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An efficient method for the solid-phase synthesis of hydroxamic acids is described. The method com-
prises the nucleophilic displacement of esters immobilized on PEGA resins with hydroxylamine/sodium
hydroxide in isopropanol. The hydroxyaminolysis protocol is compatible with a broad range of PEGA-
supported peptide and peptidomimetic esters. The methodology was found to be compatible with two
new strategies for the synthesis of solid-supported lactams and diketopiperazines, respectively, both
relying on the high inter- and intramolecular reactivity of cyclic N-acyliminium ions with electron-rich
aromatics and heteroaromatics, ultimately affording hydroxamic acid derivatives in high purities.
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Hydroxamic acids represent an important class of compounds
with a wide spectrum of biological properties, such as antibacte-
rial, antifungal and anticancer (Fig. 1).1,2 The ability of hydroxa-
mates to chelate metal ions, such as Fe3+ and Zn2+, has been
widely explored in biology and medicine, as exemplified by
hydroxamic acid based siderophores produced by microorganisms
for the harvesting of iron from iron-deficient environments. The
siderophore desferrioxamine B (Desferal, 1) is used medically to
treat iron poisoning, which can arise following blood transfusion
to patients with genetic blood diseases.3

A large number of recent studies have dealt with hydroxamic
acids as potent inhibitors of Zn2+-containing enzymes, such as ma-
trix metallo-proteinases (MMPs), and histone deacetylases (HDACs)
in particular. Although hydroxamic acids have been widely
explored in the pharmaceutical industry for decades, the number
of clinical failures associated with this compound class is substan-
tial (e.g., for 3 and 4). However, the launch of the HDAC inhibitor,
vorinostat (SAHA, suberoyl anilide hydroxamic acid, 2) in 2006 by
Merck for the treatment of cutaneous T-cell lymphoma,4 has drawn
renewed attention to the chemistry and biomedical properties of
hydroxamic acids.

Given the growing number of potent hydroxamic acids identified
in drug and probe discovery efforts,5 methods for the parallel and
combinatorial synthesis of hydroxamic acids have been widely ex-
ll rights reserved.
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plored. There have been several reports describing the solid-phase
synthesis of hydroxamic acids.6 For example, hydroxylamine deriv-
atives, being either N-tethered to MBHA,7 and Tentagel resins,8 or O-
tethered to Wang,9 Sasrin,10 and trityl resins,11 have served as the
starting point for the synthesis of a range of hydroxamic acids. An-
other approach has been a stepwise method, where esters were
cleaved from the resin to give the corresponding carboxylic acids
that were subsequently reattached to a hydroxylamine resin using
(MMP inhibitor)(MMP inhibitor)

Figure 1. Clinically tested hydroxamic acids.
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Table 1
Optimization study for the conversion of resin-bound ester 8 into the corresponding
hydroxamic acid 9
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Entry Base Solvent Purity (%)a

1 None MeOH 84
2 NaOH t-BuOH 88
3 NaOH i-PrOH >95
4 NaOH MeOH >95
5 KOH MeOH 92

a Determined by RP-HPLC/MS of the crude products (254 nm).

Table 2
Conversion of ester-linked substrates into the corresponding hydroxamic acids 10–27
via hydroxyaminolysisa
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a peptide coupling agent, followed by cleavage to provide the
hydroxamic acids.12

The solid-phase synthesis of hydroxamic acids via direct
hydroxyaminolysis of an ester-linked substrate has also been re-
ported. These methods generally require treatment of the esteri-
fied resin with excess amounts of NH2OH for prolonged periods
of time to generate effectively the corresponding hydroxamic
acids.13 In a few reports, activated resins have been employed to
facilitate a more rapid cleavage.14 In one highly interesting report,
the hydroxyaminolysis of an ester-linked substrate using aqueous
hydroxylamine and KCN as the catalyst was also reported.15 As
part of ongoing efforts to synthesize hydroxamic acids, we herein
communicate our results on the hydroxyaminolysis of ester-linked
substrates on PEGA resins, thus providing a convenient procedure
for the release of hydroxamic acids from the solid support.

Initially, a solid-supported substrate (8, Scheme 1), to be used
for rapid optimization of the reaction conditions necessary for
hydroxamic acid release, was constructed.

Starting with amino-functionalized PEGA800 resin (0.4 mmol/
g),16 the HMBA (hydroxymethylbenzoic acid) linker was attached
using a N,N,N0,N0-tetramethyl-O-(benzotriazol-1-yl)uronium tetra-
fluoroborate (TBTU) mediated amide coupling procedure.17 The
HMBA linker was then esterified with Fmoc-Gly-OH using the
1-(mesitylene-2-sulfonyl)-3-nitro-1,2,4-triazole (MSNT) proto-
col.18 Fmoc deprotection with 20% piperidine in DMF and final
TBTU-coupling of benzoic acid then yielded solid-supported sub-
strate 8. The purity of 8 (>95%) was tested via release from the
HMBA linker, as the corresponding carboxylic acid, with aqueous
NaOH (0.1 M).19

With solid-supported ester-linked substrate 8 in hand several
cleavage reaction conditions were tested. Using 50% aqueous
NH2OH (13 equiv), a range of protic solvents and basic additives
were first examined (see Table 1 for selected results).

