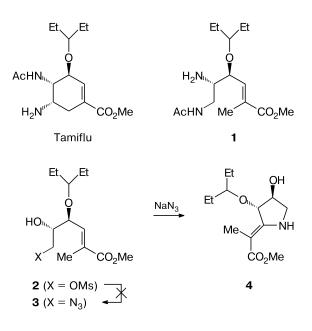
Synthesis of methyl (*E*)-2-[(3*S*,4*S*)-4-hydroxy-3-(pent-3-yloxy)pyrrolidin-2-ylidene]propanoate and its unusual recyclization

F. A. Gimalova,^a G. M. Khalikova,^b V. A. Egorov,^a A. G. Mustafin,^b and M. S. Miftakhov^{a*}

^aInstitute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation. *E-mail: bioreg@anrb.ru* ^bBashkir State University, Department of Chemistry, 32 ul. Z. Validi, 450074 Ufa, Russian Federation

Methyl (2E,4S,5S)-5-hydroxy-6-mesyloxy-2-methyl-4-(pent-3-yloxy)hex-2-enoate was synthesized from L-tartaric acid. Attempted substitution of the mesyloxy group by the reaction with NaN₃ directly led to methyl (E)-2-[(3S,4S)-4-hydroxy-3-(pent-3-yloxy)pyrrolidin-2-ylidene]propanoate. The latter on treatment with CF₃COOH and then NaOH gave methyl (2E)-2-methyl-4-[(S)-oxiran-2-yl]-4-(pent-3-yloxy)but-2-enoate.

Key words: L-tartaric acid, mesylates, azides, heterocyclization, pyrrolidines, recyclization.

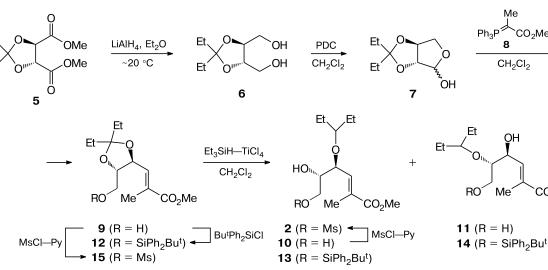

Heterocyclic secondary enamines bearing electronwithdrawing groups at the double bond are important intermediates in the synthesis of natural and heterocyclic compounds.¹⁻⁵ The latter can be conveniently synthesized by the intramolecular 1,3-dipolar azide—olefin cyclization reactions.⁶⁻¹⁰

During development of a procedure for the synthesis of seco analog of known antiviral agent Tamiflu, *i.e.*, compound **1** (see Refs 11–14), based on L-tartaric acid, the standard step of the replacement of the OMs group in compound **2** with the N_3 group led, instead of the expected azide **3**, to the pyrrolidine derivative **4** (Scheme 1).

The synthesis of the starting mesylate 2 is shown in Scheme 2. Ketal 5 obtained from L-tartaric acid¹⁵ was reduced with LiAlH₄ to diol 6. Its oxidation with pyridinium dichromate was fairly selective and stopped at the formation of hemiacetal 7. The latter reacted with phosphorane 8 stereoselectively giving rise to (E)- α , β -unsaturated ester 9. The reductive opening of the ketal function in compound 9 with the system Et_3SiH —TiCl₄ (see Ref. 16) led to diols 10 and 11 in the ratio ~ 3 : 2. The selectivity of this step was somewhat improved by the use of Si derivative 12, in this case alcohols 13 and 14 were formed in the ratio 2 : 1. The mesylation of diol 10 was also selective, leading to the primary mesylate 2 in high yield. The more efficient pathway for the synthesis of compound 2 was accomplished by the dioxolane ring opening in mesylate 15 with Et₃SiH-TiCl₄, which led to the regioselective formation of single compound 2 in high yield.

The structures of diols 10 and 11 and silyl derivatives 13 and 14 were assigned based on the spectroscopic data,

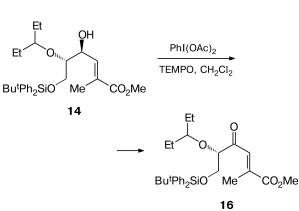
Scheme 1

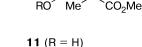

as well as on the results of the TEMPO-catalyzed oxidation of compound 14 with $PhI(OAc)_2$ (see Ref. 17) to the unambiguously spectroscopically identifiable enone 16 (Scheme 3).

