrrolidine compounds

1-Phenylbutane-1,3-dione (0.4 mmol, 0.0648 g), $Cu(OTf)_2$ (0.04 mmol, 0.0158 g, 10 mol %), 1-(ethoxy(phenyl)methyl)pyrrolidin-2-one (0.6 mmol, 0.1584 g), and CHCl₃ (2 ml) were added into a flask. Then the mixture was vigorously stirred at 60 °C until 1-phenylbutane-1,3-dione or 1-(ethoxy(phenyl)methyl)pyrrolidin-2-one was completely consumed as monitored by TLC analysis. After the completion of reaction, the residue was directly purified by flash column chromatography by using ethyl acetate and petroleum ether as eluents to afford pure product.

4.2.1. 2-((4-Nitrophenyl)(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (3aa). Yield (122.6 mg, 81%). White solid. Mp 164.5–165.3 °C. IR (KBr): v=3428, 3065, 2958, 1674, 1514, 1424, 1267, 1175, 857 cm⁻¹. Characterized as a 5:2 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =8.10 (d, *I*=8.7 Hz, 2H), 7.96 (d, J=8.7 Hz, 2H), 7.65-7.45 (m, 5H), 6.10 (d, J=11.4 Hz, 1H), 5.88 (d, *I*=11.4 Hz, 1H), 3.49–3.43 (m, 1H), 3.22–3.16 (m, 1H), 2.39–2.34 (m, 2H), 2.23 (s, 3H), 1.97–1.92 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ=8.21 (d, J=8.6 Hz, 2H), 8.13 (d, J=8.6 Hz, 2H), 7.76 (d, J=8.2 Hz, 2H), 7.67-7.62 (m, 4H), 6.47 (d, J=11.4 Hz, 1H), 5.46 (d, J=11.4 Hz, 1H), 3.46-3.43 (m, 1H), 3.35-3.34 (m, 1H), 2.19–2.17 (m, 2H), 1.97 (s, 3H), 1.92–1.86 (m, 2H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 201.2$, 192.7, 175.6, 147.5, 144.3, 135.8, 134.5, 129.1, 128.2, 123.9, 63.9, 55.4, 45.3, 31.2, 27.6, 18.3 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ=201.2, 192.8, 175.6, 147.7, 145.0, 136.2, 134.2, 128.8, 128.6, 126.9, 121.7, 58.3, 48.7, 31.6, 30.5, 29.6, 18.2 ppm. HRMS: calcd for C₂₁H₂₀N₂O₅: [M]⁺ 380.1372; found, 380.1264.

4.2.2. 2-((4-(Methylsulfonyl)phenyl)(2-oxopyrrolidin-1-yl)methyl)-1-phenylbutane-1,3-dione (3ba). Yield (144.0 mg, 87%). White solid. Mp 201.3–202.8 °C. IR (KBr): v=3427, 2968, 1674, 1424, 1293, 1151 cm⁻¹. Characterized as a 3:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.97 (d, *J*=7.7 Hz, 2H), 7.82 (d, *J*=7.7 Hz, 2H), 7.54–7.46 (m, 5H), 6.15 (d, *I*=11.4 Hz, 1H), 5.84 (d, *I*=11.4 Hz, 1H), 3.48-3.44 (m, 1H), 3.17-3.11 (m, 1H), 2.98 (s, 3H), 2.38-2.36 (m, 2H), 2.23 (s, 3H), 1.99–1.95 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.13 (d, *I*=7.4 Hz, 2H), 7.94 (d, *I*=8.2 Hz, 2H), 7.78 (d, *J*=8.2 Hz, 2H), 7.63–7.58 (m, 3H), 6.44 (d, *J*=11.4 Hz, 1H), 5.49 (d, J=11.4 Hz, 1H), 3.37–3.34 (m, 1H), 3.34–3.32 (m, 1H), 3.07 (s, 3H), 2.16-2.14 (m, 2H), 1.99 (s, 3H), 1.85-1.78 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ=201.5, 192.8, 175.6, 143.3, 140.4, 136.2, 134.2, 129.5, 129.1, 128.8, 127.9, 63.9, 55.3, 45.1, 44.3, 31.2, 27.5, 18.3 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ =200.2, 192.5, 175.6, 143.8, 140.4, 136.2, 134.2, 129.5, 129.1, 128.8, 127.8, 58.2, 49.4, 48.5, 44.3, 31.6, 29.7, 18.3 ppm. HRMS: calcd for C₂₂H₂₃NO₅S: [M]⁺ 413.1297; found, 413.1184.

