Accepted Manuscript

Copper and Zinc co-Catalyzed Synthesis of Imidazoles via the Activation of sp3 C–H and N-H Bonds

Dong Tang, Xiao-Long Li, Xin Guo, Ping Wu, Ji-Hui Li, Kai Wang, Huan-Wang Jing, Bao-Hua Chen

PII: S0040-4020(14)00575-4

DOI: 10.1016/j.tet.2014.04.054

Reference: TET 25504

To appear in: Tetrahedron

Received Date: 16 January 2014

Revised Date: 9 April 2014

Accepted Date: 17 April 2014

Please cite this article as: Tang D, Li X-L, Guo X, Wu P, Li J-H, Wang K, Jing H-W, Chen B-H, Copper and Zinc co-Catalyzed Synthesis of Imidazoles via the Activation of sp3 C-H and N-H Bonds, *Tetrahedron* (2014), doi: 10.1016/j.tet.2014.04.054.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Copper and Zinc co-Catalyzed Synthesis of Imidazoles via the Activation of sp3 C–H and N-H Bonds

Leave this area blank for abstract info.

Dong Tang, Xiao-Long Li, Xin Guo, Ping Wu, Ji-Hui Li, Kai Wang, Huan-Wang Jing, and Bao-Hua Chen^{*} a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu Lanzhou, 730000, P. R. China

b Key Laboratoryof Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou, 730000, P. R. China

 R^{1} R^d H H OPPHen, LiBr,DCB

Tetrahedron journal homepage: www.elsevier.com

Copper and Zinc co-Catalyzed Synthesis of Imidazoles via the Activation of sp3 C–H and N-H Bonds

Dong Tang ^{a,b}, Xiao-Long Li^{a,b}, Xin Guo^{a,b}, Ping Wu^{a,b}, Ji-Hui Li^{a,b}, Kai Wang^{a,b}, Huan-Wang Jing^{a,b}, and Bao-Hua Chen ^{a,b,*}

^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu Lanzhou, 730000, P. R. China ^b Key Laboratoryof Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou, 730000, P. R. China

ARTICLE INFO

ABSTRACT

An efficient and facile approach to synthesize imidazoles from amidines and arylketone via oxidative coupling of sp^3 C–H bond and N-H bond is reported. This strategy exhibits high performance in terms of regionselectivity with moderate to high yields by using easily available materials, and provides an alternative method to synthesize multi-substituted imidazole skeletons.

2014 Elsevier Ltd. All rights reserved.

- Article history: Received Received in revised form Accepted Available online
- Keywords: imidazoles amidines cycloaddition reaction oxidative coupling C-N bond formation

1. Introduction

The imidazole ring, as a privileged scaffold, represents an important class of heterocycle which has been frequently found in various natural products.¹ Moreover, imidazole derivatives possess many significant biological properties such as antiplasmodium,² anti-inflammatory,³ antifungal⁴ and antibacteria.⁵ Consequently, considerable efforts have been undertaken to develop efficient synthetic routes.⁶ For example, Wolkenberg and co-workers introduced the construction of imidazoles from aldehydes and 1,2-diketones under microwave irradiation.⁷ Xie et al. reported the synthesis of substituted imidazoles via intramolecular C-N bond-forming reactions.8 In addition, abromoketones and N-arylbenzamidines were also employed to afford multisubstituted imidazoles.⁹ In spite of many methodologies have been already described, most of them needed complex reagents or suffer from some other drawbacks. Thus, there is still an indispensable challenge to generate imidazoles from easily available starting materials.

a) our previous work ¹⁰

^{*} Corresponding author. Fax: (+86) 931-8912582 E-mail: chbh@lzu.edu.cn (B. -H. Chen).

b) this work

Scheme 1. Strategies for the Synthesis of imidazoles in our group.

In the past two years, we had reported copper-catalyzed [3+2] cycloaddition reaction to synthesize multisubstituted imidazoles, and iron(III)-catalyzed synthesis of 1,2,4-trisubstituted imidazoles through the reactions of amidines and aldehydes, as shown in Scheme 1.¹⁰ Recently, the Hajra group reported the synthesis of imidazo[1,2-a]pyridines from 2-aminopyridines and ketones, respectively.¹¹ Encouraged by previous works, we aim to synthesize imidazoles by using easy-to-get reagents under mild conditions. Hence, we develop a copper and zinc co-catalyzed transformation for the synthesis of imidazoles, starting from amidines and arylketones.

