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Abstract 
The development of probe molecules that 
can be used to investigate G protein-
coupled receptor (GPCR) pharmacology, 
trafficking and relationship with other 
GPCRs is an important and growing area of 
research. Here, we report the synthesis of 
analogs of the known selective serotonin 
(5-HT) 5-HT2C receptor (5-HT2CR) agonist WAY163909 which were designed to allow for the 
attachment of a second ligand, signaling or reporter molecules as well as immobilization agents 
to the parent molecule with the maintenance of agonist activity. This goal was accomplished by 
the synthesis of novel molecules in which sites a-d were modified and resulting compounds 
were analyzed pharmacologically in vitro.  

 

Keywords 
Serotonin, 5-HT2C receptor agonist, WAY163909 derivatives 

 
Introduction 
Serotonin (5-hydroxytryptamine, 5-HT) receptors are implicated in a wide variety of 
physiological functions in both the central and peripheral nervous systems. We are focused on 
the development of tool compounds to study two 5-HT GPCRs, the 5-HT2A receptor (5-HT2AR) 
and 5-HT2CR. These receptors exhibit an oppositional regulatory role over multiple behaviors 
such that selective 5-HT2AR antagonists and 5-HT2CR agonists exert similar, and synergistic 
effects, upon behavioral outcomes in preclinical studies.1-2 Furthermore, the 5-HT2AR and 5-
HT2CR are proposed to form and/or function within both homo- and/or heteromeric protein 
complexes.3-12 The functional and/or physiological impact of these types of multimeric receptors 
are not fully understood and the development of tool molecules to biochemically and/or 
pharmacologically distinguish between the types of oligomeric receptor complexes is an 
important goal. Thus, we have initiated a program to develop ligands capable of being linked to 
other molecules, including a second ligand, a reporter molecule (e.g., fluorescent dyes) or 
immobilization agents (e.g., biotin). To accomplish this goal, it is critical to identify locations on 
known 5-HT2R ligands that will allow for linking such groups without alteration of ligand binding 
and/or functional activity. Our initial paper reported the synthesis and in vitro pharmacology of a 
homobivalent 5-HT2AR antagonist.13 Here, we report the synthesis and structure-activity 
relationships (SAR) for derivatives of the selective 5-HT2CR agonist WAY163909 (1)1, 14-27 which 
can be used to attach tethers [e.g., polyethylene glycol (PEG)] to link these molecules to various 
other partners. Versions of the basic structure were synthesized in which locations around the 
molecule, sites a-d (2), were modified to determine the viability of these locations as points for 
the attachment of a necessary linker.  
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Results and Discussion 
The initial step was to identify a site on WAY163909 capable of modification without significant 
loss of activity. This work can present challenges as the derivatives not only must bind to the 5-
HT2CR orthosteric site but, for some studies, the ligands should also retain their agonist activity. 
The SAR data from the original work on these structures indicated that ring D (Figure 1 cpd 2) 
was rather insensitive to different sizes, so a synthetic plan was selected to allow for the 
synthesis of derivatives of ring D at a late stage in the route.27 The synthetic approach taken 
was a modified version of the published route (Scheme 1)28 selected because ring D is formed 
late in the synthesis by a Fischer indole reaction, using a ketone as its source. Given the variety 
of ketones available, this provides access to a number of different substituted D rings. For the 
first example, 1-(benzyloxycarbonyl)-4-piperidinone (7) was reacted with hydrazine 6 to provide 
8 in a 64% yield. The hydrazine 6 was obtained from isatoic anhydride (3) and glycine followed 
by reduction of the diamide, selective acetylation of the diamine, reaction with sodium nitrite, 
and reduction with titanium tetrachloride and magnesium. After formation of the indole, the 
hydroxyl group was converted to a methyl ether with sodium hydride and methyl iodide. This 
was followed by reduction of the double bond in 8 with sodium borohydride and trifluoroacetic 
acid and then hydrogenolysis of the Cbz group to give the desired product, 9. The piperidinone 
was selected so the amine could be used as a handle for the attachment of linkers. Additionally, 
4-(methoxy) cyclohexanone was used in this sequence to provide 11 with an ether to serve as a 
protected alcohol.  
 