4.2.3. 4-(2-Benzoyl-3-oxo-1-(2-oxopyrrolidin-1-yl)butyl)benzonitrile (3ca). Yield (115.6 mg, 81%). White solid. Mp 116.3-117.5 °C. IR (KBr): *v*=3422, 2928, 2227, 1678, 1420, 1266, 980 cm⁻¹. Characterized as a 10:3 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ=7.92 (d, J=7.7 Hz, 2H), 7.64 (d, J=7.7 Hz, 2H), 7.46–7.39 (m, 5H), 6.03 (d, *J*=11.7 Hz, 1H), 5.81 (d, *J*=11.7 Hz, 1H), 3.41-3.37 (m, 1H), 3.16-3.12 (m, 1H), 2.37-2.34 (m, 2H), 2.22 (s, 3H), 1.94-1.91 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.11 (d, *J*=7.6 Hz, 2H), 7.70–7.59 (m, 4H), 7.54–7.52 (m, 3H), 6.42 (d, J=11.3 Hz, 1H), 5.41 (d, *J*=11.3 Hz, 1H), 3.46-3.44 (m, 1H), 3.31-3.29 (m, 1H), 2.22–2.14 (m, 2H), 1.96 (s, 3H), 1.85–1.82 (m, 2H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: δ =201.6, 192.7, 175.6, 142.6, 136.1, 134.4, 132.8, 129.5, 128.6, 118.5, 112.4, 64.1, 55.9, 45.5, 31.8, 27.8, 18.5 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ=200.3, 192.6, 175.8, 143.3, 136.1, 134.3, 132.8, 129.5, 129.2, 128.4, 112.5, 64.1, 58.9, 49.2, 31.9, 30.6, 18.4 ppm. HRMS: calcd for C₂₂H₂₀N₂O₃: [M]⁺ 360.1474; found, 360.1546.

4.2.4. 2-((3-Nitrophenyl)(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (**3da**). Yield (124.6 mg, 81%). White solid. Mp 135.9–147.5 °C. IR (KBr): ν =3436, 2963, 1674, 1427, 1294, 770 cm⁻¹. Characterized as a 2:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =8.42 (s, 1H), 7.96 (d, *J*=7.6 Hz, 3H), 7.55–7.43 (m, 5H), 6.13 (d, *J*=11.7 Hz, 1H), 5.87 (d, *J*=11.7 Hz, 1H), 3.49–3.37 (m, 1H), 3.22–3.18 (m, 1H), 2.39–2.34 (m, 2H), 2.24 (s, 3H), 1.98–1.93 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ=8.23–8.11 (m, 3H), 8.06 (d, *J*=8.1 Hz, 1H), 7.63–7.55 (m, 5H), 6.46 (d, *J*=11.7 Hz, 1H), 5.51 (d, *J*=11.7 Hz, 1H), 3.42–3.37 (m, 1H), 2.86–2.83 (m, 1H), 2.17–2.14 (m, 2H), 2.02 (s, 3H), 1.85–1.79 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =201.4, 192.6, 175.5, 148.3, 139.2, 134.9, 134.5, 134.4, 129.9, 128.8, 123.2, 122.4, 63.9, 55.4, 45.2, 31.2, 27.6 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ =200.0, 192.9, 175.6, 148.2, 139.7, 136.2, 134.9, 134.2, 129.9, 129.1, 128.8, 123.4, 122.3, 58.1, 48.6, 31.5, 30.6, 30.4, 18.3 ppm. HRMS: calcd for C₂₁H₂₀N₂O₅: [M]⁺ 380.1372; found, 380.1263.

4.2.5. 2-((4-Bromophenyl)(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (3ea). Yield (133.3 mg, 79%). Yellow solid. Mp 118.3–119.5 °C. IR (KBr): *v*=3432, 2964, 1670, 1421, 1269 cm⁻¹. Characterized as a 3:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.96 (d, *J*=7.6 Hz, 2H), 7.48–7.41 (m, 3H), 7.36 (d, J=8.2 Hz, 2H), 7.16 (d, J=8.2 Hz, 2H), 6.08 (d, J=11.7 Hz, 1H), 5.71 (d, J=11.7 Hz, 1H), 3.45-3.38 (m, 1H), 3.16-3.10 (m, 1H), 2.34-2.25 (m, 2H), 2.23 (s, 3H), 1.97–1.90 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ=8.11 (d, *J*=7.9 Hz, 2H), 7.62–7.58 (m, 3H), 7.51–7.41 (m, 4H), 6.33 (d, J=11.4 Hz, 1H), 5.40 (d, J=11.4 Hz, 1H), 3.45-3.43 (m, 1H), 3.30-3.28 (m, 1H), 2.17-2.14 (m, 2H), 1.97 (s, 3H), 1.94-1.90 (m, 2H) ppm. 13 C NMR (75 MHz, CDCl₃): δ =201.9, 192.6, 173.3, 136.5, 136.1, 134.3, 131.9, 129.4, 128.9, 122.2, 64.3, 58.1, 47.6, 29.7, 18.1 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ =200.8, 192.9, 173.3, 136.5, 136.1, 133.9, 132.0, 130.2, 129.4, 128.9, 122.5, 58.1, 48.0, 31.7, 30.9, 30.2, 18.1 ppm. HRMS: calcd for C₂₁H₂₀BrNO₃: [M]⁺ 413.0627; found. 413.0693.