2. Results and discussion

To evaluate the feasibility of our strategy, we initiated our studies by examining N-phenylbenzamidine (1a) and acetophenone (2a) as a model reaction, which was carried out in the presence of 1.10-phenanthroline (*o*-phen) over co-catalysts of

Tetrahedron

18 ^{c, d, e}

19^{c, d, e}

2		T	etrahedron					
Table 1. Optimization of the Reaction conditions EPTED MANUSCRIPT								
Ta	o catalyst, additive solvent							
entry	catalyst	ligand	additive	solvent	yield (%) ^b			
1	Cu(OAc) ₂ , ZnI ₂	o-Phen		DCB	48			
2	CuCl ₂ , ZnI ₂	o-Phen		DCB	47			
3	CuI, ZnI ₂	o-Phen		DCB	47			
4	CuBr, ZnI ₂	o-Phen		DCB	44			
5	CuSO ₄ , ZnI ₂	o-Phen		DCB	43			
6 ^c	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr	DCB	59			
7 ^{c, d}	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr, aniline	DCB	66			
8 ^{c, d}	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr, aniline	DMSO	NR			
9 ^{c, d}	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr, aniline	DMF	NR			
10 ^{c, d}	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr, aniline	Dioxane	trace			
11 ^{c, d}	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr, aniline	Toluene	20			
12 ^{c, d, e}	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr, aniline	DCB	79			
13 ^{c, d, e}	Cu(OAc) ₂ , ZnI ₂		LiBr, aniline	DCB	52			
14 ^{c, d, e}	Cu(OAc) ₂	o-Phen	LiBr, aniline	DCB	trace			
15 ^{c, e}	Cu(OAc) ₂ , ZnI ₂		LiBr	DCB	44			
16 ^{c, d, e}	ZnI_2	o-Phen	LiBr, aniline	DCB	trace			
17 ^{c, d, e, f}	Cu(OAc) ₂ , ZnI ₂	o-Phen	LiBr. aniline	DCB	trace			

^a Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), catalyst (10 mol %), o-Phen (20 mol %), solvent (2 mL), 120 °C, 6 h under air.

o-Phen

o-Phen

LiBr, aniline

LiBr, aniline

DCB

DCB

^b Isolated yield based on 2a.

^c LiBr (3 equiv).

^d aniline (5 mol %).

^e The ratio of **1a** and **2a**: **1a** (0.24 mmol)/**2a** = 1.2:1.

f under the nitrogen atomosphere.

 $Cu(OAc)_2$ and ZnI_2 in 1,2-dichlorobenzene (DCB) under air at 120 °C for 6 h, and the desired product was isolated in 48% yield

Cu(OAc)₂, ZnBr₂

Cu(OAc)2, TfOH

(Table 1, entry 1). Various Cu sources, including CuCl₂, CuI, CuBr and CuSO₄, showed the similar catalytic activities (Table 1, entries 2-5). To our surprise, with 3 equiv of LiBr added, a 59% yield of product was obtained (Table 1, entry 6), which is probably serves as a desiccant due to its highly hygroscopic property. ¹² In addition, when amidine **1a** with a trace amount of aniline impurity was employed, higher result was received, and further study indicated that a catalytic amount of aniline also played an important role in promoting this reaction (Table 1, entry 7), which is probably, as a ligand, assists some rearrangement processes in the reaction transformation. ¹³ The investigation of solvents effect suggested that DCB was superior to dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), dioxane or toluene (Table 1, entries 8-11). Moreover, raising the ratio of 1a/2a to 1.2:1, the product was obtained in 79% yield (Table 1, entry 12). Furthermore, controlled experiments for this reaction confirmed that each of ZnI₂, Cu(OAc)₂, o-phen, oxygen and aniline was essentially needed for this transformation. (Table 1, entries 13-17). Otherwise, other Lewis and Bronsted acids, such as ZnBr₂ and trifluoromethanesulfonic acid (TfOH), were

also tested, and no better results were observed (Table 1, entries 18-19).

33

NR

Table 2. Reactions of Acetophenone (2a) with Various Substituted Amidines^a 10

	$ \begin{array}{c} \overset{NH}{\underset{\mathcal{I}}{\overset{I}{\overset{I}}}} + & \overset{O}{\underset{Za}{\overset{I}{\overset{Cu}{\overset{O}{\overset{Cu}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{O}}{$		\bigcirc
entry	$\mathbf{R}^1, \mathbf{R}^2$	product	yield (%) ^b
1	4-Me, H, 1b	3b	81
2	4-Cl, H, 1c	3c	77
3	2-ethyl, H, 1d	3d	88
4	3-Cl,H, 1e	3e	72
5	4-OMe, H, 1f	3f	84
6	H , 2-Cl, 1g	3g	86
7	H, 4-CF ₃ , 1h	3h	67

4-Me, 4-OMe, 1i

^a Unless otherwise indicated, reactions were carried out with **1** (0.24 mmol), **2a** (0.2 mmol), Cu(OAc)₂ (10 mol %), ZnI₂ (10 mol %), *o*-phen (20 mol %), aniline (5 mol %), LiBr (3 equiv), DCB (2 mL), the ratio of **1**:**2a**= 1.2:1, 120 °C, 6 h, under air.