Reagents and conditions: (i) a. 6N NaOH, 100 ˚C, 12 h, b. glycine, 6N NaOH, H2O, reflux, 12 h, then L-tartaic acid, 
100 ˚C, 2 h, 86%; (ii) a. LAH, THF, 24 h, 93%; b. CbzCl, Et3N, CH2Cl2, rt, 18 h, 88%; (iii) a. NaNO2, 1,4-dioxane, b. 
1N HCl, rt, 24 h, 98%; c. TiCl4, Mg, CH2Cl2, Et2O, rt, 0.75 h, 97% crude product; (iv) ketone 8, acetic acid, reflux, 18 h, 
64%; (v) a. NaH, CH3I, DMF, 0 ˚C-rt 16h; b. NaBH4, TFA, 18 h, rt, 78%; c. 10% Pd/C, H2, EtOH, rt, 48 h, 88%; (vi) 4-
(methoxy)cyclohexanone, acetic acid, reflux, 16 h, 45%; (vii) a. NaBH4, TFA, 18 h, rt, 70%; b. 10% Pd/C, H2, EtOH, rt, 
48 h 42%. 
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The ability of the molecules to act as agonists to induce 5-HT2CR-mediated intracellular calcium 
(Cai

++) release13, 29-31 was conducted in a U2OS cell line stably expressing the human 5-HT2CR. 
While the potency for the novel molecules was lower relative to 5-HT or the parent WAY163909, 
the derivatives maintained full efficacy (Table 1 and Supporting Information Figure 1). 
However, since the potency of the first set of synthesized derivatives (9, 11, 24, 25 and 26) was 
in the range of 1-10 µM, significantly reduced relative to 5-HT (23) and WAY163909 (1) (Table 
1),  the decision was made to examine other attachment points.  

 
An alternative location investigated for the attachment of a tether to the WAY163909 scaffold 
was the secondary amine (site b, cpd 2). The necessary molecules were synthesized by the 
route outlined in Scheme 1. The two versions examined (Figure 2; 12 and 13) both 

demonstrated reduced potency (EC50 >10 µM) in the Cai
++ assay (data not shown).  

 

 
Reagents and conditions: (i) a. triphosgene, THF, rt, 18 h, 97%; b. glycine, 6N NaOH, H2O, reflux, 12 h, then L-
tartaric acid, reflux, 2 h, 77%; (ii) a. LAH, THF, reflux, 48 h, 98%; b. benzyl chloroformate, Et3N, CH2Cl2, rt, 18 h, 77%; 
(iii) NaNO2, 1N HCl, H2O, 1,4-dioxane, rt, 15 min, 99%; (iv) TiCl4, Mg, CH2Cl2, diethyl ether, rt, 15 min, 99% crude 
product; (v) cyclopentanone, p-TSA, toluene, reflux, 3 h, 48% over steps iv and v; (vi) a. NaBH4, TFA, rt, 10 min, 
99%; b. 10% Pd/C, H2, MeOH, rt, 3 h, 99%. Steps for 14 are the same as 15. Yields and details are reported in the 
supporting information. 

 
We reasoned that a methoxy group would be a good representation of the polyether type 
connection ultimately desired to link this molecule to others. Thus, versions with a methoxy 
group at locations c and d were synthesized (Scheme 2). The two derivatives were synthesized 
using two different starting materials, 2-amino-4-methoxy benzoic acid (16) or 2-amino-5-
methoxy-benzoic acid (17). Reaction of 16 with triphosgene provided the benzoxazanone, which 
was reacted with glycine to form the bisamide (18). Exhaustive reduction of both amides then 
provided the diamine, which was selectively protected as the Cbz carbamate (19). Formation of 
the nitroso compound (20) followed by reduction with titanium tetrachloride and magnesium 
metal provided the hydrazine (21) necessary for the Fischer indole synthesis step. Reduction of 
the double bond (22) with sodium borohydride in the presence of trifluoroacetic acid and 
hydrogenolysis of Cbz carbamate afforded 15. Compound 14 was obtained by the same route 
with comparable yields. 
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Table 1. Effects of WAY163909 derivatives on intracellular calcium release in h5-HT2CR-U2OS 
cells 

Cpd # 
 

Structure  EC50 (nM)
a 

(95% C.I.) 
Emax

b,c 
Cpd # 

 
Structure EC50 (nM)

a 

(95% C.I.)  
Emax

b,c
  

 
 

23 

 