4.2.6. 2-((2-Bromophenyl)(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (3fa). Yield (102.5 mg, 63%). Yellow solid. Mp 130.7–131.5 °C. IR (KBr): *v*=3246, 2964, 1976, 1688, 1440, 1284, 1171, 994, 762, 685, 534 cm⁻¹. Characterized as a 1:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =8.13 (d, J=7.8 Hz, 2H), 8.05 (d, J=7.8 Hz, 2H), 7.94 (d, J=7.8 Hz, 2H), 7.63-7.49 (m, 6H), 7.44–7.41 (m, 3H), 7.36 (t, J=7.6 Hz, 1H), 7.15–7.11 (m, 2H), 7.05 (t, J=7.6 Hz, 1H), 6.62 (d, J=11.3 Hz, 1H), 6.27 (d, J=11.4 Hz, 1H), 6.01 (d, J=11.4 Hz, 1H), 6.83 (d, J=11.3 Hz, 1H), 3.64–3.60 (m, 1H), 3.58–3.52 (m, 1H), 3.51–3.39 (m, 1H), 3.20–3.14 (m, 1H), 2.46–2.44 (m, 2H), 2.29 (s, 3H), 2.12–2.08 (m, 2H), 1.97 (s, 3H), 1.84–1.77 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ=207.3, 206.1, 198.2, 197.8, 180.5, 141.7, 141.3, 139.5, 137.2, 137.1, 136.2, 136.1, 135.4, 134.7, 134.4, 133.9, 132.1, 130.3, 129.6, 129.1, 128.9, 127.7, 127.4, 69.5, 62.8, 60.2, 53.2, 49.8, 36.9, 36.5, 35.5, 32.4, 23.4, 23.3 ppm. HRMS: calcd for C₂₁H₂₀BrNO₃: [M]⁺ 413.0627; found, 413.0693.

4.2.7. 2-((4-Fluorophenyl)(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (3ga). Yield (109.5 mg, 77%). White solid. Mp 106.5–107.1 °C. IR (KBr): v=3438, 2920, 1676, 1507, 1424, 1271, 812, 695 cm⁻¹. Characterized as a 3:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.94 (d, *J*=7.7 Hz, 2H), 7.55–7.41 (m, 4H), 7.03 (t, J=8.5 Hz, 1H), 6.90 (t, J=8.5 Hz, 2H), 6.08 (d, J=11.8 Hz, 1H), 5.73 (d, J=11.8 Hz, 1H), 3.45-3.39 (m, 1H), 3.16-3.10 (m, 1H), 2.36–2.31 (m, 2H), 2.22 (s, 3H), 1.95–1.89 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ=8.10 (d, *J*=7.6 Hz, 2H), 7.58–7.50 (m, 4H), 7.26–7.24 (m, 4H), 6.32 (d, *J*=11.5 Hz, 1H), 5.42 (d, *J*=11.5 Hz, 1H), 3.39-3.37 (m, 1H), 3.31-3.27 (m, 1H), 2.16-2.14 (m, 2H), 1.91 (s, 3H), 1.78–1.70 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =197.8, 188.4, 170.9, 159.1, 156.6, 131.8, 129.8, 128.4, 125.8, 124.5, 115.0, 60.1, 50.7, 40.3, 27.3, 26.9, 13.7 ppm. Isomer ¹³C NMR (100 MHz, CDCl₃): δ =196.8, 188.7, 170.9, 159.4, 156.9, 132.0, 129.5, 129.0, 125.0, 124.4, 111.3, 53.6, 45.2, 43.6, 26.3, 25.3, 13.5 ppm. HRMS: calcd for C₂₁H₂₀FNO₃: [M]⁺ 353.1427; found, 353.1502.

4.2.8. 2-((2-Oxopyrrolidin-1-yl)(phenyl)methyl)-1-phenylbutane-1,3-dione (**3ha**). Yield (88.6 mg, 68%). White solid. Mp 110.0–111.5 °C. IR (KBr): ν =3424, 3055, 2954, 1670, 1424, 1268, 1090, 1018, 798, 692, 563 cm⁻¹. Characterized as a 4:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.90 (d, *J*=7.5 Hz, 2H), 7.45–7.38 (m, 5H), 7.20–7.14 (m, 3H), 6.13 (d, *J*=11.8 Hz, 1H), 5.63 (d, *J*=11.8 Hz, 1H), 3.43–3.35 (m, 1H), 3.05–3.03 (m, 1H), 2.28–2.26 (m, 2H), 2.17 (s, 3H), 1.88–1.84 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.04 (d, *J*=7.5 Hz, 2H), 7.54–7.50 (m, 3H), 7.29–7.24 (m, 5H), 6.24 (d, *J*=11.5 Hz, 1H), 5.42 (d, *J*=11.8 Hz, 1H), 3.32–3.31 (m, 1H), 2.79–2.76 (m, 1H), 2.13–2.09 (m, 2H), 1.88 (s, 3H), 1.69–1.67 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =202.8, 193.3, 175.4, 137.0, 136.5, 134.3, 129.1, 128.9, 128.3, 127.9, 64.7, 55.6, 44.6, 31.5, 27.4, 18.4 ppm. Isomer ¹³C NMR (100 MHz, CDCl₃): δ =201.4, 193.0, 175.4, 137.5, 136.5, 134.1, 129.1, 128.7, 128.3, 127.9, 64.6, 49.6, 47.8, 31.6, 27.4, 18.2 ppm. HRMS: calcd for C₂₁H₂₁NO₃: [M]⁺ 335.1521; found, 335.1611.