3i

^b Isolated yield based on 2a.

With the optimized conditions in hand, various amidines 1 and acetophenone (2a) were examined to establish the scope and limitation of this reaction, and the results were presented in Table 2. The catalytic system was applicable for 1b-1j providing the corresponding products 3b-3j in 72-88% yields (Table 2, entries 1-9). However, the electron-deficient group trifluoromethyl reduced the yields apparently for 6 h (Table 2, entry 7).

To further investigate the reaction scope, a number of arylketone derivatives (2b-2m) were employed to react with Nphenylbenzamidine (1a), as shown in Table 3. To our delight, regardless of the electron-withdrawing or -donating groups in the aryl ring, the reactions of arylketones proceeded smoothly and provided moderate to good yields. Notably, the substrates with electron-withdrawing groups were utilized, and the corresponding products were obtained in good yields (Table 3, enties 9 and 10), and the ones with electron-donating groups in the meta-position could offer better results (Table 3, enties 5 and 7). Additionally, the substrates with bulky aromatic groups, such as 1-(5-methoxynaphthalen-2-yl)ethanone (2l) and 1-(naphthalen-2-yl)ethanone (2m), were also tolerated and produced imidazoles 3u, 3v in 83% and 84% yield, respectively (Table 3, enties 11 and 12). Moreover, this strategy was performed well for the synthesis of tetrasubstituted imidazoles (Table 3, entry 13).

 Table 3 Reactions of Acetophenone (2a) with Various

 Substituted Amidines ^a

	+ R ^J o-Phen ,LiBr,DU	св (
entry	2 R ³	product	yield (%) ^b
1	4-F, 2b	3k	72
2	2-F, 2c	31	68
3	3-CF ₃ , 2d	3m	73
4	3,4,5-OMe, 2e	3n	76
5	3-OMe, 2f	30	82
6	2-Me, 2g	3р	77
7	3-Me, 2h	3q	81
8	4-Me, 2i	3r	70
9	4-Br, 2 j	3s	81
10	4-Cl, 2k	3t	80
11	O II	3u	83
	OMe 21		

3. Conclusion

In summary, an efficient copper and zinc co-catalyzed method to synthesize multisubstituted imidazoles from amidines and arylketones was developed. In the synthetic protocol, easily available materials were employed to access

^a Unless otherwise indicated, reactions were carried out with **1** (0.24 mmol), **2a** (0.2 mmol), Cu(OAc)₂ (10 mol %), ZnI₂ (10 mol %), *o*-phen (20 mol %), aniline (5 mol %), LiBr (3 equiv), DCB (2 mL), the ratio of **1:2a**= 1.2:1, 120 °C, 6 h, under air.

^b Isolated yield based on **2**

Scheme 2 The experiment of substrates with heteroaryl group.

Disappointingly, the desired products were not found when the substrates with substituents of amino and hydroxy such as 1-(4-amino-phenyl)ethanone and 1-(4-hydroxyphenyl)ethanone. In addition, alkylketones, such as cyclohexanone and butan-2-one, were not the suitable partners for the reaction. Moreover, the substrates with pyridine ring, such as 1-(pyridin-4-yl)ethanone and N-phenylnicotinamidine, could not be apply to this strategy (Scheme 2), which was probably due to the nitrogen on pyridine ring coordinating to the catalyst to effect formation of the intermediates.

Scheme 3 The control experiment of reaction intermediate.

To get further insight into our reaction, 1 equiv of a radical scavenger (TEMPO) was added to the catalyst system, and the yield did not reduce in our reaction system, which might rule out a radical process. In addition, when acetophenone conducted in absence of amidine under the optimized conditions, the α -halogenated product which maybe an important intermediate ⁹ was not observed, as shown in scheme 3. Recently, similar works had been reported to synthesize imidazoles through tandem imine formation-oxidative cyclization,^{11, 14} hence, we supposed that the amidines in equilibrium with enamines reacted with arylketones following an analogous catalyst process based on those results. Further studies including the investigation of mechanism and related transformations are undertaken in our laboratory.

a series of important imidazole skeletons in good yields with high regionselectivity. Moreover, the reaction, using air as oxidant, is economical, easy-to-operate and environmentally friendly.