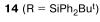
Then, mesylate **2** was subjected to the azide substitution, however, no expected azide **3** was obtained. Instead, pyrrolidine derivative **4** was isolated in good yield (Scheme 4). The indicated geometry of the double bond in pyrrolidine **4** was confirmed by the NOE experiment: the nuclear Overhauser effect (2.0%) was observed for the proton $C(3^{\circ})$ —H

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1227-1231, May, 2013.

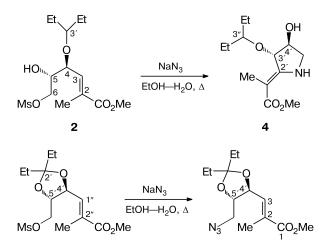
^{1066-5285/13/6205-1227 © 2013} Springer Science+Business Media, Inc.

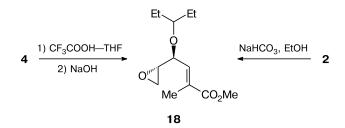

Et


Scheme 2


upon irradiation of the protons of the CH_3 -C=C group. Unlike compound 2, mesylate 15 in the reaction with NaN_3 gave the expected azide 17, which seems more promising building block on the way to seco analog 1 (see Scheme 4).

Pyrrolidine derivatives 4 cannot be used in the synthesis of compound 1. However, the unusual recyclization of this compound in CF₃COOH-THF discovered herein is of undoubted interest (Scheme 5). The TLC monitoring showed that the dropwise addition of a solution of compound 4 in THF to the mixture of $CF_3COOH-THF(1:10)$ at 0 °C rapidly led to a new product, which in the course of neutralization with aqueous NaOH (pH > 8) was converted to the low polar epoxide 18. Its spectroscopic characteristics and the $R_{\rm f}$ values agree with those for the authentic sample 18 obtained by treatment of mesylate 2 with NaHCO₃ in aqueous ethanol. Additional studies are required to establish the mechanism of the formation of compound 18.




17

Scheme 4

Scheme 5

15

In conclusion, optically active methyl (E)-2-[(3S,4S)-4-hydroxy-3-(pent-3-yloxy)pyrrolidin-2-ylidene]propanoate (4) was synthesized from L-tartaric acid in nine steps and its unusual recyclization to epoxide 18 was discovered.

Experimental

IR spectra were obtained on a Prestige-21 Shimadzu IR spectrometer for neat samples. ¹H and ¹³C NMR spectra were recorded on Bruker AM-300 (300.13 and 75.47 MHz, respectively) and Bruker AVANCE-500 spectrometers (500.13 and 125.77 MHz, respectively), using Me₄Si as an internal standard. Angles of optical rotation were measured on a Perkin–Elmer-341 instrument. Mass spectra were obtained on a Thermo Finnigan MAT 95XP instrument (70 eV). Reaction progress was monitored by TLC on Sorbfil plates (Russia), with visualization by the moisturizing the plates with a solution of anisaldehyde and sulfuric acid in ethanol with subsequent heating at 120–150 °C. Reaction products were isolated by column chromatography on silica gel (30–60 g of the adsorbent per 1 g of compound), using freshly distilled solvents as eluents. L-Tartaric acid used in the work was purchased from Aldrich.