4.2.9. 2-((2-Oxopyrrolidin-1-yl)(p-tolyl)methyl)-1-phenylbutane-1,3-dione (3ia). Yield (94.2 mg, 67%). White solid. Mp 125.6–126.2 °C. IR (KBr): v=3429, 2927, 1678, 1421, 1262, 1086 cm⁻¹. Characterized as a 4:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.98 (d, J=7.6 Hz, 2H), 7.47–7.30 (m, 4H), 7.17-7.13 (m, 3H), 7.02 (d, J=7.9 Hz, 2H), 6.20 (d, J=11.8 Hz, 1H), 5.65 (d, J=11.8 Hz, 1H), 3.45-3.40 (m, 1H), 3.12-3.08 (m, 1H), 2.34-2.31 (m, 2H), 2.24 (s, 6H), 1.92–1.89 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ=8.11 (d, J=7.6 Hz, 2H), 7.60-7.57 (m, 4H), 7.04-7.02 (m, 3H), 6.26 (d, J=11.6 Hz, 1H), 5.49 (d, J=11.6 Hz, 1H), 3.39-3.35 (m, 1H), 3.26-3.25 (m, 1H), 2.18-2.14 (m, 2H), 1.96 (s, 6H), 1.71–1.69 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =202.7, 192.8, 175.1, 137.8, 136.4, 134.0, 133.7, 129.4, 128.8, 128.7, 127.6, 64.6, 54.9, 44.2, 31.3, 27.1, 18.1 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ =201.6, 193.3, 175.1, 138.2, 136.6, 134.2, 133.7, 129.6, 128.7, 128.3, 127.6, 64.4, 58.0, 49.4, 47.4, 31.7, 27.1, 21.1, 17.6 ppm. HRMS: calcd for C₂₂H₂₃NO₃: [M]⁺ 349.1678; found, 349.1759.

4.2.10. 2-((4-Methoxyphenyl)(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (3ja). Yield (88.0 mg, 61%). White solid. Mp 81.2-82.2 °C. IR (KBr): v=3436, 2963, 1675, 1426, 1261, 1031, 805 cm⁻¹. Characterized as a 3:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ=7.97 (d, *J*=7.6 Hz, 2H), 7.46 (t, *J*=7.5 Hz, 3H), 7.15 (d, J=8.4 Hz, 2H), 6.75 (d, J=8.4 Hz, 2H), 6.14 (d, J=11.8 Hz, 1H), 5.66 (d, J=11.8 Hz, 1H), 3.72 (s, 3H), 3.42-3.35 (m, 1H), 3.15-3.11 (m, 1H), 2.38–2.31 (m, 2H), 2.24 (s, 3H), 1.93–1.89 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.11 (d, J=7.6 Hz, 2H), 7.59 (t, J=7.5 Hz, 3H), 7.51 (d, J=7.5 Hz, 2H), 6.87 (d, J=7.5 Hz, 2H), 6.25 (d, J=11.5 Hz, 1H), 5.46 (d, J=11.5 Hz, 1H), 3.80 (s, 3H), 3.27-3.24 (m, 1H), 3.87-3.84 (m, 1H), 2.16 (s, 3H), 2.04-2.00 (m, 2H), 1.81-1.77 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =202.8, 193.0, 175.3, 159.4, 136.5, 134.2, 129.8, 129.5, 129.1, 128.9, 114.4, 64.9, 57.9, 55.3, 44.5, 31.6, 27.3, 18.2 ppm. Isomer ¹³C NMR (100 MHz, CDCl₃): δ =201.8, 193.6, 175.1, 159.7, 136.8, 134.9, 129.5, 128.9, 114.3, 64.6, 55.1, 49.6, 47.5, 31.9, 30.8, 17.8 ppm. HRMS: calcd for C₂₂H₂₃NO₄: [M]⁺ 365.1627; found, 365.1701.