 
0.44 

(0.1-0.8) 

 
100 

 
 

26 (±) 

 

 
 

>1 µM 

 
 

ND 

 
 

1 (±) 

 

 
 

18.4  
(16-21) 

 
 

100 

 
 

31 (±) 

 

 
122.6 

(92-153) 
 

 
95.3 ± 2.3 

 

 
 

9 (±) 

 

 
 

>10 µM 

 
 

ND 

 
 

32 

 

 
1.3 

(0.5-2.0) 
 

 
101 ± 7.3 

 

 
 

11 (±) 

 

 
 

>1 µM 

 
 

ND 
 

 
 

33 

 

 
72.9 

(34-112) 
 

 
94.9 ± 6.4 

 

 
 

14 (±) 

 

 
1487 

(810-2163) 

 
97.6 ± 2.7 

 

 
 

40 (±) 

 

 
53.4 

(26-80) 

 
96.5 ± 2.2 

 

 
15 (±) 

 

 
2.2 

(1.3-3.1) 
 

 
103 ± 3.8 

 

 
 

41 (±) 

 

 
236.7 

(37-437) 

 
96.8 ± 5.2 

 

 
 

24 (±) 

 

 
 

>1 µM 

 
 

ND 

 
 

42 (±) 

 

 
647.3 

(271-1024) 
 

 
94 ± 2.5 

 

 
 

25 (±) 

 

 
 

>10 µM 

 
 

ND 

    

a
 EC50 is presented as the mean; 95% confidence interval (CI) is presented as the range 

b
 Emax is presented as mean ± SEM; % Cai

++
 release of compounds (except 5-HT) normalized to 1 µM of 

WAY163909 (1) 
c 
ND = not determined 

 
The product from 2-amino-5-methoxy-benzoic acid, (14) proved to be less potent (EC50 ~1.5 
µM) relative to WAY163909 (EC50~18.4 nM), but exhibited efficacy (Emax ~97%) similar to that 
observed at 1 µM of WAY163909 (Supporting Information Figure 2). The product with the 
methoxy group in the 4-position (15) demonstrated an increase in potency (EC50 ~2.2 nM) 
relative to WAY163909 with no change in efficacy (Emax ~103%; Supporting Information, 
Figure 2). Thus, this small change in moving the methoxy group over one carbon (14 versus 
15) resulted in a significant change in the potency, but not the efficacy, of the derivative. 
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Table 2. Deprotection of the methyl ether 
Equivalents 

of AlCl3 
Equivalents of EtSH Time (hr) 29:30 Isolated Yield 

4 added 2X 24 X 2 48 1:1.3 36% 
1.5 added 2X 20  X 2 24 NA No reaction 

4* 4 18 1:25 95% 
4 2 18 1:120 97% 
6 6 18 1:16 87% 

Starting material and AlCl3 where premixed for 1 hour at 0 ˚C 

 
The next step in the process was the deprotection of the methoxy group to provide a phenol, 
which could then be connected to a PEG linker. Initial attempts to remove the methyl group 
resulted in loss of the Cbz group. A wide variety of reactions were tested but either no reaction, 
or decomposition with no significant identifiable products were observed. Details of the various 
reaction conditions are presented in the Supporting Information. Consequently, the Cbz group 
was exchanged for an acetate. Through careful control of the reaction conditions, the methoxy 
group could be cleaved with aluminum chloride and ethanethiol in methylene chloride. Initially, 
the free phenol product (30) was obtained as a mixture with the ethylthioether (29). After 
optimization of the reaction conditions, the desired product (30) was obtained in up to 97% 
isolated yield (Table 2). 
 