4. Experimental section

Typical Procedure for the Preparation of multisubstituted imidazoles 3. Synthesis of 1,2,4-triphenyl-1Himidazole (3a): The reaction was carried out in a roundbottom sidearm flask (10 mL), 1a (0.24 mmol), 2a (0.2 mmol), Cu(OAc)₂ (10 mol %), ZnI₂ (10 mol %), aniline (5 mol %), 1,10-phenanthroline (20 mol %), LiBr (3.0 equiv), and DCB (2 mL) were added to the flask with a magnetic stirring bar at 120 °C under air. After 6 h stirring at this temperature, the flask was took out and cooled to room temperature. The mixture was filtered with ethyl acetate (3 \times 50mL), and the filtrate was concentrated under reduced pressure to distill ethyl acetate. Subsequently, the crude product with DCB was dried under heat gun, which was purified by silica gel further chromatography (petroleum/ethyl acetate = 10/1 as eluent) to obtain product **3a**. ¹H NMR and ¹³C NMR spectra were determined on 300 MHz and 75 MHz in CDCl₃. unknown products were further characterized by HRMS (TOF-ESI), the melting points of solid products (3u and 3v) were determined on a microscopic apparatus. The structures of the products (3a, 3b, 3c, 3f and 3i) were identified according to the literature.

1,2,4-triphenyl-1H-imidazole 3a: 0.2 mmol, 47 mg, 79%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 790–7.80 (dd, J = 8.2, 1.1 Hz, 2H), 7.45–7.42 (dd, J = 6.5, 3.2 Hz, 2H), 7.39–7.37 (dd, J = 4.3, 3.2 Hz, 3H), 7.34 –7.30 (m, 3H), 7.25–7.15 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 141.5, 138.3, 133.7, 130.1, 129.3, 128.6, 128.4, 128.3, 128.0, 128.0, 126.8, 125.6, 124.9, 118.4.

2,4-diphenyl-1-p-tolyl-1H-imidazole 3b: 0.2 mmol, 50 mg, 81%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.93–7.84 (m, 2H), 7.50–7.41 (m, 2H), 7.40–7.30 (m, 3H), 7.26–7.15 (m, 4H), 7.14–7.06 (ddd, J = 9.6, 7.3, 0.8 Hz, 4H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 141.4, 138.0, 135.8, 133.8, 130.3, 129.9, 128.6, 128.4, 128.2, 128.0, 126.8, 125.4, 124.9, 118.5, 21.0.

1-(4-chlorophenyl)-2,4-diphenyl-1H-imidazole 3c: 0.2 mmol, 51 mg, 77%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.85 (m, 2H), 7.44–7.39(m, 2H), 7.37–7.30 (m, 4H), 7.29–7.19 (m, 5H), 7.13–7.09 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 141.8, 136.8, 133.8, 133.5, 129.9, 129.5, 128.7, 128.5, 128.2, 127.0, 126.9, 124.9, 118.1.

1-(2-ethylphenyl)-2,4-diphenyl-1H-imidazole 3d: 0.2 mmol, 57 mg, 88%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.93–7.90 (dd, J = 5.2, 3.4 Hz, 2H), 7.49–7.45 (dd, J = 6.6, 3.3 Hz, 2H), 7.41–7.35 (dd, J = 10.3, 4.8 Hz, 3H), 7.34 – 7.29 (m, 2H), 7.28 – 7.22 (m, 3H), 7.22–7.16 (tt, J = 5.7, 2.6 Hz, 3H), 2.37–2.26 (ddd, J = 15.0, 12.1, 7.5 Hz, 2H), 0.99–0.94 (t, J = 7.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.2, 141.3, 140.6, 137.1, 133.8, 130.3, 129.4, 129.3, 128.5, 128.2, 128.1, 127.7, 126.8, 124.7, 118.9, 23.6, 13.9.

1-(3-chlorophenyl)-2,4-diphenyl-1H-imidazole 3e: 0.2 mmol, 48 mg, 72%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.90–7.835 (m, 2H), 7.46–7.40 (m, 2H), 7.38–7.33 (dd, *J* = 9.2, 6.1 Hz, 3H), 7.31–7.21 (m, 7H), 7.05–7.01 (ddd, *J* = 7.8, 2.0, 1.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 141.7, 136.8, 133.8, 133.5, 129.7, 129.5, 128.7, 128.5, 128.2, 127.0, 126.9, 124.9, 118.1.

