Accepted Manuscript

Transfer hydrogenation of ketones catalyzed by New Rhodium and Iridium Complexes of Aminophosphine Containing Cyclohexyl Moiety and Photosensing Behaviors of Rhodium and Iridium Based Devices

Khadichakhan Rafikova, Nurzhamal Kystaubayeva, Murat Aydemir, Cezmi Kayan, Yusuf Selim Ocak, Hamdi Temel, Alexey Zazybin, Nevin Gürbüz, İsmail Özdemir

PII: S0022-328X(14)00040-0

DOI: 10.1016/j.jorganchem.2014.01.025

Reference: JOM 18466

To appear in: Journal of Organometallic Chemistry

Received Date: 6 December 2013

Revised Date: 14 January 2014

Accepted Date: 20 January 2014

Please cite this article as: K. Rafikova, N. Kystaubayeva, M. Aydemir, C. Kayan, Y.S. Ocak, H. Temel, A. Zazybin, N. Gürbüz, İ. Özdemir, Transfer hydrogenation of ketones catalyzed by New Rhodium and Iridium Complexes of Aminophosphine Containing Cyclohexyl Moiety and Photosensing Behaviors of Rhodium and Iridium Based Devices, *Journal of Organometallic Chemistry* (2014), doi: 10.1016/ j.jorganchem.2014.01.025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

RESEARCH HIGHLIGHTS

- ✓ For the first time complexes of aminophosphine carrying cyclohexyl moiety were synthesized and characterized.
- ✓ [Rh(Cy₂PNHCH₂-C₄H₃O)(cod)Cl] was a more efficient catalyst in the transfer hydrogenation.
- ✓ Fabrication of organic-inorganic heterojunction devices, their electrical properties including ideality factor, barrier height and series resistance values and photoelectrical properties are presented.
- ✓ The devices obtained using Ir(III)-aminophosphine complexes have reverse and current bias photoconduction behavior which have not reported up to now for organic based devices.

Transfer hydrogenation of ketones catalyzed by New Rhodium and Iridium Complexes of Aminophosphine Containing Cyclohexyl Moiety and Photosensing Behaviors of Rhodium and Iridium Based Devices

Khadichakhan Rafikova^a, Nurzhamal Kystaubayeva^a, Murat Aydemir^b, Cezmi Kayan^b, Yusuf Selim Ocak^c, Hamdi Temel^d, Alexey Zazybin^a, Nevin Gürbüz^e, İsmail Özdemir^e

^a Department of Chemical Engineering, Kazakh-British Technical University, 050000 Almaty, Kazakhstan

^b Department of Chemistry, Faculty of Science, University of Dicle, 21280 Diyarbakir, Turkey

^cDepartment of Science, Faculty of Education, University of Dicle, 21280 Diyarbakir, Turkey

^d Department of Chemistry, Faculty of Education, University of Dicle, 21280 Diyarbakir, Turkey

^eDepartment of Chemistry, Faculty of Science and Art, University of İnönü, 44280 Malatya, Turkey

Novel Rh(I) and Ir(III) complexes containing aminophosphine ligands including cyclohexyl moiety have been synthesized. The use of the new complexes for the reduction of the ketonic C=O bond under hydrogen transfer conditions was investigated. Surprisingly, [Rh(Cy₂PNHCH₂-C₄H₃O)(cod)Cl] was a more efficient catalyst in the transfer hydrogenation than the other complexes. In addition, the electrical properties of the devices were analyzed in dark and under a solar simulator with various illumination conditions. The results showed excellent reverse and forward bias photosensing behaviors for [Ir(Cy₂PNHCH₂-C₄H₃O)(η^{5} -C₅Me₅)Cl₂] and [Ir(Cy₂PNHCH₂-C₄H₃S)(η^{5} -C₅Me₅)Cl₂] complexes.

1	Transfer hydrogenation of ketones catalyzed by New Rhodium and Iridium
2	Complexes of Aminophosphine Containing Cyclohexyl Moiety and Photosensing Behaviors
3	of Rhodium and Iridium Based Devices
4	
5	Khadichakhan Rafikova ^a , Nurzhamal Kystaubayeva ^a , Murat Aydemir ^{b,*} , Cezmi Kayan ^b ,
6	Yusuf Selim Ocak ^c , Hamdi Temel ^d , Alexey Zazybin ^a , Nevin Gürbüz ^e , İsmail Özdemir ^e
7	
8 9 10 11 12 13	 ^a Department of Chemical Engineering, Kazakh-British Technical University, 050000 Almaty, Kazakhstan ^b Department of Chemistry, Faculty of Science, University of Dicle, 21280 Diyarbakir, Turkey ^c Department of Science, Faculty of Education, University of Dicle, 21280 Diyarbakir, Turkey ^d Department of Chemistry, Faculty of Education, University of Dicle, 21280 Diyarbakir, Turkey ^e Department of Chemistry, Faculty of Education, University of Dicle, 21280 Diyarbakir, Turkey ^e Department of Chemistry, Faculty of Science and Art, University of Inönü, 44280 Malatya, Turkey
14	ABSTRACT
15	The reaction of $[Rh(\mu-Cl)(cod)]_2$ and $Ir(\eta^5-C_5Me_5)(\mu-Cl)Cl]_2$ with aminophosphine ligands
16	Cy ₂ PNHCH ₂ -C ₄ H ₃ X (X: O; S) gave a range of new monodendate [Rh(Cy ₂ PNHCH ₂ -
17	C_4H_3O (cod)Cl], (1), [Rh(Cy ₂ PNHCH ₂ -C ₄ H ₃ S)(cod)Cl], (2), [Ir(Cy ₂ PNHCH ₂ -C ₄ H ₃ O)(η^5 -
18	$C_5Me_5)Cl_2$], (3) and [Ir($Cy_2PNHCH_2-C_4H_3S$)($\eta^5-C_5Me_5$)Cl ₂], (4) complexes, which were
19	characterized by analytical and spectroscopic methods. The new rhodium(I) and iridium(III)
20	catalysts were applied to transfer hydrogenation of acetophenone derivatives using 2-propanol
21	as a hydrogen source. The results showed that the corresponding alcohols could be obtained
22	with high activity (up to 99 %) under mild conditions. Notably, [Rh(Cy ₂ PNHCH ₂ -
23	$C_4H_3O(cod)Cl$] complex (1) is much more active than the other analogous complexes in the
24	transfer hydrogenation. Moreover, organic-inorganic rectifying contacts were fabricated
25	forming rhodium(I) and iridium(III) complex thin films on n-Si semiconductors and

^{*} To whom correspondence should be addressed: Department of Chemistry, Dicle University, TR-21280 Diyarbakır, Turkey. Tel: +90 412 248 8550, Fax: +90 412 248 8300, e-mail: aydemir@dicle.edu.tr

26	evaporating Au metal on the structures. Electrical properties of the contacts including ideality
27	factor, barrier height and series resistance were determined using their current-voltage (I-V)
28	data. The photoelectrical characteristics of the devices were examined under the light with 40-
29	100 mW/cm ² illumination conditions. It was seen that light had strong effects on $I-V$
30	characteristics of the devices and the ones fabricated using 3 and 4 complexes had unusually
31	forward and reverse bias photoconducting behavior.
32	
33	
34	Keywords: Aminophosphine; Iridium; Transfer Hydrogenation; Rectifying contact; Electrical
35	properties; Photoconductor
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	

52 **1. Introduction**

53 Transition metal complexes are powerful catalysts for organic transformations and when 54 suitable ligands are bound to a metal center, they can offer chemio, regio or stereo selectivity 55 under mild conditions [1]. However, the appropriate choice of metal precursors and the 56 reaction conditions are crucial for catalytic properties [2]. A number of transition metal 57 complexes are known to catalyze hydrogen transfer from an alcohol to a ketone [3,4,5]. Over the last three decades, most effort on hydrogenation has been focused on the use of 58 59 ruthenium, rhodium and iridium catalysts [6,7,8,9,10]. Rhodium and iridium complexes have 60 been proven to lead to very efficient processes along with potential industrial applications 61 [11,12,13,14].

62 To date, a number of such systems with a variety of backbone frameworks have been 63 synthesized and their transition metal chemistry has been explored [15,16,17]. Phosphorus-64 nitrogen containing ligands have particular use in catalysis where it is necessary for part of 65 ligand to dissociate to allow an organic fragment to coordinate and undergo transformations 66 [18,19]. The presence of P-N ligands enables many different and important catalytic processes 67 to occur [20,21,22]. Especially, aminophosphines are able to stabilize many different metals 68 in various oxidation states, controlling the performance of metals in a large variety of useful 69 transformations. Synthesis of new aminophosphines to stabilize transition metals in low 70 valent states is considered to be a most challenging task in view of their potential utility in a 71 variety of metal-mediated organic transformations [23].

