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Aryl Radical Cyclization: Regioselective
Synthesis of 6a,7,8,12b-Tetrahydro-6H-

chromeno[3,4-c]quinolin-6-one

K. C. Majumdar, P. Debnath, and S. K. Chottopadhyay

Department of Chemistry, University of Kalyani, Kalyani, West Bengal,

India

Abstract: Regioselective synthesis of 6a,7,8,12b-tetrahydro-6H-chromeno[3,4-

c]quinolin-6-ones 4 in good to excellent yields from 3-(2-bromoanilinomethyl)coumar-

ins 3 by aryl radical cyclization is described. The cyclization precursors 3 were

prepared by the reaction of 3-chloromethyl coumarin with different 2-bromoaniline.

Keywords: Aryl radical cyclization, coumarin derivatives, 6-endo trig, organotin

reagent, tetrahydroquinolines

INTRODUCTION

Substituted coumarin rings are common structural motifs in natural

products,[1] and they constitute attractive synthetic targets because of their

interesting biological and physiological activities.[2] In particular, those

coumarins fused to pyridines have been reported to possess antialergic,[3a]

antidiabetic,[3b] and analgesic properties.[3c] Several efforts have been made

to synthesize them.[4] Galariniotou et al.[5] reported the synthesis of some

pyrido coumarins and benzo-fused azacoumarins. Recently, aryl radical cycli-

zation has been developed as a potential method for preparing various types of

cyclic compounds via intramolecular carbon–carbon bond-forming

processes.[6] The synthesis of nitrogen heterocycles[7] using radical intermedi-

ates has become an invaluable tool in modern chemistry. In the interest of
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synthesizing new coumarin ring systems of biological interest, we have

prepared a variety of coumarins such as furocoumarin, pyranocoumarin,[8]

and spirocoumarin[9] by using a radical cyclization strategy. In continuation

of our work, we describe here the synthesis of quinoline fused coumarins

via aryl radical cyclization reaction of 3-(2-bromoanilinomethyl)coumarins.

RESULTS AND DISCUSSION

The requisite radical precursors 3-(2-bromoanilinomethyl)coumarins 3a– f

were prepared in 80–92% yields by treating 3-chloromethyl coumarin (1)

with different 2-bromoaniline (2a–f) in refluxing acetone in the presence of

anhydrous potassium carbonate for 5–6 h (Scheme 1). Compounds 3a–f

were characterized from their elemental analyses and spectroscopic data.

A preliminary attempt to effect the desired radical cyclization was carried

out with the substrate 3a. Compound 3a, when heated at 80 8C with nBu3SnH

in dry degassed toluene in the presence of a catalytic amount of azobisisobu-

tyronitrile (AIBN) for 2.5 h, afforded cyclized product tetrahydropyrido[3,4-

c]coumarin (4a) in 81% yield (Scheme 2). Other substrates 3b and 3c were

also similarly treated to give cyclic products 4b and 4c in 85% and 88%

yields, respectively. To extend the scope of this reaction, we also attempted

a similar radical reaction with 3-[2-bromo(N-methyl)anilinomethyl]coumar-

ins 3d, employing similar reaction conditions. Unfortunately, we were

unable to obtain any cyclized product because the starting material decom-

posed under the reaction condition. Changing the solvent (benzene) and

lowering the reaction temperature (50–60 8C) did not divert the reaction

away from the observed decomposition. However, changing the tin reagent

eliminated the decomposition of the starting material. The compound 3d

was heated at 60 8C in dry degassed toluene under a nitrogen atmosphere

with radical initiator AIBN, nBu3SnCl, and Na(CN)BH3 for 1 h. Isolation of

the product by flash chromatography furnished solid 4d in 74% yield.

