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RESEARCH HIGHLIGHTS 

 

� For the first time complexes of aminophosphine carrying cyclohexyl moiety were 

synthesized and characterized. 

 

� [Rh(Cy2PNHCH2-C4H3O)(cod)Cl] was a more efficient catalyst in the transfer 

hydrogenation. 

 

� Fabrication of organic-inorganic heterojunction devices, their electrical properties 

including ideality factor, barrier height and series resistance values and photoelectrical 

properties are presented. 

 

� The devices obtained using Ir(III)-aminophosphine complexes have reverse and current 

bias photoconduction behavior which have not reported up to now for organic based 

devices. 
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Novel Rh(I) and Ir(III) complexes containing aminophosphine ligands including cyclohexyl 

moiety have been synthesized. The use of the new complexes for the reduction of the ketonic 

C=O bond under hydrogen transfer conditions was investigated. Surprisingly, 

[Rh(Cy2PNHCH2-C4H3O)(cod)Cl] was a more efficient catalyst in the transfer hydrogenation 

than the other complexes. In addition, the electrical properties of the devices were analyzed in 

dark and under a solar simulator with various illumination conditions. The results showed 

excellent reverse and forward bias photosensing behaviors for [Ir(Cy2PNHCH2-C4H3O)(η5-

C5Me5)Cl2] and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2] complexes.  

. 
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ABSTRACT 14 

The reaction of [Rh(µ-Cl)(cod)]2  and Ir(η5-C5Me5)(µ-Cl)Cl]2  with aminophosphine ligands 15 

Cy2PNHCH2-C4H3X (X: O; S) gave a range of new monodendate [Rh(Cy2PNHCH2-16 

C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), [Ir(Cy2PNHCH2-C4H3O)(η5-17 

C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  (4) complexes, which were 18 

characterized by analytical and spectroscopic methods. The new rhodium(I) and iridium(III) 19 

catalysts were applied to transfer hydrogenation of acetophenone derivatives using 2-propanol 20 

as a hydrogen source. The results showed that the corresponding alcohols could be obtained 21 

with high activity (up to 99 %) under mild conditions. Notably, [Rh(Cy2PNHCH2-22 

C4H3O)(cod)Cl] complex (1) is much more active than the other analogous complexes in the 23 

transfer hydrogenation. Moreover, organic-inorganic rectifying contacts were fabricated 24 

forming rhodium(I) and iridium(III) complex thin films on n-Si semiconductors and 25 
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evaporating Au metal on the structures.  Electrical properties of the contacts including ideality 26 

factor, barrier height and series resistance were determined using their current-voltage (I-V) 27 

data. The photoelectrical characteristics of the devices were examined under the light with 40-28 

100 mW/cm2 illumination conditions. It was seen that light had strong effects on I-V 29 

characteristics of the devices and the ones fabricated using 3 and 4 complexes had unusually 30 

forward and reverse bias photoconducting behavior.  31 

 32 

 33 

Keywords: Aminophosphine; Iridium; Transfer Hydrogenation; Rectifying contact; Electrical 34 

properties; Photoconductor  35 
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1.  Introduction 52 

Transition metal complexes are powerful catalysts for organic transformations and when 53 

suitable ligands are bound to a metal center, they can offer chemio, regio or stereo selectivity 54 

under mild conditions [1]. However, the appropriate choice of metal precursors and the 55 

reaction conditions are crucial for catalytic properties [2]. A number of transition metal 56 

complexes are known to catalyze hydrogen transfer from an alcohol to a ketone [3,4,5]. Over 57 

the last three decades, most effort on hydrogenation has been focused on the use of 58 

ruthenium, rhodium and iridium catalysts [6,7,8,9,10]. Rhodium and iridium complexes have 59 

been proven to lead to very efficient processes along with potential industrial applications 60 

[11,12,13,14]. 61 

To date, a number of such systems with a variety of backbone frameworks have been 62 

synthesized and their transition metal chemistry has been explored [15,16,17]. Phosphorus-63 

nitrogen containing ligands have particular use in catalysis where it is necessary for part of 64 

ligand to dissociate to allow an organic fragment to coordinate and undergo transformations 65 

[18,19]. The presence of P-N ligands enables many different and important catalytic processes 66 

to occur [20,21,22]. Especially, aminophosphines are able to stabilize many different metals 67 

in various oxidation states, controlling the performance of metals in a large variety of useful 68 

transformations. Synthesis of new aminophosphines to stabilize transition metals in low 69 

valent states is considered to be a most challenging task in view of their potential utility in a 70 

variety of metal-mediated organic transformations [23].  71 

Hydrogen transfer reactions are mild methodologies for reduction of ketones or imines and 72 

oxidation of alcohols or amines in which a substrate-selective catalyst transfers hydrogen 73 

between the substrate and a hydrogen donor or acceptor, respectively [24,25,26]. From an 74 

industrial point of view, catalytic transfer hydrogenation is an attractive alternative for high 75 

pressure catalytic hydrogenations with molecular hydrogen [27]. Here, hydrogen donors such 76 

as secondary alcohols (e.g., 2-propanol) are applied to convert carbonyl compounds to 77 
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alcohols. The risk associated with the use of molecular hydrogen at high pressures is thereby 78 

eliminated [28,29]. Furthermore, there are several other advantages for use of 2-propanol such 79 

as, it is inexpensive, readily available and has an appropriate boiling point. It is also a good 80 

solvent for many organic compounds. Upon dehydrogenation, 2-propanol is converted to 81 

acetone, which can be easily removed from the reaction mixture, and thus simplifies the 82 

reaction process [30,31].  83 

Organic materials have obtained an important place in the fields of electrical and optical 84 

device industry. They have been preferred in device applications because of their key 85 

advantages including large area coating, using on flexible substrates and low cost [32,33]. 86 