Given the previous demonstration that WAY163909 exhibits differential pharmacological 
properties, the two enantiomers of compound 15 were resolved.25 The originally reported 
resolution of WAY163909 was performed by synthesizing the diastereomeric salt with 
dibenzoyl-L-tartaric acid. However, in the case of molecule 15, this method failed to provide the 
desired separation. A variety of chiral acids were tested with a number of different solvents. 
Success was ultimately achieved with di-p-toluoyl-L-tartaric acid in isopropanol. The absolute 
stereochemistry was determined by X-ray diffraction of both enantiomers after separation. The 
potencies of the two enantiomers of compound 15 (32 and 33) are considerably different 
(EC50~1.3 nM and ~72.9 nM, respectively), but both retained full efficacy (Emax~100% and 95%, 
respectively) (Table 1; Figure 3). The two enantiomers (32 and 33) were submitted to CEREP 
(www.crep.fr) to determine receptor selectivity to displace binding to the 5-HT2AR, 5-HT2BR and 
5-HT2CR. Compounds were tested at a single concentration of 10 µM to determine their ability to 
displace [125I]-(±)-2,5-dimethoxy-4-iodoamphetamine ([125I]-(±)-DOI) binding according to their 
standard assay protocols. The (R,R)-enantiomer (32) displaced ~85-100% of specific binding at 
5-HT2AR, 5-HT2BR and 5-HT2CR, indicating a lack of selectivity across these three receptors 
(Table 3). However, the (S,S)-enantiomer (33) was selective for displacing ~91% of [125I]-(±)-
DOI binding to the 5-HT2CR, with ~5-20% displacement of binding to the 5-HT2AR or 5-HT2BR 
(Table 3).  
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The next step in the process was the attachment of a molecule that can be used to link either 
two WAY163909 derivatives together or attach another molecule. This was accomplished by 
reaction of the free phenol (30) with the alkyl tosylates 34-36 in DMF with sodium hydride as 
base (Scheme 4). In all three cases investigated, the alkylation of the phenol proceeded in 
excellent to good yield. The length of the alkyne tether proportionately impacted the potency of 
the WAY163909 derivatives with little to no effect on efficacy (40-42, Table 1; Figure 4). In 
CEREP assays, 41(±) (10 µM) displaced 100% of [125I]-(±)-DOI binding to the 5-HT2CR, and 
~70% of binding to the 5-HT2AR and 5-HT2BR (Table 3). It should be noted that 41(±) is a 
racemic mixture of both enantiomers. Given the observation that in the case of 32 and 33 one 
enantiomer (33) is much more selective for the 5-HT2CR versus the other (32), it is completely 
reasonable that the racemic mixtures of any of these compounds will be less selective than the 
pure enantiomer. In future work only the most selective enantiomer will be used.  

Table 3. Selectivity profile of WAY163909 derivatives at 5-HT2R

Cpd # Structure 5-HT2AR 5-HT2BR 5-HT2CR

32 86.5 98.6 100.2

33 22.8 4.8 91.5

41 (±) 67.1 67.7 99.6

Compounds were submitted to CEREP to determine receptor selectivity at the 5-HT2

Compounds were tested at a single concentration of 10 µM in duplicate to determine their

ability to displace [125I] (+/-) DOI. Data are presented as mean % inhibition of control specific

binding for compound tested at each receptor subtype. Significant inhibition is considered

>50%; 25-50% inhibition is indicative of weak to moderate effects. 
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Through the synthesis of a number of analogs of WAY163909, we have identified a site on the 
scaffold of WAY163909 for the attachment of a tether to create tool compounds to bind to other 
molecules. Derivatives where site d (2, Figure 1) has a methoxyl group or PEG chain attached 
retain nanomolar potency with little effect on efficacy. The identification that site d can be 
modified without significant loss of activity will allow for the synthesis of molecules that bind to 
the 5-HT2CR and retain activity as full agonists. Versions where the PEG chain is terminated 
with an alkyne will be valuable as tools to link WAY163909 derivatives to other biologically 
active molecules, fluorescent tags, or affinity probes through the alkyne/azide click reaction. The 
pharmacological characterization of these molecules are an active research focus of our group 
and future biological studies will be reported as they are completed. 
 
Materials and Methods 
Cell lines and cell culture. The PathHunter® U2OS HTR2C β-Arrestin cell line (5-HT2CR-U2OS; 
DiscoveRx) stably express the non-edited (INI) human 5-HT2CR isoform (h5-HT2CR). The 5-
HT2C-INIR-U2OS cells were grown in Assay Complete™ U2OS Medium 31 (DiscoveRx) at 37°C, 
5% CO2 and 85% relative humidity per manufacturer’s recommendations utilizing 
AssayComplete™ Cell Detachment Reagent (DiscoveRx). Cells were passaged at 70-80% 
confluence and all experiments were conducted using cells in log phase growth.  
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Intracellular calcium assay. Intracellular calcium (Cai
++) release was monitored using the FLIPR 