Similarly, other substrates 3e and 3f gave 4e and 4f in 82% and 78% yields,

respectively (Scheme 2). The structure of the product 4 was readily elucidated

Scheme 1. Reagents and conditions: (i) dry acetone, anhyd, K2CO3, reflux, 5–6 h.
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from 1H NMR spectroscopy. Compound 4a exhibited one proton multiplet at d

3.18–3.22 and another one proton doublet at d 4.32 (J ¼ 5.6 Hz) due to ring

juncture protons. The stereochemistry of the ring juncture protons can be

surmised from the molecular model (Dreiding model), which showed a

strain-free cis[10] arrangement, and also from the small coupling constant

value (J ¼ 5.6 Hz) of the ring juncture protons of 4. The 13C NMR spectra

of 4a also supported the proposed structure. The mass spectrum of

compound showed a molecular ion peak at m/z ¼ 251 (Mþ).

The formation of the products 4 from 3 may be explained by the gen-

eration of aryl radical 5, which may undergo either a 5-exo trig or a 6-endo-

trig cyclization at the double bond of the pyrone ring of the coumarin

moiety. A 6-endo trig cyclization of radical 5 may produce the intermediate

radical 8, whereas 5-exo trig cyclization may give the spirocycle radical 6

(not isolated), followed by neophyl rearrangement[11] to radical intermediate

7. Abstraction of hydrogen by 8 from nBu3SnH may afford 4 (Scheme 3).

However, 5-exo cyclization with subsequent neophyl rearrangement is

unlikely with the present system. The stability and nonnucleophilicity[12]

of the intermediate bezylic radical due to excellent overlapping[13] of

p-orbital of radical center with the adjacent aromatic p-system might

prevent further attack to produce the intermediate cyclohexadienyl radical

7. The stabilization of the intermediate tertiary radical 8 by the adjacent

carbonyl group may also be responsible for the formation of 6-endo

products.

In conclusion, we have successfully described the nBu3SnH-mediated

mild and efficient synthesis of coumarin-annulated [6,6] fused nitrogen hetero-

cycles. The use of 2-bromoaniline provides easy access to tetrahydroquinoline

derivatives, which are of synthetic utility in organic synthesis.

Scheme 2. Reagents and conditions: (i) 00Bu3SnH, AIBN, toluene, 80 8C, 2–2.5 h; (ii)
00Bu3SnCl, Na(CN)BH3, AIBN, toluene, 60 8C, 1 h
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EXPERIMENTAL

Melting points were determined in open capillaries and are uncorrected. IR

spectra were recorded on a Perkin-Elmer L 120-000A spectrometer (gmax in

cm21) using samples as neat liquids, and solid samples were recorded

in KBr disks 1H NMR (300 MHz, 400 MHz, 500 MHz) and 13C NMR

(100 MHz, 125 MHz) spectra were recorded on Bruker DPX-300, Varian-

400, and Bruker DPX-500 spectrometers in CDCl3 (chemical shift in d)

with TMS as internal standard. Silica gel (60–120 mesh, Spectrochem,

India) was used for chromatographic separation. Silica gel G (E-Merck,

India) was used for thin-layer chromatography (TLC). Petroleum ether

refers to the fraction boiling between 60 8C and 80 8C.

General Procedure for the Preparation of 3-(2-

Bromoanilinomethyl)coumarins 3a–f

2-Bromoaniline 2a– f (5.15 mmol) and anhydrous potassium carbonate (2 g)

were added to a solution of 3-chloromethylcoumarin (1) (1 g, 5.15 mmol) in

dry acetone (100 mL), and the reaction mixture was refluxed for 5–6 h. The

reaction mixture was then cooled and filtered, and the solvent was removed.

The residual mass was extracted with CH2Cl2 (3 � 20 mL). The organic

layer was washed with water (3 � 20 mL) and finally with brine (20 mL).

After removal of the solvent, the residue was subjected to column

Scheme 3. Mechanism of the cyclization reaction.
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chromatography over silica gel. Elution of the column with 5% ethyl acetate in

petroleum ether afforded 3-(2-bromoanilinomethyl)coumarins 3a–f. All the

compounds were recrystalized from chloroform–methanol.