1-(4-methoxyphenyl)-2,4-diphenyl-1H-imidazole 3f: 0.2 mmol, 55 mg, 84%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.85 (m, 2H), 7.47–7.44 (m, 2H), 7.40–7.34 (dt, *J* = 7.8, 0.9 Hz, 3H), 7.26–7.19 (m, 4H), 7.13–7.08 (m, 2H), 6.87–6.83 (m, 2H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 146.9, 141.2, 133.8, 131.2, 130.2, 128.5, 128.4, 128.2, 128.0, 126.9, 126.8, 124.9, 118.8, 114.4, 55.3; HRMS (ESI) calcd for C₂₂H₁₉N₂O (M + H)⁺ 327.1492, found 327.1490.

2-(2-chlorophenyl)-1,4-diphenyl-1H-imidazole 3g: 0.2 mmol, 57 mg, 86%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.87 (m, 1H), 7.55–7.49 (m, 1H), 7.40–7.34 (t, *J* = 7.6 Hz, 1H), 7.30–7.20 (m, 3H), 7.16–7.10 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 141.6, 137.6, 134.2, 133.6, 132.5, 130.5, 130.3, 129.5, 129.0, 128.4, 127.6, 126.9, 126.6, 124.9, 124.5, 124.4, 116.8.

1,4-diphenyl-2-(4-(trifluoromethyl)phenyl)-1H-

imidazole 3h: 0.2 mmol, 49 mg, 67%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.90– 7.86 (d, J = 7.4 Hz, 2H), 7.58– 7.54 (d, J = 8.4 Hz, 2H), 7.51–7.47 (d, J = 8.4 Hz, 2H), 7.45 – 7.36 (m, 6H), 7.30 – 7.21 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 145.2, 142.1, 138.0, 133.6, 133.5, 131.3, 129.7, 128.7, 128.6, 128.5, 127.2, 125.8, 125.1, 125.1, 125.0, 125.0, 119.9, 119.3; HRMS (ESI) calcd for C₂₂H₁₆F₃N₂ (M + H)⁺ 365.1260, found 365.1263.

2-(4-methoxyphenyl)-4-phenyl-1-p-tolyl-1H-imidazole 3i: 0.2 mmol, 56 mg, 83%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.85 (m, 2H), 7.40–7.34 (ddd, J = 8.3, 5.2, 1.6 Hz, 5H), 7.25–7.15 (ddd, J = 7.1, 6.1, 1.2 Hz, 1H), 7.14–7.07 (dt, J = 8.3, 4.7 Hz, 4H), 6.80–6.724 (m, 2H), 3.71 (s, 3H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 146.8, 141.1, 137.9, 135.9, 133.9, 123.0, 129.9, 128.4, 126.7, 125.5, 124.8, 122.9, 118.1, 113.5, 55.0, 21.0.

1,4-diphenyl-2-p-tolyl-1H-imidazole 3j: 0.2 mmol, 48 mg, 77%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.49–7.44 (m, 2H), 7.00–6.85 (m, 8H), 6.83–6.73(m, 3H), 6.63–6.60 (d, *J* = 8.4 Hz, 2H), 1.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 141.4, 138.4, 138.1, 133.8, 129.2, 128.7, 128.5, 128.4, 127.9, 127.3, 126.7, 125.6, 124.9, 118.2, 21.1.

4-(4-fluorophenyl)-1,2-diphenyl-1H-imidazole 3k: 0.2 mmol, 45 mg, 72%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.79 (m, 2H), 7.47–7.39 (m, 2H), 7.37–7.34 (dd, *J* = 5.1, 1.9 Hz, 4H), 7.27–7.17 (m, 5H), 7.10–7.03 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.6, 160.3, 146.9, 140.7, 138.2, 130.1, 130.0, 130.0, 129.4, 128.6, 128.4, 128.1, 126.6, 126.5, 125.7, 118.1, 115.5, 115.2; HRMS (ESI) calcd for C₂₁H₁₆FN₂ (M + H)⁺ 315.1292, found 315.1295.

4-(2-fluorophenyl)-1,2-diphenyl-1H-imidazole 31: 0.2 mmol, 43 mg, 68%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.39–8.33 (ddd, J = 7.7, 3.9, 2.5 Hz, 1H), 7.66–7.63 (d, J = 4.0 Hz, 1H), 7.50–7.43 (m, 2H), 7.40–7.33 (m, 3H), 7.29–7.20 (m, 7H), 7.13–7.04 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 146.9, 141.2, 133.8, 131.2, 130.2, 128.5, 128.4, 128.2, 128.0, 126.9, 126.8, 124.9, 118.8, 114.4, 55.3; HRMS (ESI) calcd for C₂₁H₁₆FN₂ (M + H)⁺ 315.1292, found 315.1294.