The results showed how the combination of NH2OH with NaOH
in i-PrOH or MeOH was extremely efficient for the formation of the
desired hydroxamic acid 9 in excellent purity (>95%). A range of
bases (KOH, NaOH, KOt-Bu) and solvents (toluene, 1,4-dioxane,
DMF, and THF) was examined (results not shown), but none proved
nearly as efficient as those noted in Table 1. Critical for a successful
hydroxylaminolysis reaction is good solubility of the base in the
solvent, which must still be able to swell effectively the resin,
while not transforming the formed hydroxamic acid further. Inter-
estingly, when the cleavage was performed in the absence of base,
hydroxamic acid 9 could be obtained in good purity (84%). A rapid
examination of the reagent stoichiometries showed the impor-
tance of maintaining a low amount of base, as decomposition of
the hydroxamic acid 9 was observed under strongly basic
conditions.

Having developed an efficient protocol for the release of
hydroxamic acid 9 from the solid support, we next investigated
the scope of the methodology for a range of solid-supported esters
(Table 2).19 All the ester-linked substrates were synthesized
according to the synthetic strategy presented in Scheme 1.
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Scheme 1. Solid-phase synthesis of ester-linked substrate 8. Reagents and condi-
tions: (a) HMBA, TBTU, NEM, DMF; (b) FmocGlyOH, MSNT, MeIm, CH2Cl2; (c) 20%
piperidine (DMF), (d) PhCO2H, TBTU, N-ethylmorpholine (NEM), DMF.
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Scheme 2. Solid-phase synthesis of compounds 31 and 35. Reagents and condi-
tions: (a) 36, TBTU, NEM, DMF; (b) 10% TFA (aq); (c) indole, 50% TFA (CH2Cl2);
(d) 50% NH2OH, NaOH, i-PrOH; (e) CH2CHCOCl, CH2Cl2; (f) OsO4, NaIO4, DBU,
H2O:THF (1:1); (g) 50% TFA (CH2Cl2).

Table 2 (continued)

Entry R Product Purity (%)b
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a A reaction time of 1 h gave the crude product in >80% yield from 50 mg of resin.
b As determined by RP-HPLC/MS of the crude products (254 nm).
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A series of unhindered esters incorporating substituted aro-
matic amide moieties was examined (entries 1–8). Gratifyingly,
the protocol proved well compatible with these substrates, gener-
ally providing the desired hydroxamic acids in reasonable to excel-
lent purities (69?95%). In further experiments, the compatibility
with sterically more congested substrates was also demonstrated
(entries 10–18), revealing a synthetically useful protocol giving
hydroxamic acids in excellent purities (74?95%). Some limitation
was observed for the more hindered proline derivative 18 (entry 9),
that could only be formed in moderate purity (55%).

Efforts in our laboratories have dealt with the use of solid-sup-
ported N-acyliminium intermediates,20 conveniently formed by
intramolecular aldehyde-amide condensation reactions, for the
synthesis of a wide range of constrained peptidomimetic scaf-
folds.21 In this context, we have been particularly interested in
the solid-phase synthesis of tetrahydro-b-carbolines and tetrahy-
droisoquinolines (THIQs), which are known to exhibit a plethora
of biological activities.22 To advance the scope of this methodology,
we sought to demonstrate that the protocol shown in Table 2 could
also be applied in this context. Previous efforts have focused on
intramolecular reactions of cyclic N-acyliminium intermediates.
Below, we present two new variants thereof, one useful for the
synthesis of substituted lactams, the other applicable to the syn-
thesis of polycyclic diketopiperazines. In this context, compounds
28 and 32 (Scheme 2) were constructed on a solid support using
standard solid-phase synthesis protocols. Compound 28 was acyl-
ated with masked aldehyde building block 36,23 prior to reaction
with indole as an external nucleophile under acidic reaction condi-
tions.19 The desired lactam hydroxamic acid 31 was subsequently
released in 86% purity from the solid support. Similarly, acryloylat-
ed peptide 33 was subjected to OsO4/NaIO4-mediated oxidative
cleavage,24 followed by treatment with 50% TFA (CH2Cl2).19 The
resulting diketopiperazine hydroxamic acid 35 was finally isolated
in high purity (83%). In both cases, only minor amounts of the cor-
responding carboxylic acids were observed (<10%).

In summary, an efficient protocol for the solid-phase synthesis
of hydroxamic acids has been developed. The protocol relies on
readily available HMBA esters, which are easily accessible on PEGA
supports. Hydroxamic acids were then efficiently formed following
hydroxyaminolysis with NH2OH/NaOH in isopropanol. The meth-
odology is useful for the synthesis of peptidic and peptidomimetic
hydroxamic acids in good to excellent purities. In addition, two
new N-acyliminium reactions for the synthesis of substituted lac-
tams and diketopiperazines, respectively, were also developed.
Both heterocyclic scaffolds were synthesized effectively, embed-
ded in highly pure products released from the solid support, thus
paving the way for the synthesis of larger and structurally more
complex libraries of hydroxamic acids. Biological evaluation of
the synthesized hydroxamic acids as HDAC inhibitors is ongoing,
and the results will be reported in due course.
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