Hydrogen transfer reactions are mild methodologies for reduction of ketones or imines and oxidation of alcohols or amines in which a substrate-selective catalyst transfers hydrogen between the substrate and a hydrogen donor or acceptor, respectively [24,25,26]. From an industrial point of view, catalytic transfer hydrogenation is an attractive alternative for high pressure catalytic hydrogenations with molecular hydrogen [27]. Here, hydrogen donors such as secondary alcohols (e.g., 2-propanol) are applied to convert carbonyl compounds to

alcohols. The risk associated with the use of molecular hydrogen at high pressures is thereby eliminated [28,29]. Furthermore, there are several other advantages for use of 2-propanol such as, it is inexpensive, readily available and has an appropriate boiling point. It is also a good solvent for many organic compounds. Upon dehydrogenation, 2-propanol is converted to acetone, which can be easily removed from the reaction mixture, and thus simplifies the reaction process [30,31].

Organic materials have obtained an important place in the fields of electrical and optical 84 85 device industry. They have been preferred in device applications because of their key 86 advantages including large area coating, using on flexible substrates and low cost [32,33]. 87 Among the other organic compounds, there is a growing interest on metal complexes because 88 of their mechanical and chemical stabilities [34]. While some studies have concentrated on 89 finding suitable metal complexes for device technology [35,36], others have focused on the 90 usage of these compounds in the fabrication of devices including solar cells, Schottky diodes 91 and light emitting diodes [37,38,39,40]. Studies on metal-semiconductor (MS) devices with 92 organic semiconductor have shown that these structures presented photovoltaic and 93 photoconductivity influences when they are exposed to light because of electron and hole 94 production at the interface [41].

95 To the best our knowledge, there is no report on the use of these complexes including 96 aminophosphines having cyclohexyl moiety on phosphorus atom in rhodium and iridium 97 catalyzed transfer hydrogenation reaction. As part of our research program, we report here 98 synthesis and full characterization of four new aminophosphine complexes the 99 $[Rh(Cy_2PNHCH_2-C_4H_3O)(cod)Cl]$ (1), [Rh(Cy₂PNHCH₂-C₄H₃S)(cod)Cl], (2),100 $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2],$ (3) and $[Ir(Cy_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2],$ 101 (4). We also report their catalytic activity in transfer hydrogenation reactions of ketones with 102 iso-PrOH. Furthermore, up to know, studies have reported to reverse bias photosensing 103 properties of organic based devices [39,42,43]. In this study, fabrication of organic-inorganic

4

heterojunction devices, their electrical properties including ideality factor, barrier height and series resistance values and photoelectrical properties are presented. It is also reported that the devices obtained using **3** and **4** complexes have reverse and current bias photoconduction behavior which have not reported up to now for organic based devices.

108 **3. Results and discussion**

109 **3.1. Synthesis and characterization of the metal complexes**

110 Synthesis and characterization of the ligands, furfuryl-2-(N-111 dicyclohexylphosphino)methylamine and thiophene-2-(N-dicyclohexylphosphino)methyla-112 mine, were mentioned elsewhere [44]. We examined various coordination chemistry of these precursor. Reaction 113 aminophosphines with $[Rh(\mu-Cl)(cod)]_2$ of furfuryl-2-(N-114 dicyclohexylphosphino)methylamine thiophene-2-(*N*-dicyclohexylphosphino) or 115 methylamine with $[Rh(\mu-Cl)(cod)]_2$ in a molar ratio of 2/1 at room temperature for 45 min 116 afforded $[Rh(Cy_2PNHCH_2-C_4H_3O)(cod)Cl], (1)$ and $[Rh(Cy_2PNHCH_2-C_4H_3S)(cod)Cl] (2),$ 117 respectively as crystalline yellow powders (Scheme 1). The complexes of 1 and 2 were isolated as indicated by doublets in the ³¹P-{¹H} NMR spectra at δ 71.98 (d, ¹J_{RhP}: 156.5 Hz) 118 and 74.39 (d, ¹J_{RhP}: 154.1 Hz) ppm, respectively, (Figure 1). In their ¹H NMR spectra, 1 and 2 119 are characterized by CH resonances of cod at $\delta \sim 5.35$ and 3.55 ppm, whereas in the ¹³C-{¹H} 120 121 NMR spectra, resonances at $\delta \sim 70$ and 104 ppm correspond to CH resonances of cod (for 122 details see Experimental Section). Furthermore, other ¹H and ¹³C-{¹H} NMR data are in 123 agreement with the proposed structures. The complexes were also characterized by IR and 124 microanalysis.

- 125
- 126
- 127
- 128

Insert Scheme 1 Here

129 We studied coordination chemistry of aminophosphines including cyclohexyl moiety with $[Ir(\eta^5-C_5Me_5)(\mu-Cl)Cl]_2$ precursor as well. $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2]$, 3 and 130 $[Ir(Cv_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2]$, 4 were obtained by the reaction of ligands with 131 $[Ir(\eta^5-C_5Me_5)(\mu-Cl)Cl]_2$ in a molar ratio of 2/1 at room temperature for 1 h (Scheme 1). In the 132 ³¹P-{¹H} NMR spectra, resonances at $\delta \sim 43$ ppm may be attributed to complexes of **3** and **4** 133 134 (Figure 1). ¹³C NMR spectra of the complexes display singlets at $\delta \sim 10$ ppm attributable to 135 methyl carbons of Cp* and doublets at $\delta \sim 92$ due to carbons of Cp* ring. The ¹H NMR 136 spectra are consistent with the anticipated structures. The structural compositions of the 137 complexes 3 and 4 were further confirmed by IR spectroscopy and microanalysis, and found to be in good agreement with the theoretical values (for details see experimental section). 138

- 139
- 140
- 141

Insert Figure 1 Here

142

143 **3.2. Catalytic transfer hydrogenation of ketones**

The brilliant catalytic performance of aminophosphine-based transition metal complexes [45, 144 145 and references therein] prompted us to develop new Rh(I) and Ir(III) complexes with well-146 shaped ligands, since NH unit forms a hydrogen bond with the carbonyl oxygen atom to 147 stabilize the transition state. Therefore, the presence of an NH moiety in the ligands is 148 crucially important to determine the catalytic performance of the bifunctional catalysts 149 [46,47,48]. An important and unprecedented aspect is that the carbonyl compound does not 150 interact directly with the metal center for its own activation [49]. To this end, we observed the 151 catalytic activation of complexes 1-4 in the transfer hydrogenation of ketones to the 152 corresponding alcohols. In a typical experiment, 0.005 mmol of the complex and 0.5 mmol of 153 ketone were added to a solution of NaOH in iso-PrOH (0.025 mmol of NaOH in 5 mL iso-154 PrOH) and refluxed at 82 °C, the reaction being monitored by GC. In all reactions, these

155 complexes catalyzed the reduction of ketones to the corresponding alcohols via hydrogen156 transfer from *iso*-PrOH.

157 These complexes as catalyst precursors for the transfer hydrogenation of acetophenone have 158 been tested and typical results are summarized in Table 1. As seen, high conversions can be 159 achieved with the 1-4 catalytic systems. Conversions of transfer hydrogenation of 160 acetophenone were negligible either at room temperature with a base and at reflux 161 temperature in the absence of base in all the reactions (see Table 1). Thus, one can conclude 162 that high temperature as well as presence of base is necessary to obtain considerable conversions. Results obtained from the optimization studies indicated clearly that the 163 164 excellent conversions were achieved in the reduction of acetophenone to 1-phenylethanol 165 when 1-4 were used as the catalytic precursor, with a substrate-catalyst molar ratio (100:1) in 166 iso-PrOH at 82 °C (Table 1, entries 1, 8, 15 and 22). Furthermore, it should be pointed out 167 that complex $[Rh(Cy_2PNHCH_2-C_4H_3O)(cod)Cl], (1)$, is more active than $[Rh(Cy_2PNHCH_2-C_4H_3O)(cod)Cl], (1),$ 168 C_4H_3S)(cod)Cl], (2), [Ir(Cy₂PNHCH₂-C₄H₃O)(η^5 -C₅Me₅)Cl₂], (3) and [Ir(Cy₂PNHCH₂-C₄H₃S)(η^5 -169 $C_{5}Me_{5}Cl_{2}$, (4) complexes, because, conversion of acetophenone occurred in 15 min and 8 h 170 by 1 and 2-4, respectively. In addition, the yields gradually decreased on by increasing the 171 mole ratios of [acetophenone]/[Ru] from 100/1 to 500/1 or 1000/1. Furthermore, performing 172 the reaction in the presence of small amount of water did not change reaction time, while that 173 in air slowed down the reaction (Table 1, entries 4, 5, 11, 12, 18, 19, 25 and 26).