Among the other organic compounds, there is a growing interest on metal complexes because 87 

of their mechanical and chemical stabilities [34]. While some studies have concentrated on 88 

finding suitable metal complexes for device technology [35,36], others have focused on the 89 

usage of these compounds in the fabrication of devices including solar cells, Schottky diodes 90 

and light emitting diodes [37,38,39,40]. Studies on metal-semiconductor (MS) devices with 91 

organic semiconductor have shown that these structures presented photovoltaic and 92 

photoconductivity influences when they are exposed to light because of electron and hole 93 

production at the interface [41].  94 

To the best our knowledge, there is no report on the use of these complexes including 95 

aminophosphines having cyclohexyl moiety on phosphorus atom in rhodium and iridium 96 

catalyzed transfer hydrogenation reaction.  As part of our research program, we report here 97 

the synthesis and full characterization of four new aminophosphine complexes 98 

[Rh(Cy2PNHCH2-C4H3O)(cod)Cl] (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), 99 

[Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  100 

(4). We also report their catalytic activity in transfer hydrogenation reactions of ketones with 101 

iso-PrOH. Furthermore, up to know, studies have reported to reverse bias photosensing 102 

properties of organic based devices [39,42,43]. In this study, fabrication of organic-inorganic 103 
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heterojunction devices, their electrical properties including ideality factor, barrier height and 104 

series resistance values and photoelectrical properties are presented. It is also reported that the 105 

devices obtained using 3 and 4 complexes have reverse and current bias photoconduction 106 

behavior which have not reported up to now for organic based devices. 107 

3.  Results and discussion 108 

3.1. Synthesis and characterization of the metal complexes 109 

Synthesis and characterization of the ligands, furfuryl-2-(N-110 

dicyclohexylphosphino)methylamine and thiophene-2-(N-dicyclohexylphosphino)methyla-111 

mine, were mentioned elsewhere [44]. We examined various coordination chemistry of these 112 

aminophosphines with [Rh(µ-Cl)(cod)]2 precursor. Reaction of furfuryl-2-(N-113 

dicyclohexylphosphino)methylamine or thiophene-2-(N-dicyclohexylphosphino) 114 

methylamine with [Rh(µ-Cl)(cod)]2 in a molar ratio of 2/1 at room temperature for 45 min 115 

afforded [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1) and [Rh(Cy2PNHCH2-C4H3S)(cod)Cl] (2), 116 

respectively as crystalline yellow powders (Scheme 1). The complexes of 1 and 2 were 117 

isolated as indicated by doublets in the 31P-{1H} NMR spectra at δ 71.98 (d, 1JRhP: 156.5 Hz) 118 

and 74.39 (d, 1JRhP: 154.1 Hz) ppm, respectively, (Figure 1). In their 1H NMR spectra, 1 and 2 119 

are characterized by CH resonances of cod at δ ~5.35 and 3.55 ppm, whereas in the 13C-{1H} 120 

NMR spectra, resonances at  δ ~70 and 104 ppm correspond to CH resonances of cod (for 121 

details see Experimental Section). Furthermore, other 1H and 13C-{1H} NMR data are in 122 

agreement with the proposed structures. The complexes were also characterized by IR and 123 

microanalysis.  124 

 125 

 126 

 127 

 128 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 6

We studied coordination chemistry of aminophosphines including cyclohexyl moiety with 129 

[Ir(η5-C5Me5)(µ-Cl)Cl]2 precursor as well. [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], 3 and 130 

[Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4 were obtained by the reaction of ligands with 131 

[Ir(η5-C5Me5)(µ-Cl)Cl]2 in a molar ratio of 2/1 at room temperature for 1 h (Scheme 1). In the 132 

31P-{1H} NMR spectra, resonances at δ ~ 43 ppm may be attributed to complexes of 3 and 4 133 

(Figure 1). 13C NMR spectra of the complexes display singlets at δ ~ 10 ppm attributable to 134 

methyl carbons of Cp* and doublets at δ ~92 due to carbons of Cp* ring. The 1H NMR 135 

spectra are consistent with the anticipated structures. The structural compositions of the 136 

complexes 3 and 4 were further confirmed by IR spectroscopy and microanalysis, and found 137 

to be in good agreement with the theoretical values (for details see experimental section). 138 

 139 

 140 

 141 

 142 

3.2. Catalytic transfer hydrogenation of ketones 143 

The brilliant catalytic performance of aminophosphine-based transition metal complexes [45, 144 

and references therein] prompted us to develop new Rh(I) and Ir(III) complexes with well-145 

shaped ligands, since NH unit forms a hydrogen bond with the carbonyl oxygen atom to 146 

stabilize the transition state. Therefore, the presence of an NH moiety in the ligands is 147 

crucially important to determine the catalytic performance of the bifunctional catalysts 148 

[46,47,48]. An important and unprecedented aspect is that the carbonyl compound does not 149 

interact directly with the metal center for its own activation [49]. To this end, we observed the 150 

catalytic activation of complexes 1-4 in the transfer hydrogenation of ketones to the 151 

corresponding alcohols. In a typical experiment, 0.005 mmol of the complex and 0.5 mmol of 152 

ketone were added to a solution of NaOH in iso-PrOH (0.025 mmol of NaOH in 5 mL iso-153 