Data

3-[(2-Bromoanilino)methyl)]-2H-chromen-2-one (3a)

Yield: 82%; colorless solid; mp 105–106; IR (KBr): nmax ¼ 3413, 1714,

1601 cm21; 1H NMR (400 MHz, CDCl3): dH ¼ 4.40 (s, 2H, -NCH2), 4.97

(brs, 1H, NH), 6.54 (d, J ¼ 8.3 Hz, 1H, ArH), 6.61 (t, J ¼ 7.8 Hz, 1H,

ArH), 7.12 (t, J ¼ 8.6 Hz, 1H, ArH), 7.27–7.29 (m, 1H, ArH), 7.35

(d, J ¼ 8.3 Hz, 1H, ArH), 7.43–7.54 (m, 3H, ArH), 7.63 (s, 1H, vinylic H);
13C NMR (100 MHz, CDCl3): dc ¼ 43.2, 109.9, 111.5, 116.5, 118.7, 119.1,

124.5, 125.7, 127.8, 128.6, 131.2, 132.6, 138.2, 144.0, 153.1, 161.1; MS:

m/z ¼ 329, 331 (Mþ). Anal. calcd. for C16H12BrNO2: C, 58.20; H, 3.66; N,

4.24%. Found: C, 58.35; H, 3.59; N, 4.28%.

3-[(2-Bromo-4-methylanilino)methyl)]-2H-chromen-2-one (3b)

Yield: 88%; colorless solid; mp 122–123 8C; IR (KBr): nmax ¼ 3410, 1715,

1605 cm21; 1H NMR (400 MHz, CDCl3): dH ¼ 2.24 (s, 3H, ArCH3), 4.38

(s, 2H, -NCH2), 4.82 (brs, 1H, NH), 6.45 (d, J ¼ 8.3 Hz, 1H, ArH), 6.94

(d, J ¼ 2.5 Hz, 1H, ArH), 7.25–7.38 (m, 3H, ArH), 7.44 (dd, J ¼ 1.5,

7.8 Hz, 1H, ArH), 7.49–7.54 (m, 1H, ArH), 7.63 (s, 1H, vinylic H); MS:

m/z ¼ 343, 345 (Mþ). Anal. calcd. for C17H14BrNO2: C, 59.32; H, 4.10; N,

4.07%. Found: C, 59.15; H, 4.18; N, 4.10%.

3-[(2-Bromo-4-ethylanilino)methyl)]-2H-chromen-2-one (3c)

Yield: 80%; colorless solid; mp 98–99 8C; IR (KBr): nmax ¼ 3408, 1713,

1608 cm21; 1H NMR (400 MHz, CDCl3): dH ¼ 1.16 (t, J ¼ 7.5 Hz, 3H,

ArCH2CH3), 2.49 (q, J ¼ 7.5 Hz, 2H, ArCH2CH3), 4.36 (s, 2H, -NCH2),

4.80 (brs, 1H, NH), 6.46 (d, J ¼ 8.5 Hz, 1H, ArH), 6.94 (dd, J ¼ 2.0,

8.5 Hz, 1H, ArH), 7.23–7.35 (m, 3H, ArH), 7.42 (dd, J ¼ 1.5, 7.5 Hz, 1H,

ArH), 7.47–7.51 (m, 1H, ArH), 7.62 (s, 1H, vinylic H); MS: m/z ¼ 357,

359 (Mþ). Anal. calcd. for C18H16BrNO2: C, 60.35; H, 4.50; N, 3.91%.

Found: C, 60.42; H, 4.55; N, 4.02%.

3-[(2-Bromo-N-methylanilino)methyl)]-2H-chromen-2-one (3d)

Yield: 90%; viscous liquid; IR (KBr): nmax ¼ 1704, 1605 cm21; 1H NMR

(400 MHz, CDCl3): dH ¼ 2.79 (s, 3H, NCH3), 4.13 (s, 2H, -NCH2),

6.91 (t, J ¼ 7.2 Hz, 1H, ArH), 7.18 (d, J ¼ 7.4 Hz, 1H, ArH), 7.24
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(t, J ¼ 7.4 Hz, 2H, ArH), 7.31 (d, J ¼ 8.1 Hz, 1H, ArH), 7.46–7.51 (m, 2H,

ArH), 7.56 (d, J ¼ 7.6 Hz, 1H, ArH), 8.03 (s, 1H, vinylic H); 13C NMR

(100 MHz, CDCl3): dc ¼ 41.5, 54.7, 116.5, 119.5, 120.0, 122.0, 124.4,

124.8, 125.7, 127.8, 128.4, 130.9, 132.7, 133.9, 139.6, 152.9, 161.5; MS:

m/z ¼ 343, 345 (Mþ). Anal. calcd. for C17H14BrNO2: C, 59.32; H, 4.10; N,

4.07%. Found: C, 59.46; H, 4.13; N, 4.02%.