- 174
- 175
- 176
- 177

Insert Table 1 Here

178 The complexes [Rh(Cy₂PNHCH₂-C₄H₃O)(cod)Cl], (1), [Rh(Cy₂PNHCH₂-C₄H₃S)(cod)Cl], 179 (2), [Ir(Cy₂PNHCH₂-C₄H₃O)(η^5 -C₅Me₅)Cl₂], (3) and [Ir(Cy₂PNHCH₂-C₄H₃S)(η^5 -C₅Me₅)Cl₂], 180 (4) were also extensively investigated with a variety of substrates. As expected, electronic

181 properties (the nature and position) of the substituents on the phenyl ring of the ketone caused 182 significant changes in the reduction rate. To ensure that the observed results could be 183 attributed to purely electronic effects [50], substrates involving para- and orto- substituted 184 acetophenone derivatives were investigated. The results indicated that strong electron 185 withdrawing substituents, such as F, Cl and Br were capable of higher conversion (Table 2). 186 Conversely, the most electron-donor substituents, (2-methoxy or 4-methoxy) led to lower 187 conversion. It is well-known that the presence of an electron withdrawing group has generally 188 been found to facilitate the hydrogen transfer reaction [51,52] which has been attributed to the 189 hydridic nature of the reducing species involved. As such, reactions with fluoro proceeded to 190 higher conversion owing to rapid hydride transfer, while reactions with electron-donating 191 substituents methoxy proceeded in a slower and more controlled manner [53,54].

- 192
- 193

194

Insert Table 2 Here

195

196 Encouraged by the high catalytic activities gained in these preliminary studies, we next 197 extended our investigations to include hydrogenation of various simple ketones. A variety of 198 simple ketones (S/C=100/1) can be transformed to the corresponding secondary alcohols with 199 high conversion, as exemplified in Table 3. The cyclic substrates are convertible to the 200 corresponding alcohols with a moderate conversion. Furthermore, under identical conditions, 201 transfer hydrogenation of methyl isobutyl ketone led to 99 % conversion within 1.5 h, while 202 that of diethyl ketone occurred in 3 h with the same conversion by [Rh(Cy₂PNHCH₂-203 $C_4H_3O(cod)Cl$], **1**.

204

205

206

Insert Table 3 Here

8

We also carried out further experiments to examine the effect of bulkiness of the alkyl groups on the catalytic activity and the results were given in Table 4 (Entries 1–16). As the steric hindrance of the alkyl group growths from ethyl to isopropyl, the extent of the time is increasing. Reaction of *tert*-butyl phenyl ketone possessing a bulky alkyl substituent proceeded rather slowly and in somewhat increasing time. Hence, it was found that the activity is highly dependent on the steric bulk of the alkyl group [55] and the reactivity gradually decreased by increasing the bulkiness of them [56].

- 214
- 215
- 216

Insert Table 4 Here

217

218 **3.3. Electrical and photoelectrical properties of Au/metal complex/n-Si devices**

219 *I-V* measurements of a structure give important information about electrical characteristics of 220 the device. Main electrical parameters of a diode such as ideality factor, barrier height and 221 series resistance can be determined using its I-V data in dark. In addition, photoelectrical 222 parameters of a structure including open circuit voltage (V_{OC}) closed circuit current (I_{SC}) can 223 be extracted using its I-V data under light. Figure 2 presents I-V measurements of Au/metal 224 complex/n-Si structures in dark and under a solar simulator with various illumination 225 conditions. As seen from the figures, all structures have excellent rectification behavior. 226 When a rectifying diode is taken into account, I-V can be analyzed using thermionic emission 227 theory.

- 228
- 229
- 230

According to the theory, the ideality factor and the barrier height values of a device can be extracted from the slope and the current axis intercept of the linear regions of the forward bias

Insert Figure 2 Here

233 *I-V* plots, respectively. The calculated ideality factor and the barrier height values are given in 234 Table 5. As seen from the table, the ideality factors of the junctions are greater than unity. 235 According to the theory, ideality factor should be very close to unity (1.03) when image force 236 lowering is considered. The deviation from ideal diode can be attributed the effects of series 237 resistance of the structure, existence of interface states at organic-inorganic interface, 238 recombination-generation at the interface and tunneling [57,58]. The barrier height values of 239 the structures are very close to each other and vary between 0.76 and 0.80 ev. Up to now, 240 many kinds of molecules including small organic compounds, metal complexes, polymers and 241 biological compounds have been used in the fabrication of organic-inorganic devices. For 242 instance, several researchers [40] have synthesized and characterized Cu(II), Co(III), Ni(II) 243 and Pd(II) complexes of $N_2S_2O_2$ this Schiff base ligand and showed their usage in the 244 fabrication of organic-inorganic hybrid devices. The calculated barrier heights of the devices 245 were between 0.75 and 0.88 eV. Other researchers [59] have reported the *I-V* and capacitance-246 voltage (C-V) characteristics of an Al/p-Si/organic semiconductor formed using CoPc thin 247 film on p-Si semiconductor. They have showed the strong effects of CoPc interlayer on 248 electrical properties of metal/semiconductor (MS) contact. Therefore, it can be easily said that 249 the organic thin films have strong impacts on the electrical performance of the organic-250 inorganic devices and they behave as an active layer.

251

252

253

Insert Table 5 Here

The curvature in the higher voltage values of the *I-V* measurements are because of the series resistance of the structures. The series resistance of the devices may be caused by contact wires or bulk resistance of the organic material and semiconductor [60]. Series resistance of a diode can be calculated by the help of Norde functions [61]. It is also possible to determine barrier height values using Norde Functions. The obtained barrier height and series resistance

259 values are also given in Table 5. As seen from the table, the devices obtained using $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2],$ (3), and $[Ir(Cy_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2],$ 260 261 (4), have lower series resistance compared with ones fabricated using $[Rh(Cy_2PNHCH_2-$ 262 $C_4H_3O(cod)Cl$, (1) and [Rh($Cy_2PNHCH_2-C_4H_3S(cod)Cl$], (2). The large differences in 263 series resistance between the compounds can be attributed to the higher conductivity values of 264 compounds 3 and 4. As it is well known, conjugation is one of the most important properties 265 increasing the conductivity of organic compounds. Thus, the obtained results are in consistent 266 with the theory.

267 Figure 2 also presents the influences of light intensity on I-V properties of the structures. 268 Although all structures have sensitivity to the light, the devices obtained using 3 and 4 have 269 reverse bias and forward bias photosensing properties. As seen from the figures, current 270 values of Au/3/n-Si and Au/4/n-Si are nearly fixed after the series resistance curvatures in 271 forward bias. The reverse and forward bias photosensing properties of the structures imply the photoconductivity of $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2]$ and $[Ir(Cy_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2]$ 272 273 $C_{5}Me_{5}Cl_{2}$, compounds. There are many papers on the increase of reverse bias current with 274 the increase of light intensity [39,43,44]. To the best our knowledge, there is no report on the 275 forward bias photosensing properties of a device. The photovoltaic parameters of all structures determined under the light with 100 mW/cm² illumination intensity called one sun 276 277 are given in Table 6. The table presents the superior photovoltaic properties of the junctions 278 formed using compounds **3** and **4**. By taking Figure 1 and Table 6 into account, one can easily 279 say that the $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2]$ and $[Ir(Cy_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2]$ 280 might be used in the fabrication reverse bias or forward bias photosensor applications.

- 281
- 282
- 202
- 283
- 284

Insert Table 6 Here

285 **3. Conclusion**

286 In conclusion, new rhodium(I) and iridium(III) complexes containing furfuryl-2-(N-287 dicyclohexylphosphino)methylamine thiophene-2-(*N*-dicyclohexylphosphino)methyl and 288 amine ligands have been synthesized with high yield. All complexes were characterized using 289 multi nuclear NMR, IR and microanalysis. The use of the new complexes for the reduction of 290 the ketonic C=O bond of acetophenone derivatives under hydrogen transfer conditions was 291 investigated. Surprisingly, $[Rh(Cy_2PNHCH_2-C_4H_3O)(cod)Cl]$ was a more efficient catalyst in 292 the transfer hydrogenation reaction than the other complexes. It was also found that these 293 catalysts containing cyclohexyl moiety exhibited promising catalytic activity compared to 294 those of containing phenyl moiety. The construction of the catalysts containing cyclohexyl 295 moiety and their flexibility toward transfer hydrogenation make these encouraging systems to 296 follow. In addition, organic-inorganic rectifying contacts were formed by spin coating of 297 complexes on n-Si semiconductor and evaporating Au metal on thin films. The electrical 298 properties of the devices were analyzed in dark and under a solar simulator with various 299 illumination conditions and the results showed excellent reverse and forward bias photosensing behaviors for $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2]$ and $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2]$ 300 $C_4H_3S)(\eta^5-C_5Me_5)Cl_2]$ complexes, which were attributed the photoconducting properties of 301 302 the complexes.