1,2-diphenyl-4-(3-(trifluoromethyl)phenyl)-1H-

imidazole 3m: 0.2 mmol, 53 mg, 73%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.17 (s, 1H), 8.09 – 8.02(m, 1H), 7.52–7.42 (m, 5H), 7.42–7.34 (m, 3H), 7.29–7.21 (ddd, J = 9.7, 3.9, 2.5 Hz, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 147.3,

140.3, 138.2, 134.7, 130.0, 129.5, 129.0, 128.8, 128.6, 128.3, 128.2, 128.0, 125.7, 123.42, 123.37, 121.9, 121.7, 121.6, 119.1; HRMS (ESI) calcd for $C_{22}H_{16}F_3N_2$ (M + H)⁺ 365.1260, found 365.1263.

1,2-diphenyl-4-(3,4,5-trimethoxyphenyl)-1H-

imidazole 3n: 0.2 mmol, 59 mg, 76%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.49–7.41 (m, 3H), 7.41–7.36 (dt, *J* = 4.1, 2.2 Hz, 3H), 7.29–7.22 (m, 5H), 7.14 (s, 2H), 3.93 (s, 6H), 3.88(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 153.3, 146.7, 141.4, 138.2, 137.2, 123.0, 129.5, 129.3, 128.7, 128.4, 128.1, 125.6, 118.2, 102.1, 60.8, 56.0; HRMS (ESI) calcd for C₂₄H₂₃N₂O₃ (M + H)⁺ 387.1703, found 387.1705.

4-(3-methoxyphenyl)-1,2-diphenyl-1H-imidazole 3o: 0.2 mmol, 53 mg, 82%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.54–7.50 (m, 1H), 7.47–7.41 (ddd, *J* = 4.1, 2.0, 0.9 Hz, 3H), 7.41–7.39 (d, *J* = 1.0 Hz, 1H), 7.37–7.31 (m, 3H), 7.31 – 7.26 (m, 1H), 7.26–7.18 (m, 5H), 6.85–6.78 (ddd, *J* = 8.2, 2.3, 1.0 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 146.7, 141.4, 138.2, 135.2, 130.1, 129.4, 129.3, 128.6, 128.3, 128.0, 125.6, 118.6, 117.4, 113.0, 110.0, 55.1; HRMS (ESI) calcd for C₂₂H₁₉N₂O (M + H)⁺ 327.1492, found 327.1490.

1,2-diphenyl-4-o-tolyl-1H-imidazole 3p: 0.2 mmol, 48 mg, 77%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.02–7.98 (d, *J* = 7.8 Hz, 1H), 7.50–7.44 (m, 2H), 7.40–7.35 (dd, *J* = 6.9, 2.5 Hz, 3H), 7.30–7.17 (m, 9H), 2.56 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 145.9, 141.0, 138.4, 134.9, 133.1, 130.7, 130.2, 129.4, 128.7, 128.6, 128.3, 128.1, 128.0, 126.9, 125.9, 125.8, 120.9, 21.8; HRMS (ESI) calcd for C₂₂H₁₉N₂ (M + H)⁺ 311.1543, found 311.1541.

1,2-diphenyl-4-m-tolyl-1H-imidazole 3q: 0.2 mmol, 50 mg, 81%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.77 (s, 1H), 7.67–7.63 (d, J = 7.7 Hz, 1H), 7.46–7.42 (dd, J = 6.8, 2.8 Hz, 2H), 7.39 (s, 1H), 7.38–7.30 (m, 3H), 7.30–7.16 (m, 6H), 7.09–7.04 (d, J = 7.5 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.7, 141.7, 138.3, 138.0, 133.6, 130.2, 129.3, 128.7, 128.3, 128.26, 128.0, 127.97, 127.7, 122.0, 118.5, 118.4, 21.4; HRMS (ESI) calcd for C₂₂H₁₉N₂ (M + H)⁺ 311.1543, found 311.1539.

1,2-diphenyl-4-p-tolyl-1H-imidazole 3r: 0.2 mmol, 43 mg, 70%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.80–7.76 (d, *J* = 8.1 Hz, 2H), 7.47–7.41 (m, 2H), 7.38–7.32 (m, 4H), 7.25–7.17 (m, 7H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.7, 141.7, 138.4, 136.5, 131.0, 130.3, 129.3, 129.2, 128.7, 128.3, 128.1, 128.0, 125.7, 124.9, 118.0, 21.2.