3-[(2-Bromo-4-dimethylanilino)methyl)]-2H-chromen-2-one (3e)

Yield: 92%; viscous liquid; IR (KBr): nmax ¼ 1717, 1608 cm21; 1H NMR

(500 MHz, CDCl3): dH ¼ 2.31 (s, 3H, ArCH3), 2.77 (s, 3H, -NCH3), 4.11

(s, 2H, -NCH2), 7.07–7.10 (m, 2H, ArH), 7.25–7.28 (m, 1H, ArH), 7.32

(d, J ¼ 8.3 Hz, 1H, ArH), 7.41 (s, 1H, ArH), 7.46–7.52 (m, 2H, ArH), 8.03

(s, 1H, vinylic H); MS: m/z ¼ 357, 359 (Mþ). Anal. calcd. for

C18H16BrNO2: C, 60.35; H, 4.50; N, 3.91%. Found: C, 60.56; H, 4.34; N,

3.95%.

3-[(2-Bromo-4-ethyl-N-methylanilino)methyl)]-2H-chromen-2-one (3f)

Yield: 87%; viscous liquid; IR (KBr): nmax ¼ 1710, 1606 cm21; 1H NMR

(500 MHz, CDCl3): dH ¼ 1.18 (t, J ¼ 7.1 Hz, 3H, ArCH2CH3), 2.55

(q, J ¼ 7.6 Hz, 2H, ArCH2CH3), 2.78 (s, 3H, NCH3), 4.11 (s, 2H, -NCH2),

7.08 (dd, J ¼ 1.9, 8.1 Hz, 1H, ArH), 7.12 (d, J ¼ 8.1 Hz, 1H, ArH), 7.25–

7.28 (m, 1H, ArH), 7.32 (d, J ¼ 7.8 Hz, 1H, ArH), 7.42 (d, J ¼ 1.7 Hz, 1H,

ArH), 7.47–7.52 (m, 2H, ArH), 8.04 (s, 1H, vinylic H); MS: m/z ¼ 371,

373 (Mþ). Anal. calcd. for C19H18BrNO2: C, 61.30; H, 4.87; N, 3.76%.

Found: C, 61.58; H, 4.99; N, 3.86%.

General Procedure for the Radical Cyclization of Compound 3a–f

nBu3SnH Procedure

nBu3SnH (0.12 mL, 0.33 mmol) was added dropwise under a nitrogen atmos-

phere to a magnectically stirred solution of 3(a–c) (0.30 mmol) and AIBN

(25 mg, 0.15 mmol) in dry toluene (5 mL). The reaction mixture was heated

at 80 8C for 2–2.5 h. After completion of the reaction, the solvent was

removed under reduced pressure. The residue was dissolved in CH2Cl2
(20 mL) and stirred with 10% KF solution (20 mL) for 1 h. The organic

phase was washed with water (3 � 10 mL) and brine (1 � 20 mL) and dried

(Na2SO4). The solvent was distilled off, and the crude solid was purified by

column chromatography over silica gel (230–400 mesh). Elution of the

column with petroleum ether–ethyl acetate (9:1) gave pure solids 4a–c.
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nBu3SnCl and Na(CN)BH3 Procedure

This procedure is the same as the procedure described previously except that
nBu3SnCl (1.5 equiv.) and Na(CN)BH3 (1.5 equiv.) were added in one portion

instead of nBu3SnH at the beginning to the reaction mixture of 3(d–f).