4.2.11. 2-((3-Methoxyphenyl)(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (**3ka**). Yield (99.5 mg, 68%). White solid. Mp 112.5–113.0 °C. IR (KBr): ν =3428, 2947, 1673, 1596, 1423, 1272, 1173, 1054, 989, 760 cm⁻¹. Characterized as a 5:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.98 (d, J=7.6 Hz, 2H), 7.59 (t, J=7.5 Hz, 2H), 7.54–7.40 (m, 3H), 6.81–6.74 (m, 2H), 6.20 (d, J=11.8 Hz, 1H), 5.65 (d, J=11.8 Hz, 1H), 3.69 (s, 3H), 3.44–3.43 (m, 1H), 3.12–3.10 (m, 1H), 2.35–2.34 (m, 2H), 2.24 (s, 3H), 1.91–1.83 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.11 (d, J=7.5 Hz, 2H), 7.29–7.25 (m, 2H), 7.13–7.07 (m, 2H), 6.84–6.81 (m, 1H), 6.74–6.71 (m, 2H), 6.25 (d, J=11.6 Hz, 1H), 5.52 (d, J=11.6 Hz, 1H), 4.13–4.10 (m, 1H), 3.81 (s, 3H), 3.36–3.27 (m, 1H), 2.20–2.16 (m, 2H), 2.06–2.02 (m, 2H), 1.99 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =202.5, 193.2, 175.2, 159.8, 138.3, 136.3, 134.1, 129.7, 128.9, 119.6, 114.1, 113.6, 64.4, 55.2, 49.4, 44.2, 31.3, 27.1, 18.1 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ =201.4, 192.7, 175.2, 159.7, 138.7, 136.5, 133.7, 129.9, 128.7, 120.5, 113.8, 113.5, 64.2, 58.2, 55.1, 47.4, 31.6, 29.9, 17.6 ppm. HRMS: calcd for C₂₂H₂₃NO₄: [M]⁺ 365.1627; found, 365.1519.

4.2.12. 2-((4-(Dimethylamino)phenyl)(2-oxopyrrolidin-1-yl)methyl)-1-phenylbutane-1,3-dione (3la). Yield (67.4 mg, 45%). White solid. Mp 100.0–101.5 °C. IR (KBr): v=3380, 2921, 1674, 1525, 1423, 1354, 1266, 1170, 812, 691 cm⁻¹. Characterized as a 3:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.96 (d, *J*=7.8 Hz, 2H), 7.50-7.39 (m, 3H), 7.08 (d, J=8.5 Hz, 2H), 6.52 (d, J=8.5 Hz, 2H), 6.14 (d, J=11.7 Hz, 1H), 5.57 (d, J=11.7 Hz, 1H), 3.40-3.39 (m, 1H), 3.10-3.07 (m, 1H), 2.84 (s, 6H), 2.33-2.29 (m, 2H), 2.25 (s, 3H), 1.92-1.87 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08 (d, d)$ J=7.7 Hz, 2H), 7.55 (t, J=6.7 Hz, 1H), 7.33 (d, J=8.2 Hz, 2H), 6.64 (d, J=8.3 Hz, 2H), 6.14 (d, J=11.7 Hz, 1H), 5.46 (d, J=11.7 Hz, 1H), 3.29-3.25 (m, 1H), 3.25-3.20 (m, 1H), 2.92 (s, 6H), 2.15-2.13 (m, 2H), 1.96 (s, 3H), 1.72–1.67 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ=208.3, 198.8, 180.2, 155.5, 141.7, 139.1, 134.5, 133.9, 133.7, 129.4, 117.5, 70.1, 59.9, 49.2, 45.5, 36.6, 34.9, 32.2, 23.2 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ=207.2, 198.8, 180.1, 155.3, 141.9, 138.3, 134.5, 139.8, 133.7, 129.6, 117.5, 62.8, 60.8, 52.2, 45.5, 36.9, 34.9, 32.2, 23.2 ppm. HRMS: calcd for C₂₃H₂₆N₂O₃: [M]⁺ 378.1943; found, 378.1817.

4.2.13. 2-((2-Oxopyrrolidin-1-yl)(thiophen-2-yl)methyl)-1phenvlbutane-1.3-dione (**3ma**). Yield (84.1 mg, 62%). White solid. Mp 128.0–129.5 °C. IR (KBr): v=3433, 3080, 2921, 1670, 1423, 1265, 1148, 964, 784, 697 cm⁻¹. Characterized as a 3:2 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =8.10 (d, *J*=7.8 Hz, 2H), 7.59–7.46 (m, 3H), 7.13 (d, *J*=5.1 Hz, 1H), 6.89–6.87 (m, 1H), 6.83–6.81 (m, 1H), 6.46 (d, J=11.7 Hz, 1H), 5.58 (d, J=11.7 Hz, 1H), 3.49-3.42 (m, 1H), 3.29-3.23 (m, 1H), 2.35-2.33 (m, 2H), 2.22 (s, 3H), 1.95–1.91 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.11 (d, J=7.7 Hz, 2H), 7.60–7.51 (m, 3H), 7.26 (s, 1H), 7.11 (d, J=7.4 Hz, 1H), 6.97–6.94 (m, 1H), 6.18 (d, J=11.1 Hz, 1H), 5.84 (d, J=11.1 Hz, 1H), 3.50-3.48 (m, 1H), 2.87-2.85 (m, 1H), 2.17-2.07 (m, 2H), 2.07 (s, 3H), 1.83–1.74 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =201.9, 192.8, 175.1, 139.7, 136.2, 134.1, 128.9, 128.8, 126.7, 126.2, 125.4, 66.3, 49.4, 44.2, 31.2, 29.9, 18.1 ppm. Isomer ¹³C NMR (75 MHz, CDCl₃): δ=200.7, 192.7, 175.1, 139.4, 136.3, 133.9, 128.9, 127.3, 126.0, 125.3, 65.5, 53.2, 47.2, 31.4, 29.6, 18.1 ppm. HRMS: calcd for C₁₉H₁₉NO₃S: [M]⁺ 341.1086; found, 341.0985.