Calcium 4 Assay Kit (Molecular Devices) according to previously published protocols with minor 
modifications.13, 29-31 Cells were plated at 5,000-7,000 cells/well in Assay Complete™ Cell 
Plating Reagent 16 (DiscoveRx) in black-sided, clear bottomed 96-well tissue culture plates and 
allowed to adhere overnight. Medium was removed and replaced with 40 µl Hank’s balanced 
salt solution without calcium, magnesium and phenol red (HBSS; Corning) plus 40 µl Calcium 4 
dye solution in Buffer B supplemented with 2.5 mM probenecid (Sigma-Aldrich) to inhibit 
extracellular dye transport. Plates were incubated for 60 min at 37 °C followed by 30 min at 
room temperature in the dark. Fluorescence (λex = 485 nm, λem = 525 nm) was measured using 
a FlexStation3 (Molecular Devices). Baseline was established for 17 sec before addition of 20 µl 
vehicle (HBSS without calcium or magnesium) or 5x concentrated compound. Addition of 5-HT, 
WAY163909, or compound occurred at the 17-sec timepoint and fluorescence was recorded 
every 1.7 sec for 120 sec. Maximum peak height was determined using FlexStation software 
(SoftMax Pro 5.4). After the final readings, cells were fixed in 2% paraformaldehyde overnight. 
 
Data analysis. Peak responses from each well were normalized to total cell mass as determined 
with crystal violet staining.30 The Emax is defined as the maximum possible Cai

++ response and 
data are expressed as a percent of the Cai

++ release (mean ± SEM) obtained with 1 µM of 
WAY163909. Potency of the compounds was determined using the EC50 (concentration of 
compound required to achieve half-maximal response). The EC50 values were determined using 
4-parameter nonlinear regression analysis (GraphPad Prism Version 7.02) and calculated from 
at least three independent experiments, each conducted in triplicate, and are presented as the 
mean and the 95% confidence interval.32-33 An EC50 or Emax value was not calculated for ligands 
that failed to reach a plateau [reported as not determined (ND) in Table 1]. 
 
CEREP binding assays. Compounds 32, 33 and 41 were submitted to CEREP to determine 
receptor selectivity to displace binding to the 5-HT2AR, 5-HT2BR and 5-HT2CR per their standard 
assay protocols. 
(http://www.cerep.fr/cerep/users/pages/Downloads/Documents/Marketing/Pharmacology%20&
%20ADME/Assay%20lists/Binding%20assays_2013.pdf). Compounds were tested at a single 
concentration of 10 µM in duplicate to determine their ability to displace [125I] (+/-) DOI. Data 
are presented as mean % inhibition of control specific binding for compound tested at each 
receptor subtype. Significant inhibition is considered > 50%; 25-50% inhibition is indicative of 
weak to moderate effects.  
 
Chemistry. Details for the synthesis of the individual compounds are presented in the 
Supplementary Information. The characterization data for the five most active compounds are 
presented below. 
 
7-methoxy-2,3,4,7b,8,9,10,10a-octahydro-1H-cyclopenta[b][1,4]diazepino[6,7,1-hi]indole 
(racemate of 32/33) 1H NMR (500 MHz, CDCl3) δ 6.80 (d, J = 8.1 Hz, 1H), 6.22 (d, J = 8.1 Hz, 
1H), 3.98-3.90 (m, 2H), 3.84-3.76 (m, 4H), 3.68 (d, J = 15.2 Hz, 1H), 3.28-3.22 (m, 1H), 3.19-
3.15 (m, 1H), 2.85 (p, J = 11.3 Hz, 2H), 1.95-1.80 (m, 2H), 1.76-1.53 (m, 4H). 13C NMR (126 
MHz, CDCl3) δ 154.7, 153.9, 127.7, 121.5, 119.4, 101.0, 73.4, 56.9, 55.1, 54.3, 51.2, 43.7, 34.2, 
33.4, 24.6. HRMS (ESI-TOF) Calcd. for C15H20N2O [M+H]+: 245.1648; found: 245.1650. 
 