Data

6a,7,8,12a-tetrahydro-6H-chromeno[3,4-c]quinolin-6-one (4a).Yield: 81%;

colorless solid; mp 132–133 8C; IR (KBr): nmax ¼ 3390, 1745, 1604 cm21;
1H NMR (300 MHz, CDCl3): dH ¼ 3.18–3.22 (m, 1H, ring juncture H), 3.51

(dd, J ¼ 3.5, 11.9 Hz, 1H, -NCH2), 3.82 (dd, J ¼ 4.7, 11.9 Hz, 1H, -NCH2),

4.02 (brs, 1H, NH), 4.32 (d, J ¼ 5.6 Hz, 1H, ring juncture H), 6.52–6.61

(m, 2H, ArH), 6.81 (d, J ¼ 7.5 Hz, 1H, ArH), 7.00–7.08 (m, 2H, ArH), 7.16

(t, J ¼ 7.4 Hz, 1H, ArH), 7.29–7.34 (m, 2H, ArH); 13C NMR (125 MHz,

CDCl3): dc ¼ 37.4, 37.9, 40.5, 115.3, 117.6, 117.7, 117.8, 124.9, 125.9, 128.9,

129.2, 129.6, 130.0, 143.2, 150.9, 167.8; MS: m/z ¼ 251 (Mþ). Anal. calcd.

for C16H13NO2: C, 76.48; H, 5.21; N, 5.57%. Found: C, 76.77; H, 5.27; N, 5.48%.

11-Methyl-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]quinolin-6-one (4b).
Yield: 85%; colorless solid; mp 117–119 8C; IR (KBr): nmax ¼ 3394, 1746,

1617 cm21; 1H NMR (300 MHz, CDCl3): dH ¼ 2.13 (s, 3H, ArCH3),

3.15–3.20 (m, 1H, ring juncture H), 3.47 (dd, J ¼ 3.6, 12.0 Hz, 1H, -NCH2),

3.79 (dd, J ¼ 5.0, 12.0 Hz, 1H, -NCH2), 4.29 (d, J ¼ 5.6 Hz, 1H, ring

juncture H), 6.46 (d, J ¼ 8.1 Hz, 1H, ArH), 6.63 (s, 1H, ArH), 6.83

(d, J ¼ 7.0 Hz, 1H, ArH), 7.06 (d, J ¼ 7.9 Hz, 1H, ArH), 7.17–7.25 (m, 1H,

ArH), 7.30–7.34 (m, 2H, ArH); 13C NMR (125 MHz, CDCl3): dc ¼ 20.9,

37.5, 38.2, 40.6, 115.7, 117.7, 117.8, 124.9, 125.9, 127.2, 129.2, 129.7,

129.9, 130.0, 140.8, 150.9, 169.1; MS: m/z ¼ 265 (Mþ). Anal. calcd. for

C17H15NO2: C, 76.96; H, 5.70; N, 5.28%. Found: C, 76.88; H, 5.86; N, 5.31%.

11-Ethyl-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]quinolin-6-one (4c).

Yield: 88%; colorless solid; mp 161–163 8C; IR (KBr): nmax ¼ 3392, 1748,

1618 cm21; 1H NMR (400 MHz, CDCl3): dH ¼ 1.07 (t, J ¼ 7.6 Hz, 3H,

ArCH2CH3), 2.39 (q, J ¼ 7.5 Hz, 2H, ArCH2CH3), 3.16–3.20 (m, 1H, ring

juncture H), 3.48 (dd, J ¼ 3.0, 11.9 Hz, 1H, -NCH2), 3.76 (dd, J ¼ 4.6,

12.0 Hz, 1H, -NCH2), 3.89 (brs, 1H, NH), 4.30 (d, J ¼ 5.5 Hz, 1H, ring

juncture H), 6.48 (d, J ¼ 8.1 Hz, 1H, ArH), 6.65 (s, 1H, ArH), 6.87

(d, J ¼ 7.9 Hz, 1H, ArH), 7.05 (d, J ¼ 7.9 Hz, 1H, ArH), 7.17–7.25 (m, 1H,

ArH), 7.29–7.32 (m, 2H, ArH); MS: m/z ¼ 279 (Mþ). Anal. calcd. for

C18H17NO2: C, 77.40; H, 6.13; N, 5.01%. Found: C, 77.53; H, 6.18; N, 5.09%.