PrOH) and refluxed at 82 ºC, the reaction being monitored by GC. In all reactions, these 154 
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complexes catalyzed the reduction of ketones to the corresponding alcohols via hydrogen 155 

transfer from iso-PrOH.  156 

These complexes as catalyst precursors for the transfer hydrogenation of acetophenone have 157 

been tested and typical results are summarized in Table 1. As seen, high conversions can be 158 

achieved with the 1-4 catalytic systems. Conversions of transfer hydrogenation of 159 

acetophenone were negligible either at room temperature with a base and at reflux 160 

temperature in the absence of base in all the reactions (see Table 1). Thus, one can conclude 161 

that high temperature as well as presence of base is necessary to obtain considerable 162 

conversions. Results obtained from the optimization studies indicated clearly that the 163 

excellent conversions were achieved in the reduction of acetophenone to 1-phenylethanol 164 

when 1-4 were used as the catalytic precursor, with a substrate-catalyst molar ratio (100:1) in 165 

iso-PrOH at 82 °C (Table 1, entries 1, 8, 15 and 22). Furthermore, it should be pointed out 166 

that complex [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1),  is more active than [Rh(Cy2PNHCH2-167 

C4H3S)(cod)Cl], (2), [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-168 

C5Me5)Cl2], (4) complexes, because, conversion of acetophenone occurred in 15 min and 8 h 169 

by 1 and 2-4, respectively. In addition, the yields gradually decreased on by increasing the 170 

mole ratios of [acetophenone]/[Ru] from 100/1 to 500/1 or 1000/1. Furthermore, performing 171 

the reaction in the presence of small amount of water did not change reaction time, while that 172 

in air slowed down the reaction (Table 1, entries 4, 5, 11, 12, 18, 19, 25 and 26).  173 

 174 

 175 

 176 

 177 

The complexes [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], 178 

(2), [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  179 

(4) were also extensively investigated with a variety of substrates. As expected, electronic 180 
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properties (the nature and position) of the substituents on the phenyl ring of the ketone caused 181 

significant changes in the reduction rate. To ensure that the observed results could be 182 

attributed to purely electronic effects [50], substrates involving para- and orto- substituted 183 

acetophenone derivatives were investigated. The results indicated that strong electron 184 

withdrawing substituents, such as F, Cl and Br were capable of higher conversion (Table 2). 185 

Conversely, the most electron-donor substituents, (2-methoxy or 4-methoxy) led to lower 186 

conversion. It is well-known that the presence of an electron withdrawing group has generally 187 

been found to facilitate the hydrogen transfer reaction [51,52] which has been attributed to the 188 

hydridic nature of the reducing species involved. As such, reactions with fluoro proceeded to 189 

higher conversion owing to rapid hydride transfer, while reactions with electron-donating 190 

substituents methoxy proceeded in a slower and more controlled manner [53,54].  191 

 192 

 193 

 194 

 195 

Encouraged by the high catalytic activities gained in these preliminary studies, we next 196 

extended our investigations to include hydrogenation of various simple ketones. A variety of 197 

simple ketones (S/C=100/1) can be transformed to the corresponding secondary alcohols with 198 

high conversion, as exemplified in Table 3. The cyclic substrates are convertible to the 199 

corresponding alcohols with a moderate conversion. Furthermore, under identical conditions, 200 

transfer hydrogenation of methyl isobutyl ketone led to 99 % conversion within 1.5 h, while 201 

that of diethyl ketone occurred in 3 h with the same conversion by [Rh(Cy2PNHCH2-202 

C4H3O)(cod)Cl], 1.   203 

 204 

 205 

 206 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 9

We also carried out further experiments to examine the effect of bulkiness of the alkyl groups 207 

on the catalytic activity and the results were given in Table 4 (Entries 1–16). As the steric 208 

hindrance of the alkyl group growths from ethyl to isopropyl, the extent of the time is 209 

increasing. Reaction of tert-butyl phenyl ketone possessing a bulky alkyl substituent 210 

proceeded rather slowly and in somewhat increasing time. Hence, it was found that the 211 

activity is highly dependent on the steric bulk of the alkyl group [55] and the reactivity 212 

gradually decreased by increasing the bulkiness of them [56].   213 

 214 

 215 

 216 

 217 

3.3. Electrical and photoelectrical properties of Au/metal complex/n-Si devices 218 

I-V measurements of a structure give important information about electrical characteristics of 219 

the device. Main electrical parameters of a diode such as ideality factor, barrier height and 220 

series resistance can be determined using its I-V data in dark. In addition, photoelectrical 221 

parameters of a structure including open circuit voltage (VOC) closed circuit current (ISC) can 222 

be extracted using its I-V data under light. Figure 2 presents I-V measurements of Au/metal 223 

complex/n-Si structures in dark and under a solar simulator with various illumination 224 

conditions. As seen from the figures, all structures have excellent rectification behavior. 225 

When a rectifying diode is taken into account, I-V can be analyzed using thermionic emission 226 

theory.  227 

 228 

  229 

 230 

According to the theory, the ideality factor and the barrier height values of a device can be 231 

extracted from the slope and the current axis intercept of the linear regions of the forward bias 232 
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I-V plots, respectively. The calculated ideality factor and the barrier height values are given in 233 

Table 5. As seen from the table, the ideality factors of the junctions are greater than unity. 234 