4.2.14. 2-(Naphthalen-2-yl(2-oxopyrrolidin-1-yl)methyl)-1phenylbutane-1,3-dione (3na). Yield (96.5 mg, 63%). White solid. Mp 81.1-82.5 °C. IR (KBr): v=3435, 3054, 2949, 673, 1419, 1267, 1170, 970, 757 cm⁻¹. Characterized as a 5:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =7.93 (d, *J*=8.0 Hz, 2H), 7.69 (d, J=8.0 Hz, 2H), 7.66-7.52 (m, 3H), 7.39-7.34 (m, 5H), 6.32 (d, J=11.8 Hz, 1H), 5.78 (d, J=11.8 Hz, 1H), 3.45-3.42 (m, 1H), 3.10-3.04 (m, 1H), 2.34–2.25 (m, 2H), 2.24 (s, 3H), 1.88–1.80 (m, 2H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.10 (d, J=7.8 Hz, 2H), 7.81 (d, J=8.9 Hz, 2H), 7.57-7.44 (m, 9H), 6.32 (d, J=11.5 Hz, 1H), 5.64 (d, J=11.5 Hz, 1H), 3.35-3.30 (m, 1H), 3.25-3.24 (m, 1H), 2.17-2.12 (m, 2H), 1.90 (s, 3H), 1.69–1.65 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =202.5, 192.7, 175.3, 136.4, 134.1, 131.4, 128.9, 128.8, 128.7, 127.9, 127.5, 127.4, 126.5, 126.1, 125.2, 64.6, 55.5, 44.4, 31.4, 27.2, 18.1 ppm. Isomer 13 C NMR (75 MHz, CDCl₃): δ =201.4, 193.1, 175.3, 136.6, 134.8, 133.0, 128.9, 128.8, 128.7, 128.1, 127.6, 127.4, 126.3, 125.7, 125.2, 64.4, 58.3, 47.5, 31.7, 29.7, 18.1 ppm. HRMS: calcd for C₂₅H₂₃NO₃: [M]⁺ 385.1678; found, 385.1557.

4.2.15. 3-((4-Nitrophenyl)(2-oxopyrrolidin-1-yl)methyl)pentane-2,4dione (**3ab**). Yield (82.6.5 mg, 64%). White solid. Mp 123.2–124.2 °C. IR (KBr): ν =3409, 3111, 2966, 2866, 1687, 1519, 1419, 1354, 1265, 1168, 807,704 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ =8.81 (d, *J*=8.7 Hz, 2H), 7.54 (d, *J*=8.7 Hz, 2H), 5.67 (d, *J*=11.9 Hz, 1H), 5.17 (d, *J*=11.9 Hz, 1H), 337–3.31 (m, 1H), 3.24–3.17 (m, 1H), 2.35–2.25 (m, 5H), 2.12 (s, 3H), 1.97–1.86 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =205.7, 205.4, 180.7, 152.9, 149.4, 134.2, 129.4, 74.8, 60.8, 51.2, 36.5, 36.4, 33.6, 23.4 ppm. HRMS: calcd for C₁₆H₁₈N₂O₅: [M]⁺ 318.1216; found, 318.1302.

4.2.16. 2-((4-Nitrophenyl)(2-oxopyrrolidin-1-yl)methyl)-1,3diphenylpropane-1,3-dione (**3ac**). Yield (139.5 mg, 79%). White solid. Mp 86.4–87.1 °C. IR (KBr): ν =3441, 3054, 2920, 1670, 1520, 1278, 1104, 1005, 857, 695 cm^{-1. 1}H NMR (400 MHz, CDCl₃): δ =8.02 (t, *J*=8.0 Hz, 4H), 7.80 (d, *J*=7.7 Hz, 2H), 7.68 (d, *J*=7.7 Hz, 2H), 7.53–7.29 (m, 7H), 5.53 (d, *J*=11.0 Hz, 1H), 3.57–3.55 (m, 1H), 3.46–3.44 (m, 1H), 2.23–2.18 (m, 2H), 1.90–1.86 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =193.3, 176.2, 147.5, 145.1, 136.2, 135.8, 134.0, 133.8, 129.6, 128.8, 128.7, 132.7, 60.3, 57.5, 49.8, 31.9, 29.6 ppm. HRMS: calcd for C₂₆H₂₂N₂O₅: [M]⁺ 442.1529; found, 442.1414.