303 **4. Experimental**

304 **4.1. Materials and methods**

Unless otherwise stated, all reactions were carried out under an atmosphere of argon using conventional Schlenk glassware, solvents were dried using established procedures and distilled under argon immediately prior to use. Analytical grade and deuterated solvents were purchased from Merck. $[Rh(\mu-Cl)(cod)]_2$ and $Ir(\eta^5-C_5Me_5)(\mu-Cl)Cl]_2$ are purchased from Fluka and were used as received. The IR spectra were recorded on a Mattson 1000 ATI UNICAM FT-IR spectrometer as KBr pellets. ¹H (400.1 MHz), ¹³C NMR (100.6 MHz) and

³¹P-{¹H} NMR spectra (162.0 MHz) were recorded on a Bruker AV400 spectrometer, with δ 311 312 referenced to external TMS and 85% H₃PO₄ respectively. Elemental analysis was carried out 313 on a Fisons EA 1108 CHNS-O instrument. Melting points were recorded by Gallenkamp 314 Model apparatus with open capillaries. GC analyses were performed on a Shimadzu 2010 315 Plus Gas Chromatograph equipped with capillary column (5% biphenyl, 95% 316 dimethylsiloxane) ($30m \ge 0.32mm \ge 0.25\mu m$). The GC parameters for transfer hydrogenation 317 of ketones were as follows; initial temperature, 110 °C; initial time, 1 min; solvent delay, 318 4.48 min; temperature ramp 80 °C/min; final temperature, 200 °C, 19 min; final time, 21.13 319 min; injector port temperature, 200 °C; detector temperature, 200 °C, injection volume, 2.0 320 μL.

321 **4.2.** General procedure for the transfer hydrogenation of ketones

322 Typical procedure for the catalytic hydrogen transfer reaction: a solution of complexes 323 $[Rh(Cy_2PNHCH_2-C_4H_3O)(cod)Cl],$ $[Rh(Cy_2PNHCH_2-C_4H_3S)(cod)Cl],$ (1), (2), $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2],$ (3) and $[Ir(Cy_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2],$ (4) 324 325 (0.005 mmol), NaOH (0.025 mmol) and the corresponding ketone (0.5 mmol) in degassed 326 iso-PrOH (5 mL) were refluxed until the reactions were completed. After this period a sample 327 of the reaction mixture was taken off, diluted with acetone and analyzed immediately by GC. 328 Conversions obtained are related to the residual unreacted ketone.

329 4.3. Synthesis of rhodium and iridium complexes

330 **4.3.1.** [Rh(Cy₂PNHCH₂-C₄H₃O)(cod)Cl], (1)

A mixture of $[Rh(\mu-Cl)(cod)]_2$ (0.235 g, 0.48 mmol) and $[Cy_2PNHCH_2-C_4H_3O]$ (0.279 g, 0.95 mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 45 min. The volume of the solvent was then reduced to 0.5 mL before addition of petroleum ether (10 mL). The precipitated product was filtered and dried in vacuo yielding **1** as a yellow microcrystalline solid. Yield 0.472 g, 91.8 %, m.p. = 148-150°C. ¹H NMR (400.1 MHz, CDCl₃): δ 7.36 (d, 1H, ³J = 1.9 Hz, **H**-5), 6.32 (dd, 1H, ³J = 1.9 and 3.0 Hz, **H**-4), 6.19 (d,

1H, ${}^{3}J = 3.0$ Hz, H-3), 5.34 (br, 2H, CH of cod), 4.03 (dd, 2H, ${}^{3}J = 5.7$ and 5.8 Hz, CH₂-), 337 3.55 (br, 2H, CH of cod), 2.78 (dt, 1H, ${}^{3}J(HH) = 5.7$ and ${}^{2}J(HP) = 12.6$ Hz), NH-), 1.23-2.42 338 (m, 30H, CH₂ of cod + protons of cyclohexyl); ¹³C NMR (100.6 MHz, CDCl₃): δ (26.43, 339 27.14, 27.23, 27.27, 27.33, 27.86, 28.38, 28.81, 29.01, 29.05) (CH₂ of cyclohexyl + cod), 340 35.69 (d. ${}^{1}J = 25.2$ Hz, CH of cyclohexyl), 40.49 (d. ${}^{2}J = 11.1$ Hz, CH₂), 68.79 (d. ${}^{1}J = 15.1$ 341 342 Hz, CH of cod (a)), 103.88 (d, ${}^{1}J = 6.4$ Hz, CH of cod (b)), 106.23 (C-3), 110.26 (C-4), 141.86 (<u>C</u>-5), 153.80 (d, ${}^{3}J = 5.0$ Hz, C-2); assignment was based on the ${}^{1}H{}^{-13}C$ HETCOR. 343 DEPT and ¹H-¹H COSY spectra; ³¹P-{¹H} NMR (162.0 MHz, CDCl₃): δ 71.98 (d, ¹J (¹⁰³Rh-344 31 P) = 156.5 Hz); IR, (KBr): v 3320 (N-H), 1076 (P-N), cm⁻¹. C₂₅H₄₀NOPRhCl (539.9 g/mol): 345 calcd. C 55.61, H 7.47, N 2.59; found C 55.42, H 7.31, N 2.45. 346

347 **4.3.2.** [Rh(Cy₂PNHCH₂-C₄H₃S)(cod)Cl], (2)

A mixture of $[Rh(\mu-Cl)(cod)]_2$ (0.208 g, 0.42 mmol) and $[Cy_2PNHCH_2-C_4H_3S]$ (0.261 g, 0.84 348 349 mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 45 min. The volume of the solvent was then reduced to 0.5 mL before addition of petroleum ether (10 mL). The 350 351 precipitated product was filtered and dried in vacuo yielding 2 as a yellow microcrystalline solid. Yield 0.418 g, 89.1 %, m.p. = 150-152 °C. ¹H NMR (400.1 MHz, CDCl₃): δ 7.23 (dd, 352 1H. ${}^{3}J = 1.2$, 4.9 Hz, H-5), 6.94-6.97 (m, 2H, H-3 + H-4), 5.35 (br, 2H, C<u>H</u> of cod), 4.25 (dd, 353 2H, ${}^{3}J = 6.7$ and 6.8 Hz, CH₂-), 3.56 (br, 2H, CH of cod), 3.08 (dt, 1H, ${}^{3}J$ HH) = 6.7 and ${}^{2}J$ 354 HP) = 12.8 Hz, NH), 1.39-2.46 (m, 30H, protons of cyclohexyl + CH₂ of cod); ¹³C NMR 355 356 (100.6 MHz, CDCl₃): δ (25.98, 26.43, 27.14, 27.23, 27.27, 27.33, 28.03, 28.40, 29.01, 29.10) (CH₂ of cyclohexyls + cod), 35.89 (d, ${}^{1}J = 25.2$ Hz, CH of cyclohexyls), 42.75 (d, ${}^{2}J = 9.1$ 357 Hz, CH₂-), 68.88 (d, ${}^{1}J$ = 13.1 Hz, CH of cod, (a)), 104.04 (d, ${}^{1}J$ = 9.1 Hz, CH of cod, (b)), 358 126.81, 124.55, 124.38 (C-3, C-4 and C-5), 144.40 (d, ${}^{3}J = 5.0$ Hz, C-2); assignment was 359 based on the ¹H-¹³C HETCOR, DEPT and ¹H-¹H COSY spectra; ³¹P-{¹H} NMR (162.0 MHz, 360 CDCl₃): δ 74.39 (d, ¹J (¹⁰³Rh-³¹P) = 154.1 Hz): IR, (KBr): v 3322 (N-H), 849 (P-N) cm⁻¹. 361

362 $C_{25}H_{40}NSPRhCl$ (556.0 g/mol): calcd. C 54.00, H 7.25, N 2.52; found C 53.82, H 7.19, N

- 363 2.41.
- 364 **4.3.3.** [Ir(Cy₂PNHCH₂-C₄H₃O)(η⁵-C₅Me₅)Cl₂], (3)

A mixture of $[Ir(\eta^5-C_5Me_5)(\mu-Cl)Cl]_2$ (0.379 g, 0.48 mmol) and $[Cy_2PNHCH_2-C_4H_3O]$ (0.279 365 g, 0.95 mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 1 h. The 366 367 volume of the solvent was then reduced to 0.5 mL before addition of petroleum ether (20 mL). The precipitated product was filtered and dried in vacuo yielding 3 as an orange 368 microcrystalline solid. Yield 0.583 g, 88.6 %, m.p. = 189-191°C. ¹H NMR (400.1 MHz, 369 CDCl₃) δ : 7.31 (d, 1H, ³J = 2.6 Hz H-5), 6.43 (dd, 1H, ³J = 1,7 and 2.6 Hz, H-4), 6.30 (d, 1H, 370 ${}^{3}J = 1.7$ Hz, H-3), 4.15 (dd, 2H, ${}^{3}J = 6.2$ and 6.4 Hz, CH₂-), 3.30 (dt, 1H, ${}^{3}J(HH) = 6.2$ and 371 $^{2}J(HP) = 12.2 \text{ Hz}, \text{ NH}$, 1.19-2.24 (m, 37H, protons of cyclohexyls + CH₃ of Cp* (C₅Me₅); 372 ¹³C NMR (100.6 MHz, CDCl₃): δ 9.58 (C₅Me₅), 26.44, 27.20, 27.32, 27.41, 27.97, 28.37 373 (CH₂ of cyclohexyls), 39.07 (d, ${}^{1}J = 34.2$ Hz, CH of cyclohexyls), 41.48 (d, ${}^{2}J = 7.0$ Hz, 374 CH₂-), 91.92 (d, ${}^{2}J$ = 12.0 Hz, C₅Me₅), 106.53 (C-4), 110.40 (C-3), 141.21 (C-5), 154.51 (C-375 2); assignment was based on the ${}^{1}H{}^{-13}C$ HETCOR, DEPT and ${}^{1}H{}^{-1}H$ COSY spectra; ${}^{31}P{}^{-1}H$ 376 NMR (162.0 MHz, CDCl₃): δ 43.98 (s); IR, (KBr): υ 3341 (N-H), 852 (P-N) cm⁻¹; 377 378 C₂₇H₄₃NOPIrCl₂ (691.7 g/mol): calcd. C 46.88, H 6.27, N 2.02; found C 46.73, H 6.21, N 379 1.98.