8-Methyl-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]quinolin-6-one (4d).

Yield: 74%; colorless solid; mp 144–145 8C; IR (KBr): nmax ¼ 1750,

1602 cm21; 1H NMR (400 MHz, CDCl3): dH ¼ 2.97 (s, 3H, -NCH3),
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3.28–3.32 (m, 1H, ring juncture H), 3.54 (dd, J ¼ 4.5, 11.4 Hz, 1H, NCH2),

3.70 (dd, J ¼ 5.2, 11.5 Hz, 1H, -NCH2), 4.33 (d, J ¼ 5.2 Hz, 1H, ring

juncture H), 6.59–6.65 (m, 2H, ArH), 6.78 (d, J ¼ 7.3 Hz, 1H, ArH), 7.06

(d, J ¼ 8.0 Hz, 1H, ArH), 7.13–7.19 (m, 2H, ArH), 7.27–7.33 (m, 2H,

ArH); MS: m/z ¼ 265 (Mþ). Anal. calcd. for C17H15NO2: C, 76.96; H,

5.70; N, 5.28%. Found: C, 77.03; H, 5.66; N, 5.23%.

8,11-Dimethyl-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]quinolin-6-one
(4e). Yield: 82%; colorless solid; mp 168–170 8C; IR (KBr): nmax ¼ 1765,

1613 cm21; 1H NMR (500 MHz, CDCl3): dH ¼ 2.30 (s, 3H, ArCH3), 2.95

(s, 3H, -NCH3), 3.26–3.30 (m, 1H, ring juncture H), 3.48 (dd, J ¼ 4.2,

11.7 Hz, 1H, -NCH2), 3.67 (dd, J ¼ 5.2, 11.9 Hz, 1H, -NCH2), 4.32

(d, J ¼ 5.3 Hz, 1H, ring juncture H), 6.55 (d, J ¼ 8.2 Hz, 1H, ArH), 6.61

(d, J ¼ 7.9 Hz, 1H, ArH), 7.01–7.12 (m, 2H, ArH), 7.17–7.22 (m, 1H, ArH),

7.27–7.31 (m, 2H, ArH); MS: m/z ¼ 279 (Mþ). Anal. calcd. for C18H17NO2:

C, 77.40; H, 6.13; N, 5.01%. Found: C, 77.62; H, 6.24; N, 5.04%.

11-Ethyl-8-methyl-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]quinolin-6-
one (4f). Yield: 78%; colorless solid; mp 141–143 8C; IR (KBr): nmax ¼ 1746,

1615 cm21; 1H NMR (500 MHz, CDCl3): dH ¼ 1.10 (t, J ¼ 7.5 Hz, 3H,

ArCH2CH3), 2.43 (q, J ¼ 7.5 Hz, 2H, ArCH2CH3), 2.93 (s, 3H, -NCH3),

3.30–3.34 (m, 1H, ring juncture H), 3.46 (dd, J ¼ 4.5, 11.4 Hz, 1H, -NCH2),

3.62 (dd, J ¼ 5.8, 11.4 Hz, 1H, -NCH2), 4.29 (d, J ¼ 5.6 Hz, 1H, ring

juncture H), 6.57 (d, J ¼ 8.3 Hz, 1H, ArH), 6.65 (d, J ¼ 8.6 Hz, 1H, ArH),

6.98 (dd, J ¼ 1.8, 8.3 Hz, 1H, ArH), 7.07 (d, J ¼ 8.0 Hz, 1H, ArH), 7.15–

7.19 (m, 1H, ArH), 7.24–7.33 (m, 2H, ArH); MS: m/z ¼ 293 (Mþ). Anal.

calcd. for C19H19NO2: C, 77.79; H, 6.53; N, 4.77%. Found: C, 77.89; H,

6.55; N, 4.86%.
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