According to the theory, ideality factor should be very close to unity (1.03) when image force 235 

lowering is considered. The deviation from ideal diode can be attributed the effects of series 236 

resistance of the structure, existence of interface states at organic-inorganic interface, 237 

recombination-generation at the interface and tunneling [57,58]. The barrier height values of 238 

the structures are very close to each other and vary between 0.76 and 0.80 ev. Up to now, 239 

many kinds of molecules including small organic compounds, metal complexes, polymers and 240 

biological compounds have been used in the fabrication of organic-inorganic devices. For 241 

instance, several researchers [40] have synthesized and characterized Cu(II), Co(III), Ni(II) 242 

and Pd(II) complexes of N2S2O2 thio Schiff base ligand and showed their usage in the 243 

fabrication of organic–inorganic hybrid devices. The calculated barrier heights of the devices 244 

were between 0.75 and 0.88 eV. Other researchers [59] have reported the I-V and capacitance-245 

voltage (C-V) characteristics of an Al/p-Si/organic semiconductor formed using CoPc thin 246 

film on p-Si semiconductor. They have showed the strong effects of CoPc interlayer on 247 

electrical properties of metal/semiconductor (MS) contact. Therefore, it can be easily said that 248 

the organic thin films have strong impacts on the electrical performance of the organic-249 

inorganic devices and they behave as an active layer.  250 

 251 

 252 

 253 

The curvature in the higher voltage values of the I-V measurements are because of the series 254 

resistance of the structures. The series resistance of the devices may be caused by contact 255 

wires or bulk resistance of the organic material and semiconductor [60]. Series resistance of a 256 

diode can be calculated by the help of Norde functions [61]. It is also possible to determine 257 

barrier height values using Norde Functions. The obtained barrier height and series resistance 258 
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values are also given in Table 5. As seen from the table, the devices obtained using 259 

[Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3), and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 260 

(4), have lower series resistance compared with ones fabricated using [Rh(Cy2PNHCH2-261 

C4H3O)(cod)Cl], (1) and [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2). The large differences in 262 

series resistance between the compounds can be attributed to the higher conductivity values of 263 

compounds 3 and 4. As it is well known, conjugation is one of the most important properties 264 

increasing the conductivity of organic compounds. Thus, the obtained results are in consistent 265 

with the theory.  266 

Figure 2 also presents the influences of light intensity on I-V properties of the structures. 267 

Although all structures have sensitivity to the light, the devices obtained using 3 and 4 have 268 

reverse bias and forward bias photosensing properties. As seen from the figures, current 269 

values of Au/3/n-Si and Au/4/n-Si are nearly fixed after the series resistance curvatures in 270 

forward bias. The reverse and forward bias photosensing properties of the structures imply the 271 

photoconductivity of [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2] and [Ir(Cy2PNHCH2-C4H3S)(η5-272 

C5Me5)Cl2], compounds. There are many papers on the increase of reverse bias current with 273 

the increase of light intensity [39,43,44]. To the best our knowledge, there is no report on the 274 

forward bias photosensing properties of a device. The photovoltaic parameters of all 275 

structures determined under the light with 100 mW/cm2 illumination intensity called one sun 276 

are given in Table 6.  The table presents the superior photovoltaic properties of the junctions 277 

formed using compounds 3 and 4. By taking Figure 1 and Table 6 into account, one can easily 278 

say that the [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2] and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2] 279 

might be used in the fabrication reverse bias or forward bias photosensor applications.  280 

 281 

 282 

 283 

 284 
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3.  Conclusion 285 

In conclusion, new rhodium(I) and iridium(III) complexes containing furfuryl-2-(N-286 

dicyclohexylphosphino)methylamine and thiophene-2-(N-dicyclohexylphosphino)methyl 287 

amine ligands have been synthesized with high yield. All complexes were characterized using 288 

multi nuclear NMR, IR and microanalysis. The use of the new complexes for the reduction of 289 

the ketonic C=O bond of acetophenone derivatives under hydrogen transfer conditions was 290 

investigated. Surprisingly, [Rh(Cy2PNHCH2-C4H3O)(cod)Cl] was a more efficient catalyst in 291 

the transfer hydrogenation reaction than the other complexes. It was also found that these 292 

catalysts containing cyclohexyl moiety exhibited promising catalytic activity compared to 293 

those of containing phenyl moiety. The construction of the catalysts containing cyclohexyl 294 

moiety and their flexibility toward transfer hydrogenation make these encouraging systems to 295 

follow. In addition, organic-inorganic rectifying contacts were formed by spin coating of 296 

complexes on n-Si semiconductor and evaporating Au metal on thin films. The electrical 297 

properties of the devices were analyzed in dark and under a solar simulator with various 298 

illumination conditions and the results showed excellent reverse and forward bias 299 

photosensing behaviors for [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2] and [Ir(Cy2PNHCH2-300 

C4H3S)(η5-C5Me5)Cl2] complexes, which were attributed the photoconducting properties of 301 

the complexes. 302 

4.  Experimental 303 

4.1.   Materials and methods 304 

Unless otherwise stated, all reactions were carried out under an atmosphere of argon using 305 

conventional Schlenk glassware, solvents were dried using established procedures and 306 

distilled under argon immediately prior to use. Analytical grade and deuterated solvents were 307 

purchased from Merck. [Rh(µ-Cl)(cod)]2  and Ir(η5-C5Me5)(µ-Cl)Cl]2  are purchased from 308 

Fluka and were used as received. The IR spectra were recorded on a Mattson 1000 ATI 309 