380 4.3.4. [Ir(Cy₂PNHCH₂-C₄H₃S)(η^{5} -C₅Me₅)Cl₂], 4

A mixture of $[Ir(\eta^5-C_5Me_5)(\mu-Cl)Cl]_2$ (0.336 g, 0.42 mmol) and $[Cy_2PNHCH_2-C_4H_3S]$ (0.261 g, 0.84 mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 1 h. The volume of the solvent was then reduced to 0.5 mL before addition of petroleum ether (10 mL). The precipitated product was filtered and dried in vacuo yielding **4** as an orange microcrystalline solid. Yield 0.539 g, 90.3 %, m.p. = 169-171°C. ¹H NMR (400.1 MHz, CDCl₃): δ 7.15 (d, 1H, ³J = 2.0 Hz, <u>H</u>-5), 7.12 (dd, 1H, ³J = 2.0 and 3.2 Hz, <u>H</u>-4), 6.93 (d, 1H, ³J = 3.2 Hz, <u>H</u>-3), 4.36 (dd, 2H, ³J = 5.6 and 5.7 Hz, C<u>H</u>₂-), 3.39 (dt, 1H, ³J HH) = 5.6

388	and ² J (HP) = 12.8 Hz, N <u>H</u> ,), 1.20-2.26 (m, 37H, protons of cyclohexyls + C <u>H</u> ₃ of Cp*); ¹³ C
389	NMR (100.6 MHz, CDCl ₃): δ 9.61 (C ₅ <u>Me</u> ₅), (26.43, 27.21, 27.30, 27.40, 28.05, 28.42) (<u>C</u> H ₂ -
390	of cyclohexyls), 39.06 (d, ${}^{1}J = 34.2$ Hz, <u>C</u> H of cyclohexyls), 43.50 (d, ${}^{2}J = 8.0$ Hz, <u>C</u> H ₂ -),
391	91.89 (d, ${}^{2}J = 2.0$ Hz, $\underline{C}_{5}Me_{5}$), 124.45, 123.74 (\underline{C} -4and \underline{C} -5), 126.80 (\underline{C} -3), 144.79 (\underline{C} -2);
392	assignment was based on the ¹ H- ¹³ C HETCOR and ¹ H- ¹ H COSY spectra; ³¹ P-{ ¹ H} NMR
393	(162.0 MHz, CDCl ₃): δ 43.34 (s). IR, (KBr): υ 3332 (N-H), 1070 (P-N) cm ⁻¹ ; C ₂₇ H ₄₃ NSPIrCl ₂
394	(707.8 g/mol): calcd. C 45.82, H 6.12, N 1.98; found C 45.71, H 6.03, N 1.85.

395 **4.4. Fabrication and characterization of Au/metal complex/n-Si devices**

396 An n-Si semiconductor with (100) orientation and 1-10 Ω cm resistivity was used in this study 397 to fabricate Au/metal complex/n-Si devices. The semiconductor was cleaned by boiling in 398 trichloroethylene and ultrasonically vibrating in acetone and methanol. The native oxide on n-399 Si wafer was removed using 0.4 % HF:H₂O solution. The wafer was dipped in deionized 400 water and dried under N₂ flow. Au ohmic back contact was formed by evaporation of Au on 401 n-Si in high vacuum and annealing the n-Si/Au contact in N₂ atmosphere at 420 °C. The thin 402 films of metal complexes were formed on n-Si wafer by means of a SCS G3P-8 spin coater. 403 Finally, Au metal was evaporated on the structure to obtain the front contact of the devices. 404 Current-voltage (I-V) measurements were carried out using Keithley 2400 sourcemeter in dark 405 and under a solar simulator with AM1.5 global filter for various light intensities.

406 **References**

- M.T. Miller, P.K. Gantzel, T.B. Karpishin. Effects of Sterics and Electronic Delocalization on the Photophysical, Structural, and Electrochemical Properties of 2,9-Disubstituted 1,10-Phenanthroline Copper(I) Complexes. Inorg. Chem. 38 (1999) 3414-3422.
- [2] G. Venkatachalam, R. Ramesh. Ruthenium(III) bis-bidendate Schiff base complexes mediated Transfer hydrogenations of imines. Inorg. Chem. Commun. 9(2006) 703-707.
- [3] O. Pamies, J.-E. Backvall. Studies on the mechanism of metal-catalyzed hydrogen transfer from alcohols to ketones. Chem. Eur. J. 23 (2001) 5052-5058.
- [4] N. Meriç, C. Kayan, M. Aydemir, Y. S. Ocak, A. Baysal, H. Temel. Application of dinuclear ruthenium (II) arene complexes in transfer hydrogenation of ketones. Dicle Univ. J. Inst. Sci.

Tech. 2 (2013) 1-8.

- [5] C. Kayan, N. Meriç, M. Aydemir, A. Baysal, H. Temel. Aniline based aminophosphine and cationic bis(phosphino) amine Ru(II) complexes: investigation of catalytic activity in transfer hydrogenation of ketones. Dicle Univ. J. Inst. Sci. Tech. 2 (2013) 20-27.
- [6] M. Aydemir, A. Baysal, N. Meric, B.Gümgüm. New active ruthenium(II) complexes based N3,N3'-bis(diphenylphosphino)-2,2'-bipyridine-3,3-diamine and P,P'-diphenylphosphinous acid P,P'-[2,2'-bipyridine]-3,3'-diamine and P-P'-diphenylphosphinous acid P,P'-[2,2'-bipyridine]-3,3'-diyl ester ligands for transfer hydrogenation of aromatic ketones by propan-2-ol. J. Organometal. Chem. 694 (2009) 2488-2492.
- [7] M. Aydemir, A. Baysal. Ruthenium-catalyzed transfer hydrogenation of aromatic ketones with aminophosphine or bis(phosphino)amine ligands derived from isopropyl substituted anilines. Polyhedron 29 (2010) 1219-1224.
- [8] M. Aydemir, N. Meriç, C. Kayan, F. Ok, A. Baysal. Rhodium-catalyzed transfer hydrogenation with functionalized bis(phosphino)amine ligands. Inorg. Chim. Acta. 398 (2013) 1-10.
- [9] A.N. Ajjou, J.-L. Pinet. The biphastic transfer hydrogenation of aldehydes and ketones with isopropanol catalyzed by water-soluble rhodium complexes. J. Mol. Catal. A Chem. 214 (2004) 203-206.
- [10] Y.-Y. Li, H. Zhang, J.-S. Chen, X.-L. Liao, Z.-R. Dong, J.-X. Gao. An efficient chiral iridium catalyst for asymmetric transfer hydrogenation of ketones. J. Mol. Catal. A Chem. 218 (2004) 153-156.
- [11] R. Noyori, T. Ohkuma. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. Angew. Chem. Int. Ed. 40 (2001) 40-73.
- [12] H.U. Blaser, F. Spindler, M. Studer. Enantioselective catalysis in fine chemicals production. Appl. Catal. A: Gen. 221 (2001) 119-143.
- [13] S.C. Stinson. Chiral drugs interactions. Chem. Eng. News. 77 (1999) 101-120.
- [14] V. Turcry, C. Pasquier, F. Agbossou-Niedercorn. Aminophosphine phosphinite (AMMP) and enantioselective hydrogenation of ketones: further developments. C.R. Chimie 6 (2003) 179– 184.
- [15] a) J.T. Mague, J. Krinsky. Synthetic and structural studies of the coordination behavior of 2-pyridylbis(diphenylphosphino) methane. Inorg. Chem. 40 (2001) 1962-1971; b) A.M.Z Slawin, M.B.Smith, J. D. Woollins. Synthesis and characterization of the first E-unidentate
 [Ph2P(O)NP(E)Ph2]- metal complexes. [Au{Ph2P(O)NP(E)Ph2-*E*}{Ph2P(O)NHPPh2}] and
 [Pd{Ph2P(O)NP(E)Ph2-2(H2NCH2CH2NH2)] (E = S or Se), J. Chem. Soc. Dalton. Trans.
 (1998) 1537-1539; c) K.V. Katti, V.S. Reddy, P.R. Singh. Coordination Chemistry of

Phosphorus(III) and Phosphorus(V) Hydrazides. Chem. Soc. Rev. 24 (1995) 97-107; d) M.S. Balakrishna, P.P. George, S.M. Mobin. New diphosphinite derived from cyclohexane-1,4-diol. Synthesis, oxidation reactions and X-ray crystal structure of $Ph_2P(S)O(C_6H_{10})OP(S)Ph_2$. Polyhedron 24 (2005) 475-480.