7-(2-(prop-2-ynyloxy)ethoxy)-2,3,4,7b,8,9,10,10a-octahydro-1H-
cyclopenta[b][1,4]diazepino[6,7,1-hi]indole (40): 1H NMR (500 MHz, CDCl3) δ 6.76 (d, J = 
8.2 Hz, 1H), 6.19 (d, J = 8.2 Hz, 1H), 4.19 (d, J = 2.3 Hz, 2H), 4.11 (td, J = 4.8, 2.6 Hz, 2H), 
3.94-3.89 (m, 2H), 3.83 (t, J = 5.0 Hz, 2H), 3.80 (dd, J = 9.0, 3.1 Hz, 1H), 3.74 (dd, J = 5.8, 3.6 
Hz, 2H), 3.71-3.65 (m, 7H), 3.30-3.23 (m, 1H), 3.20-3.14 (m, 1H), 2.95 (br, 1H), 2.90-2.82 (m, 
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2H), 2.42 (t, J = 2.3 Hz, 1H), 1.93-1.79 (m, 2H), 1.76-1.50 (m, 4H). 13C NMR (126 MHz, CDCl3) 
δ 154.4, 153.9, 128.6, 122.1, 114.7, 102.7, 79.5, 74.5, 73.4, 70.8, 70.6, 70.4, 69.7, 69.0, 67.4, 
58.3, 53.9, 52.4, 49.9, 43.8, 34.4, 33.3, 24.5. HRMS (ESI-TOF) Calcd. for C23H32N2O4 [M+H]+: 
401.2435; found: 401.2440. 
 
7-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)-2,3,4,7b,8,9,10,10a-octahydro-1H-
cyclopenta[b][1,4]diazepino[6,7,1-hi]indole (41): 1H NMR (500 MHz, CDCl3) δ 6.80 (d, J = 
8.3 Hz, 1H), 6.22 (d, J = 8.2 Hz, 1H), 4.96 (br, NH), 4.21 (d, J = 2.3 Hz, 2H), 4.16-4.09 (m, 2H), 
4.04 (d, J = 15.1 Hz, 1H), 3.92 (dd, J = 8.8, 5.1 Hz, 1H), 3.84 (t, J = 4.9 Hz, 2H), 3.81 (dd, J = 
8.8, 3.2 Hz, 1H), 3.77-3.74 (m, 2H), 3.74-3.69 (m, 3H), 3.39 (dd, J = 13.2, 3.1 Hz, 1H), 3.20 (dd, 
J = 12.6, 2.5 Hz, 1H), 3.03-2.88 (m, 2H), 2.43 (t, J = 2.3 Hz, 1H), 1.93-1.80 (m, 2H), 1.77-1.60 
(m, 3H), 1.60-1.49 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 154.3, 153.9, 128.4, 122.1, 115.7, 
102.6, 79.6, 74.5, 73.5, 70.6, 69.8, 69.1, 67.5, 58.4, 54.5, 52.7, 50.0, 43.8, 34.4, 33.3, 24.5. 
HRMS (ESI-TOF) Calcd. for C21H28N2O3 [M+H]+: 357.2173; found: 357.2178. 
 
7-(2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethoxy)-2,3,4,7b,8,9,10,10a-octahydro-1H-
cyclopenta[b][1,4]diazepino[6,7,1-hi]indole (42):1H NMR (500 MHz, CDCl3) δ 6.76 (d, J = 8.2 
Hz, 1H), 6.19 (d, J = 8.2 Hz, 1H), 4.19 (d, J = 2.3 Hz, 2H), 4.11 (td, J = 4.8, 2.6 Hz, 2H), 3.94-
3.89 (m, 2H), 3.83 (t, J = 5.0 Hz, 2H), 3.80 (dd, J = 9.0, 3.1 Hz, 1H), 3.74 (dd, J = 5.8, 3.6 Hz, 
2H), 3.71-3.65 (m, 7H), 3.30-3.23 (m, 1H), 3.20-3.14 (m, 1H), 2.95 (br, 1H), 2.90-2.82 (m, 2H), 
2.42 (t, J = 2.3 Hz, 1H), 1.93-1.79 (m, 2H), 1.76-1.50 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 
154.4, 153.9, 128.6, 122.1, 114.7, 102.7, 79.5, 74.5, 73.4, 70.8, 70.6, 70.4, 69.7, 69.0, 67.4, 
58.3, 53.9, 52.4, 49.9, 43.8, 34.4, 33.3, 24.5. HRMS (ESI-TOF) Calcd. for C23H32N2O4 [M+H]+: 
401.2435; found: 401.2440. 
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