UNICAM FT-IR spectrometer as KBr pellets. 1H (400.1 MHz), 13C NMR (100.6 MHz) and 310 
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31P-{1H} NMR spectra (162.0 MHz) were recorded on a Bruker AV400 spectrometer, with δ 311 

referenced to external TMS and 85% H3PO4 respectively. Elemental analysis was carried out 312 

on a Fisons EA 1108 CHNS-O instrument. Melting points were recorded by Gallenkamp 313 

Model apparatus with open capillaries. GC analyses were performed on a Shimadzu 2010 314 

Plus Gas Chromatograph equipped with capillary column (5% biphenyl, 95% 315 

dimethylsiloxane) (30m x 0.32mm x 0.25µm). The GC parameters for transfer hydrogenation 316 

of  ketones were as follows; initial temperature, 110 ºC; initial time, 1 min; solvent delay, 317 

4.48 min; temperature ramp 80 ºC/min; final temperature, 200 ºC, 19 min; final time, 21.13 318 

min; injector port temperature, 200 ºC; detector temperature, 200 ºC, injection volume, 2.0  319 

µL. 320 

4.2. General procedure for the transfer hydrogenation of ketones 321 

Typical procedure for the catalytic hydrogen transfer reaction: a solution of complexes 322 

[Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), 323 

[Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  (4) 324 

(0.005 mmol), NaOH (0.025 mmol) and the corresponding ketone (0.5 mmol) in degassed 325 

iso-PrOH (5 mL) were refluxed until the reactions were completed. After this period a sample 326 

of the reaction mixture was taken off, diluted with acetone and analyzed immediately by GC. 327 

Conversions obtained are related to the residual unreacted ketone. 328 

4.3. Synthesis of rhodium and iridium complexes 329 

4.3.1. [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1) 330 

A mixture of [Rh(µ-Cl)(cod)]2 (0.235 g, 0.48 mmol) and [Cy2PNHCH2-C4H3O]  (0.279 g, 331 

0.95 mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 45 min. The 332 

volume of the solvent was then reduced to 0.5 mL before addition of petroleum ether (10 333 

mL). The precipitated product was filtered and dried in vacuo yielding 1 as a yellow 334 

microcrystalline solid. Yield 0.472 g, 91.8 %, m.p. = 148-150°C. 1H NMR (400.1 MHz, 335 

CDCl3): δ  7.36 (d, 1H, 3J = 1.9 Hz, H-5), 6.32 (dd, 1H, 3J = 1.9 and 3.0 Hz, H-4), 6.19 (d, 336 
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1H, 3J = 3.0 Hz, H-3), 5.34 (br, 2H, CH of cod), 4.03 (dd, 2H, 3J = 5.7 and 5.8 Hz, CH2-), 337 

3.55 (br, 2H, CH of cod), 2.78 (dt, 1H, 3J(HH) = 5.7 and 2J(HP) = 12.6 Hz), NH-), 1.23-2.42 338 

(m, 30H, CH2 of cod + protons of cyclohexyl); 13C NMR (100.6 MHz, CDCl3): δ (26.43, 339 

27.14, 27.23, 27.27, 27.33, 27.86, 28.38, 28.81, 29.01, 29.05) (CH2 of cyclohexyl + cod), 340 

35.69 (d, 1J  = 25.2 Hz, CH of cyclohexyl), 40.49 (d, 2J = 11.1 Hz, CH2), 68.79 (d, 1J  = 15.1 341 

Hz, CH of cod (a)), 103.88 (d, 1J = 6.4 Hz, CH of cod (b)), 106.23 (C-3), 110.26 (C-4), 342 

141.86 (C-5), 153.80 (d, 3J = 5.0 Hz, C-2); assignment was based on the 1H-13C HETCOR, 343 

DEPT and 1H-1H COSY spectra; 31P-{1H} NMR (162.0 MHz, CDCl3): δ  71.98 (d, 1J (103Rh-344 

31P) = 156.5 Hz); IR, (KBr): υ 3320 (N-H), 1076 (P-N), cm-1. C25H40NOPRhCl (539.9 g/mol): 345 

calcd. C 55.61, H 7.47, N 2.59;  found  C 55.42, H 7.31, N 2.45.   346 

4.3.2. [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2) 347 

A mixture of [Rh(µ-Cl)(cod)]2 (0.208 g, 0.42 mmol) and [Cy2PNHCH2-C4H3S]  (0.261 g, 0.84 348 

mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 45 min. The volume 349 

of the solvent was then reduced to 0.5 mL before addition of petroleum ether (10 mL). The 350 

precipitated product was filtered and dried in vacuo yielding 2 as a yellow microcrystalline 351 

solid. Yield 0.418 g, 89.1 %, m.p. = 150-152 °C. 1H NMR (400.1 MHz, CDCl3): δ 7.23 (dd, 352 

1H, 3J = 1.2, 4.9 Hz, H-5), 6.94-6.97 (m, 2H, H-3 + H-4), 5.35 (br, 2H, CH of cod), 4.25 (dd, 353 

2H, 3J = 6.7 and 6.8 Hz, CH2-), 3.56 (br, 2H, CH of cod), 3.08 (dt, 1H, 3J HH) = 6.7 and 2J 354 

HP) = 12.8 Hz, NH), 1.39-2.46 (m, 30H, protons of cyclohexyl + CH2 of cod); 13C NMR 355 

(100.6 MHz, CDCl3): δ  (25.98, 26.43, 27.14, 27.23, 27.27, 27.33, 28.03, 28.40, 29.01, 29.10) 356 

(CH2 of  cyclohexyls + cod), 35.89 (d, 1J  = 25.2 Hz, CH of cyclohexyls), 42.75 (d, 2J = 9.1 357 