4-(4-bromophenyl)-1,2-diphenyl-1H-imidazole 3s: 0.2 mmol, 61 mg, 81%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.77–7.70 (m, 2H), 7.50–7.44 (m, 2H), 7.44–7.39 (m, 2H), 7.39–7.31 (m, 4H), 7.25–7.16 (ddt, J = 6.0, 2.5, 2.1 Hz, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 147.0, 140.4, 138.1, 132.8, 131.5, 129.9, 129.4, 128.6, 128.4, 128.1, 128.1, 126.4, 125.6, 120.4, 118.6.

4-(4-chlorophenyl)-1,2-diphenyl-1H-imidazole 3t: 0.2 mmol, 53 mg, 80%; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.85–7.76 (m, 2H), 7.45–7.40 (m, 2H), 7.38–7.28 (m, 6H), 7.26–7.17 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 147.0, 140.5, 138.1, 132.3, 130.0, 129.4, 128.6, 128.4, 128.1, 128.1, 126.1, 125.6, 118.5.

4-(5-methoxynaphthalen-2-yl)-1,2-diphenyl-1Himidazole 3u: 0.2 mmol, 62 mg, 83%; yellow solid; mp 188–191 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.37 (s, 1H), 7.94–7.88 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.81–7.72 (dd, *J* = 13.0, 8.6 Hz, 2H), 7.52–7.44 (m, 3H), 7.40–7.35 (m, 3H), 7.30– 7.21 (dtd, *J* = 6.2, 3.3, 1.2 Hz, 5H), 7.16–7.11 (m, 2H), 3.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.4, 147.0, 141.7, 138.4, 133.7, 130.2, 129.6, 129.4, 129.2, 129.1, 128.8, 128.4, 128.1, 128.1, 126.9, 125.7, 124.2, 123.1, 118.8, 118.4, 105.8, 55.2; HRMS (ESI) calcd for C₂₆H₂₁N₂O (M + H)⁺ 377.1648, found 377.1651.

4-(naphthalen-2-yl)-1,2-diphenyl-1H-imidazole 3v: 0.2 mmol, 58 mg, 84%; yellow solid; mp 202–203 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.45 (s, 1H), 7.93–7.81 (m, 3H), 7.54 (s, 1H), 7.51–7.34 (m, 7H), 7.31–7.20 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 147.2, 141.6, 138.4, 133.8, 132.7, 131.1, 130.2, 129.4, 129.0, 128.8, 128.5, 128.2, 128.1, 127.6, 126.1, 126.0, 125.8, 125.4, 123.6, 123.2, 119.0; HRMS (ESI) calcd for C₂₅H₁₉N₂ (M + H)⁺ 347.1543, found 347.1545.

5-methyl-1,2-diphenyl-4-p-tolyl-1H-imidazole 3x: 0.2mmol, 25mg, 39%; white solid, mp 188–194 °C; 1H NMR (300 MHz, CDCl₃) δ 7.7–7.65 (d, J = 8.1 Hz, 2H), 7.47–7.43 (dt, J = 5.8, 2.9 Hz, 3H), 7.41 – 7.36 (m, 2H), 7.27 – 7.17(m, 7H), 2.39 (s, 3H), 2.25 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 145.9, 137.4, 136.0, 132.1, 130.6, 129.5, 129.0, 128.6, 128.3, 128.0, 127.9, 127.8, 127.1, 125.8, 120.1, 21.2, 11.1; HRMS (ESI) calcd for $C_{23}H_{21}N_2$ (M + H)⁺ 325.1699, found 325.1696.

5. Acknowledgements

We are grateful to the project sponsored by the National Natural Science Foundation of P. R. China (No. 21372102 and 21173106), the Project of National Science Foundation of Gansu Province P.R. China (No. 1208RJZA266).