- [16] M. Aydemir, A. Baysal, F. Durap, B. Gümgüm, S. Özkar, L.-T. Yıldırım. Synthesis and characterization of transition metal complexes of thiophene-2-methylamine: X-ray crystal structure of palladium (II) and platinum (II) complexes and use of palladium(II) complexes as pre-catalyst in Heck and Suzuki cross-coupling reactions Appl. Organometal. Chem. 23 (2009) 467–475.
- [17] A. Kılıç, F. Durap, M. Aydemir, A. Baysal, E. Taş. Ru(II) with chelating containing N4-type donor quadridentate Pd-oxime metal complexes: Syntheses, spectral characterization, thermal and catalytic properties. J. Organomet. Chem. 693 (2008) 2835-2842.
- [18] P. Bhattacharyya, J.D. Woollins. Polyhedron report number-56-bis(diphenylphosphino) amine and related chemistry. Polyhedron 14 (1995) 3367-3388.
- [19] M. Aydemir, A. Baysal, E. Şahin, B. Gümgüm, S. Özkar. Aminophosphine-Palladium(II) Complexes: Synthesis, Structure and Applications in Suzuki and Heck Cross-Coupling Reactions. Inorg. Chim. Acta 378 (2011) 10–18.
- [20] M. Aydemir, A. Baysal, N. Gürbüz, İ. Özdemir, B. Gümgüm, S. Özkar, N. Çaylak, L.-T. Yıldırım. Synthesis and characterization of new (*N*-diphenylphosphino)-isopropylanilines and their complexes: crystal structure of (Ph₂P=S)NH-C₆H₄-4-CH(CH₃)₂ and catalytic activity of palladium(II) complexes in the Heck and Suzuki cross-coupling reactions Appl. Organometal. Chem. 24 (2010) 17-24.
- [21] M. Aydemir, A. Baysal. Ruthenium-catalyzed transfer hydrogenation of aromatic ketones with aminophosphine or bis(phosphino)amine ligands derived from isopropyl substituted anilines Polyhedron 29 (2010) 1219–1224.
- [22] M. Aydemir, N. Meriç, A. Baysal. Applications of transition metal complexes containing 3,3'bis(diphenylphosphinoamine)-2,2'-bipyridine ligand to transfer hydrogenation of ketones J. Organomet. Chem. 720 (2012) 38-45.
- [23] a) A. Buhling, P.C.J. Kamer, P.W.N.M. van Leeuwen. Novel amphiphilic diphosphinessynthesis, X-Ray structure, rhodium complexes, use in hydroformulation, and rhodium recycling. Organometallics 16 (1997) 3027- 3037; b) T.J. Kwok, D.J. Wink. Characterization and application of catalytic regioselective hydroformylation with a cationic bis (dioxaphospholane) rhodium catalyst precursor. Organometallics 12 (1993) 1954-1959; c) H. Bricout, J.-F Carpentier, A. Mortreuz. Bis(aminophosphine)-nickel complexes as efficient catalysts for alkylation of allylic acetates with stabilized nucleophiles. Tetrahedron Lett. 37 (1996) 6105-6108; d) I. Suisse, H. Bricout, A. Mortreux. Highly selective synthesis of 4-

vinylcyclohexene by cyclodimerization of Butadiene catalysed by aminophosphinephosphinite and bis(aminophosphine) chiral ligands nickel complexes. Tetrahedron Lett. 35 (1994) 413-416; e) D. Gleich, R. Schmid, W.A.Herrmann. A molecular-model to explain and predict the stereoselectivity in rhodium-catalyzed hydroformulation. Organometallics 17 (1998) 2141-2143.

- [24] S. Gladiali, E. Alberico, in: M. Beller, C. Bolm, (Eds.), Transition Metals for Organic Synthesis, Wiley-VCH., Weinheim, 2004, Vol. 2, pp. 145-166.
- [25] S.E. Clapham, A. Hadzovic, R.H. Morris. Mechanisms of the H₂-Hydrogenation and Transfer Hydrogenation of Polar Bonds Catalyzed by Ruthenium Hydride Complexes. Coord. Chem. Rev. 248 (2004) 2201-2237.
- [26] J.E. Backvall. Transition metal hydrides as active intermediates in hydrogen transfer reactions J. Organomet. Chem. 652 (2002) 105-111.
- [27] G. Zassinovich, G. Mestroni, S. Gladiali. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts. Chem. Rev. 92 (1992) 1051-1069.
- [28] R.V. Wisman, J.G. de Vries, B.-J. Deelman, H.J. Heeres. Kinetic Studies on the Asymmetric Transfer Hydrogenation of Acetophenone Using a Homogeneous Ruthenium Catalyst with a Chiral Amino-Alcohol Ligand. Org. Process Res. Dev. 10 (2006) 423-429.
- [29] M. Aydemir, F. Durap, A. Baysal, N. Meric, A. Buldağ, B. Gümgüm, S. Özkar, L.T. Yıldırım. Novel Neutral Bis(phosphinite) Bridged Dinuclear Ruthenium(II) arene Complexes and Their Application in Transfer Hydrogenation of Aromatic Ketones: X-ray Structure of a New Schiff Base, N3,N3'-di-2-hydroxybenzylidene-[2,2']bipyridinyl-3,3'-diamine. J. Mol. Catal A: Chemical 326 (2010) 75-81.
- [30] Y.X. Chen, Syntheses and applications of novel chiral ligands, Polytechnic University, Hong Kong, 1999: Ph.D. Thesis.
- [31] M. Aydemir, N. Meric, F. Durap, A. Baysal, M. Toğrul. Asymmetric transfer hydrogenation of aromatic ketones with the ruthenium(II) catalyst derived from C₂ symmetric *N*,*N*'-bis[(1*S*)-1benzyl-2-*O*-(diphenylphosphinite)ethyl]ethanediamide. J. Organomet. Chem. 695 (2010) 1392-1398.
- [32] S.E. Habas, H.A.S. Platt, M.F.A.M. van Hest, D.S. Ginley. Low-Cost Inorganic Solar Cells: From Ink to Printed Device. Chem. Rev. 110 (2010) 6571–6594.
- [33] R.V. Salvatierra, C.E. Cava, L.S. Roman, A.J.G. Zarbin. ITO-Free and Flexible Organic Photovoltaic Device Based on High Transparent and Conductive Polyaniline/Carbon Nanotube Thin Films Adv. Funct. Mater. 23 (2013) 1490–1499.
- [34] N. Sekar, V.Y. Gehlot. Metal complex dyes for dye-sensitized solar cells: Recent developments Resonance, 15 (2010) 819.

- [35] U. Olgun, M. Gulfen. Synthesis and spectroscopic–voltammetric behaviors of silver(I) 2,5diphenylthiazolo[5,4-d]thiazole. Dyes Pigm. 99 (2013) 1004-1009.
- [36] L. Giribabu, V.K. Singh, T. Jella, Y. Soujanya, A. Amat, F. De Angelis, A. Yella, P. Gao,
 M. K. Nazeeruddin. Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Dyes Pigm. 98 (2013) 518-529.
- [37] C. Dragonetti, A. Valore, A. Colombo, M. Magni, P. Mussini, D. Roberto, R. Ugo, A. Valsecchi, V. Trifiletti, N. Manfredi, A. Abbotto. Ruthenium oxyquinolate complexes for dye-sensitized solar cells. Inorg. Chim. Acta 405 (2013) 98–104.
- [38] S. Pasa, Y.S. Ocak, H. Temel, T. Kilicoglu. Synthesis, characterization and catalytic behavior in the Suzuki reaction of Schiff base and its complexes and the optical properties of nickel complex used in the fabrication of a photodiode. Inorg. Chim. Acta, 405 (2013) 493-504.
- [39] H. Temel, S. Pasa, Y.S. Ocak, I. Yilmaz, S. Demir, I. Ozdemir. Synthesis, characterization, electrochemical behaviors and applications in the Suzuki–Miyaura cross-coupling reactions of N₂S₂O₂ thio Schiff base ligand and its Cu(II), Co(III), Ni(II), Pd(II) complexes and their usage in the fabrication of organic–inorganic hybrid devices. Synth. Met. 161 (2012) 2765–2775.
- [40] H. Tang, Y. Li, Q. Chen, B. Chen, Q. Qiao, W. Yang, H. Wu, Y. Cao. Efficient yellow-green light-emitting cationic iridium complexes based on 1,10-phenanthroline derivatives containing oxadiazole-triphenylamine unit. Dyes Pigm. 100 (2013) 79-86.
- [41] M. El-Nahass, K. Abd-El-Rahman, A. Darwish. Fabrication and electrical characterization of p-NiPc/n-Si heterojunction. Microelectron. J. 38 (2007) 91-95.
- [42] T. Kılıcoglu, Y.S. Ocak. Electrical and photovoltaic properties of an organic-inorganic heterojunction based on a BODIPY dye. Microelectron. Eng. 88 (2011) 150–154.
- [43] R.K. Gupta, M. Cavas, A.A. Al-Ghamdi, Z.H. Gafer, F. El-Tantawy, F. Yakuphanoglu. Electrical and photoresponse properties of Al/p-CuFeO2/p-Si/Al MTCOS photodiode. Sol. Energy 92 (2013) 1–6.