4.2.17. 2-((4-Methoxyphenyl)(2-oxopyrrolidin-1-yl)methyl)-1,3diphenylpropane-1,3-dione (**3***j***c**). Yield (106.0 mg, 61%). White solid. Mp 176.2–177.9 °C. IR (KBr): ν =3449, 3056, 2937, 1671, 1512, 1437, 1268, 1188, 1023, 760, 693 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ =8.02 (d, J=7.7 Hz, 2H), 7.83 (d, J=7.7 Hz, 2H), 7.51–7.28 (m, 9H), 6.71 (d, J=8.7 Hz, 2H), 5.44 (d, J=11.0 Hz, 1H), 3.69 (s, 3H), 3.54–3.48 (m, 1H), 3.45–3.42 (m, 1H), 2.24–2.20 (m, 2H), 1.85–1.64 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =194.2, 176.1, 159.7, 136.7, 133.6, 130.1, 129.9, 129.1, 128.9, 128.7, 114.1, 60.4, 58.8, 55.4, 49.4, 32.4, 18.5 ppm. HRMS: calcd for C₂₇H₂₅NO4: [M]⁺ 427.1784; found, 427.1691.

4.2.18. Ethyl 2-((4-nitrophenyl)(2-oxopyrrolidin-1-yl)methyl)-3oxobutanoate (**3ad**). Yield (68.2 mg, 49%). Yellow oil. IR (KBr): ν =3454, 2932, 1689, 1523, 1354, 1272, 1021, 856, 530 cm⁻¹. Characterized as a 1:1 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =8.19 (dd, *J*=8.1, 4.8 Hz, 2H, ArH), 7.57 (dd, *J*=8.1, 4.8 Hz, 2H, ArH), 5.55 (dd, *J*=25.7, 11.9 Hz, 1H, CH), 5.45 (d, *J*=11.6 Hz, 1H, CH), 4.24 (dd, *J*=7.1, 4.2 Hz, 1H, OCH₂), 4.04 (dd, *J*=7.1, 4.2 Hz, 1H, OCH₂), 3.48–3.33 (m, 1H), 3.27–3.22 (m, 1H), 2.37 (s, 1.5H, COCH₃), 2.35–2.19 (m, 2H), 2.17 (s, 1.5H, COCH₃), 1.89–1.80 (m, 2H), 1.28 (t, *J*=7.1 Hz, 1.5H, OCH₂CH₃), 1.10 (t, *J*=7.1 Hz, 1.5H, OCH₂CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ =205.6, 204.8, 180.7, 180.3, 171.6, 171.5, 152.9, 152.7, 149.6, 148.7, 134.2, 133.8, 129.2, 128.8, 67.6, 67.2, 66.1, 60.6, 51.7, 51.4, 36.6, 35.8, 35.4, 34.7, 33.7, 23.5, 23.4, 19.2, 19.0 ppm. HRMS: calcd for C₁₇H₂₀N₂O₆: [M]⁺ 348.1321; found, 348.1212.

4.2.19. Ethyl 2-benzoyl-3-(4-nitrophenyl)-3-(2-oxopyrrolidin-1-yl) propanoate (3ae). Yield (134.9 mg, 81%). White solid. Mp 37.4–38.1 °C. IR (KBr): v=3456, 3072, 2958, 1727, 1521, 1348, 1268, 1013, 850, 692 cm⁻¹. Characterized as a 3:2 diastereomeric mixture. ¹H NMR (400 MHz, CDCl₃): δ =8.07 (d, J=8.5 Hz, 2H), 7.96 (d, J=8.5 Hz, 2H), 7.57 (d, J=8.4 Hz, 2H), 7. 61-7.39 (m, 3H), 5.87 (d, J=11.5 Hz, 1H), 5.76 (d, J=11.5 Hz, 1H), 4.17–4.10 (m, 2H), 3.54–3.49 (m, 1H), 3.36–3.33 (m, 1H), 2.35–2.31 (m, 2H), 1.85–1.64 (m, 2H), 1.14 (t, *J*=8.4 Hz, 3H) ppm. Isomer ¹H NMR (400 MHz, CDCl₃): δ =8.18 (d, J=8.4 Hz, 2H), 8.10 (d, J=8.4 Hz, 2H), 7.61–7.39 (m, 5H), 6.21 (d, J=11.5 Hz, 1H), 5.35 (d, J=11.5 Hz, 1H), 3.91-3.87 (m, 2H), 3.54–3.49 (m, 1H), 3.33–3.24 (m, 1H), 2.33–2.24 (m, 1H), 2.31–2.51 (m, 2H), 1.80–1.67 (m, 2H), 0.89 (t, J=8.4 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =192.8, 175.8, 167.5, 147.9, 144.8, 134.4, 129.8, 129.3, 129.0, 128.9, 124.1, 62.5, 58.7, 55.2, 46.4, 31.6, 29.8, 14.1 ppm. Isomer ¹³C NMR (100 MHz, CDCl₃): δ =191.4, 175.5, 167.2, 147.6, 144.7, 134.3, 129.8, 129.1, 129.0, 128.9, 124.0, 62.1, 56.3, 55.6, 49.2, 31.9, 18.6, 13.8 ppm. HRMS: calcd for C₂₂H₂₂N₂O₆: [M]⁺ 410.1478; found, 410.1557.