Hz, CH2-), 68.88 (d, 1J  = 13.1 Hz, CH of cod, (a)), 104.04 (d, 1J  = 9.1 Hz,  CH of cod, (b)), 358 

126.81, 124.55, 124.38 (C-3, C-4 and C-5), 144.40 (d, 3J  = 5.0 Hz, C-2); assignment was 359 

based on the 1H-13C HETCOR, DEPT and 1H-1H COSY spectra; 31P-{1H} NMR (162.0 MHz, 360 

CDCl3): δ 74.39 (d, 1J (103Rh-31P) = 154.1 Hz); IR, (KBr): υ 3322 (N-H), 849 (P-N) cm-1. 361 
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C25H40NSPRhCl (556.0 g/mol): calcd. C 54.00, H 7.25, N 2.52;  found  C 53.82, H 7.19, N 362 

2.41.   363 

4.3.3. [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) 364 

A mixture of [Ir(η5-C5Me5)(µ-Cl)Cl]2 (0.379 g, 0.48 mmol) and [Cy2PNHCH2-C4H3O]  (0.279 365 

g, 0.95 mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 1 h. The 366 

volume of the solvent was then reduced to 0.5 mL before addition of petroleum ether (20 367 

mL). The precipitated product was filtered and dried in vacuo yielding 3 as an orange 368 

microcrystalline solid. Yield 0.583 g, 88.6 %, m.p. = 189-191°C. 1H NMR (400.1 MHz, 369 

CDCl3) δ:  7.31 (d, 1H, 3J = 2.6 Hz H-5), 6.43 (dd, 1H, 3J = 1,7 and 2.6 Hz, H-4), 6.30 (d, 1H, 370 

3J = 1.7 Hz, H-3), 4.15 (dd, 2H, 3J = 6.2 and 6.4 Hz, CH2-), 3.30 (dt, 1H, 3J(HH) = 6.2 and 371 

2J(HP) = 12.2 Hz,  NH), 1.19-2.24 (m, 37H, protons of cyclohexyls + CH3 of Cp* (C5Me5);
 372 

13C NMR (100.6 MHz, CDCl3): δ  9.58 (C5Me5), 26.44, 27.20, 27.32, 27.41, 27.97, 28.37 373 

(CH2 of cyclohexyls), 39.07 (d, 1J = 34.2 Hz, CH of cyclohexyls), 41.48 (d, 2J  = 7.0 Hz,  374 

CH2-), 91.92 (d, 2J = 12.0 Hz, C5Me5), 106.53 (C-4), 110.40 (C-3), 141.21 (C-5), 154.51 (C-375 

2); assignment was based on the 1H-13C HETCOR, DEPT and 1H-1H COSY spectra; 31P-{1H} 376 

NMR (162.0 MHz, CDCl3): δ 43.98 (s); IR, (KBr): υ 3341 (N-H),  852 (P-N) cm-1; 377 

C27H43NOPIrCl2 (691.7 g/mol): calcd. C 46.88, H 6.27, N 2.02;  found  C 46.73, H 6.21, N 378 

1.98.   379 

4.3.4.  [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  4 380 

A mixture of [Ir(η5-C5Me5)(µ-Cl)Cl]2 (0.336 g, 0.42 mmol) and [Cy2PNHCH2-C4H3S]  (0.261 381 

g, 0.84 mmol) in 15 mL of tetrahydrofuran was stirred at room temperature for 1 h. The 382 

volume of the solvent was then reduced to 0.5 mL before addition of petroleum ether (10 383 

mL). The precipitated product was filtered and dried in vacuo yielding 4 as an orange 384 

microcrystalline solid. Yield 0.539 g, 90.3 %, m.p. = 169-171°C. 1H NMR (400.1 MHz, 385 

CDCl3): δ 7.15 (d, 1H, 3J = 2.0 Hz, H-5), 7.12 (dd, 1H, 3J  = 2.0 and 3.2 Hz, H-4), 6.93 (d, 386 

1H, 3J = 3.2 Hz, H-3), 4.36 (dd, 2H, 3J = 5.6 and 5.7 Hz, CH2-), 3.39 (dt, 1H, 3J HH) = 5.6 387 
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and 2J (HP)  = 12.8 Hz, NH,), 1.20-2.26 (m, 37H, protons of cyclohexyls + CH3 of Cp*); 13C 388 

NMR (100.6 MHz, CDCl3): δ  9.61 (C5Me5), (26.43, 27.21, 27.30, 27.40, 28.05, 28.42) (CH2- 389 

of cyclohexyls), 39.06 (d, 1J = 34.2 Hz, CH of cyclohexyls), 43.50 (d, 2J  = 8.0 Hz, CH2-), 390 

91.89 (d, 2J = 2.0 Hz, C5Me5), 124.45, 123.74 (C-4and C-5), 126.80 (C-3), 144.79 (C-2); 391 

assignment was based on the 1H-13C HETCOR and 1H-1H COSY spectra; 31P-{1H} NMR 392 

(162.0 MHz, CDCl3): δ 43.34 (s). IR, (KBr): υ 3332 (N-H), 1070 (P-N) cm-1; C27H43NSPIrCl2 393 

(707.8 g/mol): calcd. C 45.82, H 6.12, N 1.98;  found  C 45.71, H 6.03, N 1.85.   394 

4.4. Fabrication and characterization of Au/metal complex/n-Si devices 395 

An n-Si semiconductor with (100) orientation and 1-10 Ωcm resistivity was used in this study 396 

to fabricate Au/metal complex/n-Si devices. The semiconductor was cleaned by boiling in 397 

trichloroethylene and ultrasonically vibrating in acetone and methanol. The native oxide on n-398 