[44] Furfuryl-(N-dicyclohexylphosphino)amine: Yield 0.279 g, 93.3 %. ¹H NMR (400.1 Hz, CDCl₃): δ 7.33 (d, 1H, <u>H</u>-5, ³J = 1.6 Hz), 6.29 (dd, 1H, <u>H</u>-4, ³J = 1.6 and 3.0 Hz), 6.13 (d, 1H, <u>H</u>-3, ³J = 3.0 Hz), 4.04 (dd, 2H, C<u>H</u>₂-, ³J(HP) = 7.7 and ³J(HH) = 7.6 Hz), 2.42 (dt, -N<u>H</u>-, 1H, ³J(HH) = 7.6 and ²J(HP) = 7.7 Hz), 1.16-1.77 (m, 22 H, protons of cyclohexyls); ¹³C NMR (100.6 MHz, CDCl₃): δ 26.55, 27.03, 27.16, 27.28, 29.12, 29.30 (<u>C</u>H₂- of cyclohexyls), 36.40 (d, <u>C</u>H- of cyclohexyls, ¹J = 11.1 Hz), 45.86 (d, <u>C</u>H₂-, ²J = 27.2 Hz), 105.56 (<u>C</u>-3), 110.09 (<u>C</u>-4), 141.27 (<u>C</u>-5), 156.23 (d, <u>C</u>-2, ³J= 3.0 Hz), assignment was based on the ¹H-¹³C HETCOR, DEPT and ¹H-¹H COSY spectra; ³¹P-{¹H} NMR (162.0 MHz, CDCl₃): δ 61.61 (s, NH-<u>P</u>(Cy)₂); IR, (KBr): υ 801 (P-N), 3257 (N-H) cm⁻¹; C₁₇H₂₈NOP (293.39 g/mol): calcd. C 69.60, H 9.62, N 4.77; found C 69.49, H 9.54, N 4.61 %. Thiophene(N-dicyclohexylphosphino)amine: Yield 0.261 g, 95.6 %. ¹H NMR (400.1 Hz, CDCl₃): δ 7.18 (d, 1H, <u>H</u>-5, ³J = 5.0 Hz), 6.90-6.94 (m, 2H, <u>H</u>-3 and <u>H</u>-4), 4.27 (dd, 2H, C<u>H</u>₂-, ³J(HP) = 6.4 and ³J(HH) = 6.3

Hz), 2.98 (m, 1H, N<u>H</u>), 1.24-1.81 (m, 22H, protons of cyclohexyls); ¹³C NMR (100.6 MHz, CDCl₃): δ 26.01, 26.57, 27.00, 27.70, 29.43, 29.62 (<u>C</u>H₂ of cyclohexyls), 36.58 (d, <u>C</u>H of cyclohexyls, ¹J = 10.1 Hz), 48.16 (d, <u>C</u>H₂, ²J = 4.0 Hz), 123.46 (<u>C</u>-3), 123.67 (<u>C</u>-5), 126.36 (<u>C</u>-4), 147.40 (<u>C</u>-2), assignment was based on the ¹H-¹³C HETCOR, DEPT and ¹H-¹H COSY spectra; ³¹P-{¹H} NMR (162.0 MHz, CDCl₃): δ 61.69 (s, NH-<u>P</u>(Cy)₂); IR, (KBr): υ 798 (P-N), 3253 (N-H) cm⁻¹; C₁₇H₂₈NSP (309.45 g/mol): calcd. C 65.98, H 9.12, N 4.53; found C 65.87, H 8.99, N 4.35 %.

- [45] M. Aydemir, A. Baysal, N. Meriç, B. Gümgüm. New active ruthenium(II) complexes based N3,N3'-bis(diphenylphosphino)-2,2'-bipyridine-3,3'-diamine and P,P'-diphenylphosphinous acid-P,P'-[2,2'-bipyridine]-3,3'-diyl ester ligands for transfer hydrogenation of aromatic ketones by propan-2-ol J. Organomet. Chem. 694 (2009) 2488-2492.
- [46] a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes J. Am. Chem. Soc. 117 (1995) 7562–7563; b) J. Takehara, S. Hashiguchi, A. Fujii, S. Inoue, T. Ikariya, R. Noyori, J. Amino alcohol effects on the ruthenium(II)-catalysed asymmetric transfer hydrogenation of ketones in propan-2-ol Chem. Soc., Chem. Commun. (1996) 233–234.
- [47] T. Ohkuma, R. Noyori. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. Angew. Chem., Int. Ed. 40 (2001) 40–73.
- [48] R. Noyori. Asymmetric Catalysis: Science and Opportunities. Angew. Chem., Int. Ed. 41 (2002) 2008–2022.
- [49] T. Ikariya, A.J. Blacker. Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts. Acc. Chem. Res. 40 (2007) 1300–1308.
- [50] H.L. Lowry, K.S. Richardson, in Harper Collins, Mechanism and Theory in Organic Chemistry, New York, 1987, Chapter 2.
- [51] I. Yamada, R. Noyori. Assymetric Transfer Hydrogenation of Benzaldehydes. Org. Lett. 2 (2000) 3425-3427.
- [52] M.J. Palmer, M. Wills. Asymmetric transfer hydrogenation of C=O and C=N bonds. Tetrahedron: Asymmetry 10 (1999) 2045-2061.
- [53] D.H. McDaniel, H.C. Brown. An Extended Table of Hammett Substitutent Constants Based on the Ionization of Substituted Benzoic Acids. J. Org. Chem. 23 (1958) 420-427.
- [54] J.W. Faller, A.R. Lavoie. Catalysts for the Asymmetric Transfer Hydrogenation of Ketones Derived from L-Prolinamide and (*p*-CymeneRuCl₂)₂ or (Cp*RhCl₂)₂. Organometallics 20 (2001) 5245-5247.
- [55] J.-X. Gao, X.-D. Yi, P.-P. Xu, C.-L. Tang, H.-L. Wan, T. Ikariya. New chiral cationic rhodium-aminophosphine complexes for asymmetric transfer hydrogenation of aromatic ketones. J. Organometal. Chem. 592 (1999) 290-295.

- [56] J.-X. Gao, H. Zhang, X.-D. Yi, P.-P. Xu, C.-L. Tang, H.-L. Wan, K.-R.Tsai, T. Ikariya. New chiral catalysts for reduction of ketones. Chirality 12 (2000) 383-388.
- [57] M. Campos, L.O.S. Bulhoes, C.A. Lindino. Gas-sensitive characteristics of metal/semiconductor polymer Schottky device. Sens. Actuators 87 (2000) 67-71.
- [58] O. Gullu, A. Turut, S. Asubay. Electrical characterization of organic-on-inorganic Semiconductor Schottky structures. J. Phys. Condens. Matter. 20 (2008) 045215.
- [59] F. Yakuphanoglu, M. Kandaz, B.F. Senkal. Al / p-type silicon/organic semiconductor based on phthalocyanine rectifier contact. Thin Solid Films 516 (2008) 8793-8796.
- [60] O. Gullu, A. Turut. Photovoltaic And Electronic Properties Of Quercetin/P-Inp Solar Cells. Sol. Energy Mater. Sol. Cells. 92 (2008) 1205–1210.
- [61] H. Norde. A modified forward *I-V* plot for Schottky diodes with high series resistance. J. Appl. Phys. 50 (1979) 5052.

22

Captions

Scheme 1 Synthesis of the [Rh(Cy₂PNHCH₂-C₄H₃O)(cod)Cl], (1), [Rh(Cy₂PNHCH₂-C₄H₃S)(cod)Cl], (2), [Ir(Cy₂PNHCH₂-C₄H₃O)(η^5 -C₅Me₅)Cl₂], (3) and [Ir(Cy₂PNHCH₂-C₄H₃S)(η^5 -C₅Me₅)Cl₂], (4) complexes (*i*) 1/2 equiv. [Rh(μ -Cl)(cod)]₂, thf; (*ii*) 1/2 equiv. [Ir(η^5 -C₅Me₅)(μ -Cl)Cl]₂, thf.

Figure 1 The ³¹P-{¹H} NMR spectra of the complexes [Rh(Cy₂PNHCH₂-C₄H₃O)(cod)Cl], (1), [Rh(Cy₂PNHCH₂-C₄H₃S)(cod)Cl], (2), [Ir(Cy₂PNHCH₂-C₄H₃O)(η^{5} -C₅Me₅)Cl₂], (3) and [Ir(Cy₂PNHCH₂-C₄H₃S)(η^{5} -C₅Me₅)Cl₂], (4).

Figure 2 *I-V* measurements of Au/metal complex/n-Si structures fabricated using a) 1 b) 2 c) 3 and d) 4 compounds.