Acknowledgements

The work was partially supported by the National Natural Science Foundation of China (No. 21042007, 21172162), Natural Science Basic Research of Jiangsu Province for Higher Education (No. 10KIB150016), a Research Grant from the Innovation Project for Graduate Student of Jiangsu Province (CX10B-033Z), Innovation project for undergraduate student-state level (No. 101028514), and Key Project in Science & Technology Innovation Cultivation Program of Soochow University.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tet.2012.07.017.

References and notes

- 1. Rueping, M.; Nachtsheim, B. J.; Kuenkei, A. Org. Lett. 2007, 9, 825-827.
- 2. Comprehensive Organic Synthesis; Trost, B. M., Freming, I., Eds.; Pergamon: Oxford, 1991: p 3
- 3. Bisaro, F.; Prestat, G.; Vitale, M.; Poli, G. Synlett 2002, 1823-1826.
- 4. Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793-796.
- 5. Yuan, Y.; shi, Z.; Feng, X.; Liu, X. Appl. Organomet. Chem. 2007, 21, 958-964; Jana, U.; Biswas, S.; Maiti, S. *Tetrahedron Lett.* **2007**, 48, 4065–4069; Kischel, J.; Mertins, K.; Michalik, D.; zapf, A.; Beller, M. Adv. Synth. Catal. 2007, 349, 865-870.

- 6. Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72, 5161-5167.
- 7. Liu, P. N.; Zhou, Z. Y.; Lau, C. P. Chem.-Eur. J. 2007, 13, 8610-8619.
- 8. Rao, W.; Tay, A. H. L.; Goh, P. J.; Choy, J. M. L.; Ke, J. K.; Chan, P. W. H. Tetrahedron Lett. 2008, 49, 122-126.
- Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. 9 *Chem., Int. Ed.* **2006**, 45, 2605–2609; Motokura, K.; Nakagiri, N.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72, 6006-6015.
- Sanz, R.; Martinez, A.; Miguel, D.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Adv. 10 Synth. Catal. 2006, 348, 1841-1845; Sanz, R.; Miguel, D.; Martinez, A.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Org. Lett. **2007**, 9, 727–730.
- Sanz, R.; Miguel, D.; Martinez, A.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Org. Lett. 11. **2007**, 9, 2027–2030.
- Vang, G. W.; Shen, Y. B.; Wu, X. L. J. Org. Chem. 2008, 4999–5004.
 Kenda B.; Quesnel Y.; Ates A.; Michel P.; Turet L.; Mercier J. W02006128693, 2006; Gobert J.; Geerts J.-P.; Bodson G. EP0162036, 1985; Schmiesing R. J.; Murrav R. I. U.S. Patent 5.334.720, 1994.
- Jiang, R.; Wu, X.-J.; Zhu, X.; Xu, X.-P.; Ji, S.-J. Eur. J. Org. Chem. 2010, 5946–5950. 14 Niu, T. M.; Huang, L. H.; Wu, T. X.; Zhang, Y. H. Org. Biomol. Chem. 2011, 9, 15. 273-277
- 16. Jiang, R.; Xu, H.-Y.; Xu, X.-P.; Chu, X.-Q.; Ji, S.-J. Org. Biomol. Chem. 2011, 9, 5659-5669
- 17. Cu(OTf)₂ belongs to the most reactive and used catalyst with Lewis acid properties, has been widely used in organic synthesis. Famous examples, see: (a) Guo, C.; Song, J.; Luo, S. W.; Gong, L. Z. Angew. Chem., Int. Ed. 2010, 49, 5558-5562; (b) Shao, L. X.; Zhang, Y. P.; Qi, M. H.; Shi, M. Org. Lett. 2007, 9, 117-120; (c) Zhang, Z. P.; Wang, S. P.; Cai, X. B.; Liu, H. J.; Yu, J. J.; Cui, Y. Y. Adv. Synth. Catal. 2007, 349, 2097–2102; (d) Zhou, J.; Tang, Y. Chem. Commun. 2004, 432–433; (e) Asao, N.; Kashaara, T.; Yamamoto, Y. Angew. Chem., Int. Ed. **2003**, 42, 3504-3506; (f) Taylor, J. G.; Whittall, N.; Hii, K. K. Chem. Commun. 2005, 5103–5105; (g) For Cu(OTf)₂ catalyzed α -amidoalkylation reaction inside of the piperidine six-member ring see: Onomura, O.; Kanda, Y.; Nakamura, Y.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 2002, 43, 3229–3231.