6. References and notes

- (a)Maier, U. H.; Gundlach, H.; Zenk, M.H. Phytochemistry. 1998, 49, 1791. (b) Weinreb, S. M. Nat. Prod. Rep. 2007, 24, 931. (c) Jin, Z. Nat. Prod. Rep. 2011, 28, 1143. (d) Morinaka, B. I.; Pawlik, J. R.; Molinski, T. F. J. Org. Chem. 2010, 75, 2453. (e) Silva, V. G.; Silva, R. O.; Damasceno, S. R. B.; Carvalho, N. S.; Prudencio, R. S.; Aragao, K. S.; Guimaraes, M. A.; Campos, S. A.; Veras, L. M. C.; Godejohann, M.; Leite, J. R. S. A.; Barbosa, A. L. R.; Medeiros, J. V. R. J. Nat. Prod. 2013, 76, 1071.
- Vlahakis, J. Z.; Lazar, C.; Crandall, I. E.; Szarek, W. A. Bioorg. Med. Chem. 2010, 18, 6184.
- (a) Sathe, B. S.; Jagtap, V. A.; Deshmukh, S. D.; Jain, B. V. Int. J. Pharm. Pharm. Sci. 2011, 3, 220. (b) Lee, J. C.; Laydon, J. T.; Mcdonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; Mckulty, D.; Blumenthal, M.; Heys, J. R.; Landvatter, S. W.; Strikler, J. E. Mclaughlin, M. M.; Siemen, I. R.; Fisher, S. M.; Livi, G. P.; White, J. R.; Adams, J. L.; Young, P. R Nature 1994, 372, 739. (c) Adams, J. L.; Boehm, J. C.; Gallagher, T. F.; Kassis, S.; Webb, E. F.; Hall, R.; Sorenson, M.; Garigipati, R.; Griswoldc, D. E.; Lee, J. C. Bioorg. Med. Chem. Lett. 2001, 11, 2867.
- Koga, H.; Nanjoh, Y.; Makimura, K.; Tsuboi, R. Med. Mycol. 2009, 47, 640.
- Antolini, M.; Bozzoli, A.; Ghiron, C.; Kennedy, G.; Rossi, T.; Ursini, A. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1023.
- (a) Lavallo, V.; Grubbs, R H. Science 2009, 326, 559. (b) Frantz, D. E.; Morency, L.; Murry, A.; Soheili, J. A.; Grabowski, E. J. J.; Tillyer, R. D. Org. Lett. 2004, 6, 843.

(c) Nie, Y. B.; Wang, L.; Ding, M. W. J. Org. Chem. 2012, 77, 696.

- Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C. W. Org. Lett. 2004, 6, 1453.
- 8. Shen, H.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 11473.
- 9. (a) Wiglenda, T.; Gust, R. J. Med. Chem. 2007, 50, 1475.
 (b) Ung, G.; Bertrand, G. Chem. Eur. J. 2011, 17, 8269.
- (a) Tang, D.; Wu, P.; Liu, X.; Chen, Y. X.; Guo, S. B.; Chen, W. L.; Li, J. G.; Chen, B. H. J. Org. Chem. 2013, 78, 2746. (b) Liu, X.; Wang, D.; Chen, Y.; Tang, D.; Chen, B. Adv. Synth. Catal. 2013, 355, 2798. (c) Liu, X.; Wang, D.; Chen, B. Tetrahedron, 2013, 69, 9417.
- (a) Bagdi, A. K.; Rahman, M.; Santra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal. **2013**, 355, 1741. (b) Cai, Z. J.; Wang, S. Y.; Ji, S. J. Adv. Synth. Catal. **2013**, 355, 2686.
- 12. Rudrawar, S. Synlett, 2005, 7, 1197.

- (a) Peng, C.; Cheng, J.; Wang, J. Adv. Synth. Catal. 2008, 350, 2359. (b) Raman, N.; Ravichandran, S.; Thangaraja, C. J. Chem. Sci. 2004, 116, 215. (c) Newman, J. D. S.; MacCrehan, W. A. Langmuir, 2009, 25, 8993.
- (a) Mohan, D. C.; Donthiri, R. R.; Rao, S. N.; Adimurthy, S. Adv. Synth. Catal. 2013, 355, 2217. (b) Meng, X.; Yu, C.; Zhao, P. RSC Adv. 2014, 4, 8612.
- (a) Necdet, C.; Meliha, C. *Tetrahedron* 2010, 66, 2053. (b) Auricchio, S.; Truscello, A. M.; Lauria, M.; Meille, S. V. *Tetrahedron* 2012, 68, 7441. (c) Li, J.; Neuville, L. Org. Lett. 2013, 15, 1752.

7. Supplementary Material

¹H NMR and ¹³C NMR spectra of products associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.tet.xxxxxx.

Supporting Information

Copper and Zinc co-Catalyzed Synthesis of Imidazoles via the Activation of sp3 C–H and N-H Bonds

Dong Tang ^{a,b}, Xiao-Long Li^{a,b}, Xin Guo^{a,b}, Ping Wu^{a,b}, Ji-Hui Li^{a,b}, Kai Wang^{a,b}, Huan-Wang Jing^{a,b}, and Bao-Hua Chen ^{a,b,*}

^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu Lanzhou, 730000, P. R. China ^b Key Laboratoryof Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou, 730000, P. R. China

Fax: (+86) 931-8912582

E-mail: chbh@lzu.edu.cn (B. -H. Chen).

Table of Contents

ACCEPTED MANUSCRIPT

1.88 1.88 1.88 1.88

-2.38