Si wafer was removed using 0.4 % HF:H2O solution. The wafer was dipped in deionized 399 

water and dried under N2 flow. Au ohmic back contact was formed by evaporation of Au on 400 

n-Si in high vacuum and annealing the n-Si/Au contact in N2 atmosphere at 420 °C. The thin 401 

films of metal complexes were formed on n-Si wafer by means of a SCS G3P-8 spin coater. 402 

Finally, Au metal was evaporated on the structure to obtain the front contact of the devices. 403 

Current-voltage (I-V) measurements were carried out using Keithley 2400 sourcemeter in dark 404 

and under a solar simulator with AM1.5 global filter for various light intensities. 405 
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27.03, 27.16, 27.28, 29.12, 29.30 (CH2- of cyclohexyls), 36.40 (d, CH- of cyclohexyls, 1J = 11.1 Hz), 

45.86 (d, CH2-, 
2J = 27.2 Hz), 105.56 (C-3), 110.09 (C-4), 141.27 (C-5), 156.23 (d, C-2, 3J= 3.0 Hz), 

assignment was based on the 1H-13C HETCOR, DEPT and 1H-1H COSY spectra; 31P-{1H} NMR 

(162.0 MHz, CDCl3): δ 61.61 (s, NH-P(Cy)2); IR, (KBr): υ 801 (P-N), 3257 (N-H) cm-1; C17H28NOP 

(293.39 g/mol): calcd. C 69.60, H 9.62, N 4.77; found C 69.49, H 9.54, N 4.61 %. Thiophene(N-

dicyclohexylphosphino)amine: Yield 0.261 g, 95.6 %. 1H NMR (400.1 Hz, CDCl3): δ 7.18 (d, 1H, H-

5, 3J  = 5.0 Hz), 6.90-6.94 (m, 2H, H-3 and H-4), 4.27 (dd, 2H, CH2-, 
3J(HP) = 6.4 and 3J(HH) = 6.3  
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2J = 4.0 Hz), 123.46  (C-3), 123.67 (C-5), 126.36 (C-4), 147.40 (C-2), assignment 

was based on the 1H-13C HETCOR, DEPT and 1H-1H COSY spectra; 31P-{1H} NMR (162.0 MHz, 
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Captions 

Scheme 1  Synthesis of the [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-

C4H3S)(cod)Cl], (2), [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-

C4H3S)(η5-C5Me5)Cl2],  (4) complexes (i) 1/2 equiv. [Rh(µ-Cl)(cod)]2, thf;  (ii) 1/2 equiv. 

[Ir(η5-C5Me5)(µ-Cl)Cl]2, thf.  

 

Figure 1 The 31P-{1H} NMR spectra of the complexes [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], 

(1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), [Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and 

[Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  (4). 

 

Figure 2   I-V measurements of Au/metal complex/n-Si structures fabricated using a) 1 b) 2 c) 

3 and d) 4 compounds. 
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Table 1 Transfer hydrogenation of acetophenone with iso-PrOH catalyzed [Rh(Cy2PNHCH2-

C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), [Ir(Cy2PNHCH2-C4H3O)(η5-

C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  (4). 

Entry          Catalyst             S/C/NaOH               Time               Conversion(%)[i] TOF(h-1)[k]

1             
2
3
4
5
6
7

8
9
10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26
27
28

1
1
1
1
1
1
1

2             
2
2
2
2
2
2

3             
3
3
3
3
3
3

4             
4
4
4
4             
4
4

100:1:5
100:1:5
100:1
100:1:5
100:1:5            
500:1:5
1000:1:5
      
100:1:5
100:1:5
100:1
100:1:5
100:1:5
500:1:5
1000:1:5

100:1:5
100:1:5
100:1
100:1:5
100:1:5
500:1:5
1000:1:5
       
100:1:5     
100:1:5     
100:1
100:1:5
100:1:5
500:1:5
1000:1:5

98
trace
trace
96
98
99
97

98
trace
trace
96
97
98
97

97
trace
trace
97
98
97
96

96
trace
trace
98
98
98
96

392
....
....
384
33
132
65

12
....
....
12
<5
<5
<5

12
....
....
12
<5
<5
<5

12
....
....
12
<5
<5
<5

15 min
24 h
24 h
15 min
3 h
45 min
1.5 h

8 h
24 h
24 h
8 h
30 h 
20 h 
40 h

8 h
24 h 
24 h
8 h
30 h
20 h
40 h

8 h
24 h
24 h
8 h
30 h
20 h 
40 h

[a]            
[b]
[c]
[d]
[e]
[f]
[g]

[a]
[b]            
[c]
[d]
[e]
[f]
[g]            

[a]
[b]
[c]
[d]
[e[
[f]
[g]

[a]            
[b]
[c]
[d]
[e]            
[f]
[g]

 

Reaction conditions: 
[a] Refluxing in iso-PrOH; acetophenone/Ru/NaOH, 100:1:5; [b] At room temperature; 

acetophenone/Ru/NaOH, 100:1:5; [c]  Refluxing in iso-PrOH; acetophenone/Ru, 100:1, in the absence 

of base; [d] Added 0.1 mL of H2O; [e] Refluxing the reaction in air; [f] Refluxing in iso-PrOH; 

acetophenone/Ru/NaOH, 500:1:5; [g] Refluxing in iso-PrOH; acetophenone/Ru/NaOH, 1000:1:5; [i] 