Table 1 Transfer hydrogenation of acetophenone with iso-PrOH catalyzed [Rh(Cy₂PNHCH₂- $C_4H_3O(cod)Cl]$, (1), [Rh(Cy₂PNHCH₂-C₄H₃S)(cod)Cl], (2), [Ir(Cy₂PNHCH₂-C₄H₃O)(η^5 - $C_5Me_5)Cl_2$, (3) and $[Ir(Cy_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2]$, (4).

Entry	Catalyst	S/C/NaOH	Time	Conversion(%	$(b)^{[i]} \mathbf{TOF}(\mathbf{h}^{-1})^{[k]}$
1	1 [a]	100:1:5	15 min	98	392
2	1 [b]	100:1:5	24 h	trace	····
3	1 [c]	100:1	24 h	trace	· · · ·
4	1 [d]	100:1:5	15 min	96	384
5	1 [e]	100:1:5	3 h	98	33
6	1 ^[f]	500:1:5	45 min	99	132
7	1 [g]	1000:1:5	1.5 h	97	65
8	2 [a]	100:1:5	8 h	98	12
9	2 [b]	100:1:5	24 h	trace	
10	2 [c]	100:1	24 h	trace	
11	2 [d]	100:1:5	8 h	96	12
12	2 [e]	100:1:5	30 h	97	<5
13	2 [f]	500:1:5	20 h	98	<5
14	2 [g]	1000:1:5	40 h	97	<5
15	3 [a]	100:1:5	8 h	97	12
16	3 [b]	100:1:5	24 h	trace	
17	3 [c]	100:1	24 h	trace	
18	3 [d]	100:1:5	8 h	97	12
19	3 [e[100:1:5	30 h	98	<5
20	3 [f]	500:1:5	20 h	97	<5
21	3 [g]	1000:1:5	40 h	96	<5
22	4 [a]	100:1:5	8 h	96	12
23	4 [b]	100:1:5	24 h	trace	
24	4 [c]	100:1	24 h	trace	
25	4 [d]	100:1:5	8 h	98	12
26	4 [e]	100:1:5	30 h	98	<5
27	4 [f]	500:1:5	20 h	98	<5
28	4 [g]	1000:1:5	40 h	96	<5

<u>Reaction conditions:</u> ^[a] Refluxing in *iso*-PrOH; acetophenone/Ru/NaOH, 100:1:5; ^[b] At room temperature; acetophenone/Ru/NaOH, 100:1:5; ^[c] Refluxing in *iso*-PrOH; acetophenone/Ru, 100:1, in the absence of base; ^[d] Added 0.1 mL of H₂O; ^[e] Refluxing the reaction in air; ^[f] Refluxing in *iso*-PrOH; acetophenone/Ru/NaOH, 500:1:5; [g] Refluxing in iso-PrOH; acetophenone/Ru/NaOH, 1000:1:5; [i] Determined by GC (three independent catalytic experiments); ^[k] Referred at the reaction time indicated in column; TOF= (mol product/mol Ru(II)Cat.)x h⁻¹.

Table 2 Transfer hydrogenation results for substituted acetophenones with the catalyst systems, [Rh(Cy₂PNHCH₂-C₄H₃O)(cod)Cl], (1), [Rh(Cy₂PNHCH₂-C₄H₃S)(cod)Cl], (2), [Ir(Cy₂PNHCH₂-C₄H₃O)(η^{5} -C₅Me₅)Cl₂], (3) and [Ir(Cy₂PNHCH₂-C₄H₃S)(η^{5} -C₅Me₅)Cl₂], (4).^[a]

	O II		ОН	
RU	+	OH <i>Cat 1-4</i>	R	+
Entry	R	Time	Conversion(%) ^[b]	$\mathbf{TOF}(\mathbf{h}^{-1})^{[c]}$
Cat:Rh(I) con	mplex 1			
1	4- F	10 min	96	576
2	4-Cl	10 min	98	588
3	4-Br	15 min	98	392
4	2-MeO	25 min	97	233
5	4-MeO	20 min	96	288
Cat:Rh(I) con	mplex 2			
6	4- F	6 h	96	16
7	4-Cl	6 h	98	16
8	4-Br	8 h	97	12
9	2-MeO	12 h	98	8
10	4-MeO	10 h	98	10
Cat:Ir(III) ca	omplex 3			
11	4- F	6 h	96	16
12	4-Cl	6 h	95	16
13	4-Br	8 h	95	12
14	2-MeO	12 h	98	8
15	4-MeO	10 h	97	10
Cat:Ir(III) co	omplex 4			
16	4-F	6 h	97	16
17	4-Cl	6 h	97	16
18	4-Br	8 h	95	12
19	2-MeO	12 h	97	8
20	4-MeO	10 h	96	10

^[a] Catalyst (0.005 mmol), substrate (0.5 mmol), *iso*-PrOH (5 mL), NaOH (0.025 mmol %), 82 °C, the concentration of acetophenone derivatives is 0.1 M; ^[b] Purity of compounds is checked by ¹H NMR and GC (three independent catalytic experiments), yields are based on methyl aryl ketone; ^[c] TOF = (mol product/mol Cat.) x h⁻¹.

Table 3 Transfer hydrogenation of various simple ketones with *iso-PrOH* catalyzed by $[Rh(Cy_2PNHCH_2-C_4H_3O)(cod)Cl],$ (1), $[Rh(Cy_2PNHCH_2-C_4H_3S)(cod)Cl],$ (2), $[Ir(Cy_2PNHCH_2-C_4H_3O)(\eta^5-C_5Me_5)Cl_2],$ (3) and $[Ir(Cy_2PNHCH_2-C_4H_3S)(\eta^5-C_5Me_5)Cl_2],$ (4).^[a]

o a	[d
Entry	Cat	Substrate	Time	Conversion(%) ^[b]
1	1	а	30 min	96
2	2	b	10 h	98
3	3	С	10 h	97
4	4	d	10 h	98
5	1	а	30 min	96
6	2	b	10 h	98
7	3	с	10 h	95
8	4	d	10 h	97
9	1	a	3/2 h	99
10	2	b	20 h	97
11	3	с	20h	98
12	4	d	20 h	97
13	1	a	3h	99
14	2	b	30 h	96
15	3	° c	30 h	99
16	4	d	30h	95

^[a] Refluxing in *iso*-PrOH; ketone/Ru/NaOH, 100:1:5; ^[b] Determined by GC (three independent catalytic experiments); ^[b] Purity of compounds is checked by ¹H NMR and GC (three independent catalytic experiments), yields are based on methyl aryl ketone.

Table 4 Transfer hydrogenation results for substituted alkyl phenyl ketones with the catalystsystems [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2),[Ir(Cy2PNHCH2-C4H3O)(η^5 -C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η^5 -C5Me5)Cl2],(4).^[a]

	0 R +	OH Cat 1-4	OH I	
Entry	R	Time	Conversion(%) ^[b]	$TOF(h^{-1})^{[c]}$
Cat:Rh(I)) complex 1			
1	othyl	20 min	07	201
2	propyl	20 min	96	291 192
3	iso-propyl	40 min	96	144
4	<i>ter</i> -butyl	1.5 h	95	63
- C = 4 · Dl· (I))	10 1		
Cat:Kn(1)	complex 2			
5	ethyl	16 h	96	<10
6	propyl	32 h	98	<5
7	<i>iso</i> -propyl	40 h	95	<5
8	ter-butyl	50 h	97	<5
Cat:Ir(II)	I) complex 3			
9	ethyl	16 h	95	<10
10	propyl	32 h	97	<5
11	iso-propyl	40 h	98	<5
12	ter-butyl	50 h	97	<5
Cat:Ir(III	I) complex 4			
13	ethyl	16 h	97	<10
14	propyl	32 h	97	<5
15	iso-propyl	40 h	97	<5
16	ter-butyl	50 h	96	<5

^[a] Catalyst (0.005 mmol), substrate (0.5 mmol), *iso*-PrOH (5 mL), NaOH (0.025 mmol %), 82 °C, respectively, the concentration of alkyl phenyl ketones is 0.1 M; ^[b] Purity of compounds is checked by ¹H NMR and GC (three independent catalytic experiments), yields are based on methyl aryl ketone; ^[c] TOF = (mol product/mol Cat.) x h⁻¹.

	ln <i>I-V</i>		Norde	
Device	п	ϕ_b	ϕ_b	R_S
Au/1/n-Si	1.65	0.79	0.83	17080
Au/2/n-Si	1.67	0.80	0.83	165800
Au/3/n-Si	1.82	0.76	0.85	313
Au/4/n-Si	1.41	0.78	0.83	3518

 Table 5
 Electrical parameters of the devices obtained using metal complexes

Table 6 Photovoltaic parameters of the devices under the light with 100 mW/cm^2 illumination intensity

Device	I _{SC} (μΑ)	V_{OC} (mV)
Au/1/n-Si	5.40	125
Au/2/n-Si	0.16	95
Au/3/n-Si	196	226
Au/4/n-Si	114	206