Determined by GC (three independent catalytic experiments); [k] Referred at the reaction time 

indicated in column; TOF= (mol product/mol Ru(II)Cat.)x h-1. 
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Table 2 Transfer hydrogenation results for substituted acetophenones with the catalyst 

systems, [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), 

[Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2], (4).[a] 

O

+

OH

OH

+

O
Cat 1-4

R R

Entry                      R                                  Time                       Conversion(%)[b]             TOF(h-1)[c]

Cat:Rh(I) complex 1

1                              4-F
2                              4-Cl
3                              4-Br            
4                              2-MeO
5                              4-MeO

10 min                                                          
10 min
15 min
25 min
20 min

96                                          
98 
98
97
96

Cat:Rh(I) complex 2

6                              4-F
7                              4-Cl
8                              4-Br            
9                              2-MeO
10                            4-MeO

6 h                                                         
6 h
8 h
12 h
10 h

96                                        
98 
97 
98
98

Cat:Ir(III) complex 3

11                            4-F
12                            4-Cl
13                            4-Br            
14                            2-MeO
15                            4-MeO

6 h                                                        
6 h
8 h
12 h
10 h

96                                        
95
95 
98
97

16
16
12
8
10

Cat:Ir(III) complex 4

16                            4-F
17                            4-Cl
18                            4-Br            
19                            2-MeO
20                            4-MeO

6 h                                                         
6 h
8 h
12 h
10 h

97                                        
97
95
97
96

576
588
392
233
288

16
16
12
8
10

16
16
12
8
10

[a]  Catalyst (0.005 mmol), substrate (0.5 mmol), iso-PrOH (5 mL), NaOH (0.025 mmol %), 82 °C, the 

concentration of acetophenone derivatives is 0.1 M; [b]  Purity of compounds is checked by 1H NMR 

and GC (three independent catalytic experiments), yields are based on methyl aryl ketone; [c]  TOF = 

(mol product/mol Cat.) x h-1. 
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Table 3 Transfer hydrogenation of various simple ketones with iso-PrOH catalyzed by 

[Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), 

[Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  

(4).[a] 

Entry                   Cat                Substrate                   Time              Conversion(%)[b]

O O
OO

a                                b                                   c                                      d

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

30 min
10 h
10 h
10 h
30 min
10 h
10 h
10 h
3/2 h
20 h
20h
20 h
3h
30 h
30 h
30h

96
98
97
98
96
98
95
97
99
97
98
97
99
96
99
95

a
b
c
d
a
b
c
d
a
b
c
d
a
b
c
d

 
[a] Refluxing in iso-PrOH; ketone/Ru/NaOH, 100:1:5; [b] Determined by GC (three independent 

catalytic experiments); [b] Purity of compounds is checked by 1H NMR and GC (three independent 

catalytic experiments), yields are based on methyl aryl ketone. 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 4  Transfer hydrogenation results for substituted alkyl phenyl ketones with the catalyst 

systems [Rh(Cy2PNHCH2-C4H3O)(cod)Cl], (1), [Rh(Cy2PNHCH2-C4H3S)(cod)Cl], (2), 

[Ir(Cy2PNHCH2-C4H3O)(η5-C5Me5)Cl2], (3) and [Ir(Cy2PNHCH2-C4H3S)(η5-C5Me5)Cl2],  

(4).[a] 

R

O

+

OH
R

OH

+

O
Cat 1-4

Entry                 R                                 Time                       Conversion(%)[b]           TOF(h-1)[c]

Cat:Rh(I) complex 1

1                     ethyl
2                     propyl
3                     iso-propyl            
4                     ter-butyl

20 min                                                          
30 min
40 min
1.5 h

97                                          
96
96
95

Cat:Rh(I) complex 2

5                      ethyl
6                      propyl
7                      iso-propyl
8                      ter-butyl

16 h                                                         
32 h
40 h
50 h

96                                        
98 
95 
97

Cat:Ir(III) complex 3

9                     ethyl
10                   propyl
11                   iso-propyl         
12                   ter-butyl

16 h                                                        
32 h
40 h
50 h

95                                        
97
98
97

<10
<5
<5
<5

Cat:Ir(III) complex 4

13                    ethyl
14                    propyl
15                    iso-propyl            
16                    ter-butyl

16 h                                                         
32 h
40 h
50 h

97                                        
97
97
96

291
192
144
63

<10
<5
<5
<5

<10
<5
<5
<5

 
[a] Catalyst (0.005 mmol), substrate (0.5 mmol), iso-PrOH (5 mL), NaOH (0.025 mmol %),  82 °C, 

respectively, the concentration of alkyl phenyl ketones is 0.1 M; [b] Purity of compounds is checked by 
1H NMR and GC (three independent catalytic experiments), yields are based on methyl aryl ketone; [c] 

TOF = (mol product/mol Cat.) x h-1. 
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Table 5  Electrical parameters of the devices obtained using metal complexes 

  lnI-V Norde 

Device  n φb φb RS 

Au/1/n-Si 1.65 0.79 0.83 17080 

Au/2/n-Si 1.67 0.80 0.83 165800 

Au/3/n-Si 1.82 0.76 0.85 313 

Au/4/n-Si 1.41 0.78 0.83 3518 
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Table 6 Photovoltaic parameters of the devices under the light with 100 mW/cm2 illumination 

intensity 

Device ISC (µA) VOC (mV) 

Au/1/n-Si 5.40 125 

Au/2/n-Si 0.16 95 

Au/3/n-Si 196 226 

Au/4/n-Si 114 206 
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