Methyl (2E,4S,5S)-5-hydroxy-6-mesyloxy-2-methyl-4-(pent-3-yloxy)hex-2-enoate (2). Triethylsilane (55 mg, 0.47 mmol) was added to a solution of compound 15 (0.109 g, 0.32 mmol) in anhydrous CH₂Cl₂ (5 mL) cooled to -30--40 °C with stirring, followed by a dropwise addition of a solution of TiCl₄ (74 mg, 0.39 mmol) in CH₂Cl₂ (1 mL) at such a rate that to keep the temperature below -30 °C. The reaction mixture was stirred at this temperature until the starting compound was consumed (TLC), then, an ice-cold water was rapidly added and the temperature was raised to -5 °C. The organic layer was separated, the aqueous layer was extracted with CH₂Cl₂ (3×10 mL). The combined organic layers were washed with brine and dried with MgSO₄. The solvent was evaporated and the residue was subjected to column chromatography with SiO₂ (eluent AcOEt-light petroleum, 1 : 5) to obtain compound 2 (0.105 g, 95%). $[\alpha]_{D}^{20}$ +7.0 $(c 0.252, CHCl_3)$. MS, $m/z (I_{rel} (\%))$: 467 [M – C₂H₅]⁺ (14), 353 (100), 323 (12), 269 (10), 213 (61), 199 (50), 135 (25), 112 (16), 69 (37). IR, v/cm⁻¹: 3520, 2964, 2936, 2883, 1716, 1645, 1460, 1437, 1358, 1248, 1176, 1136, 1101, 1061, 1034, 964, 935, 831, 796, 528. ¹H NMR (CDCl₃), δ : 0.83 (t, 3 H, CH₃, J = 7.3 Hz); 0.85 (t, 3 H, CH₃, *J* = 7.3 Hz); 1.41 (m, 2 H, CH₂, *J* = 7.4 Hz); 1.48 (m, 2 H, CH_2 , J = 7.4 Hz); 1.90 (d, 3 H, CH_3 , J = 1.3 Hz); 2.98 (d, 1 H, OH, J = 4.4 Hz); 3.07 (s, 3 H, CH₃SO₂); 3.19 (m, 1 H, H(3'), J = 5.3 Hz, J = 5.9 Hz; 3.77 (s, 3 H, OCH₃); 3.84 (m, 1 H, OCH₂); 4.17 (dd, 1 H, OCH₂, *J* = 5.0 Hz, *J* = 11.4 Hz); 4.33 (m, 2 H, H(4), H(5)); 6.58 (dq, 1 H, =CH, J = 1.3 Hz, J = 9.6 Hz).¹³C NMR (CDCl₃), δ: 9.14, 9.87 (CH₃); 13.33 (CH₃); 25.28, 26.45 (CH₂); 37.55 (CH₃SO₂); 52.19 (OCH₃); 69.80 (OCH₂); 71.78, 73.05 (C(5), C(4)); 80.09 (C(3')); 132.42 (C(2)); 137.75 (C(3)); 167.62 (CO₂). Found (%): C, 50.02; H, 7.56; S, 9.82. C₁₄H₂₆O₇S. Calculated (%): C, 49.69; H, 7.74; S, 9.48.

Methyl (*E*)-2-[(3*S*,4*S*)-4-hydroxy-3-(pent-3-yloxy)pyrrolidin-2-ylidene]propanoate (4). Sodium azide (10 mg, 0.16 mmol) was added to a solution of mesylate 2 (26 mg, 0.08 mmol) in a mixture of EtOH—H₂O (5 : 1) (8 mL), and the reaction mixture was refluxed for 4 h (TLC monitoring), then it was treated with water and ethyl acetate (10 mL). The organic layer was separated, the aqueous layer was extracted with AcOEt (3×10 mL). The combined organic layers were washed with brine and dried with MgSO₄. The solvent was evaporated, the residue was subjected to column chromatography on SiO₂ (AcOEt—light petroleum, 1 : 5) to obtain product 4 (19 mg, 95%). [α]_D²⁰ +39.3 (*c* 1.921, CHCl₃). HRMS, found: *m*/*z* 257.1618 [M]⁺. C₁₃H₂₂NO₄. Calculated: $M = 257.1622. \text{ MS}, m/z (I_{rel}(\%)): 257 [M]^+ (3), 239 [M - H_2O]^+ (0.5), 228 [M - C_2H_5]^+ (0.5), 186 [M - C_5H_{11}]^+ (18), 171 (19), 154 (100), 138 (45), 126 (14), 110 (31), 94 (27), 82 (19), 74 (40), 56 (13), 43 (27). IR, v/cm^{-1}: 3360, 2960, 2880, 1695, 1655, 1603, 1460, 1319, 1278, 1232, 1190, 1132, 1070, 957, 760. ¹H NMR (CDCl_3), & 0.89 (t, 3 H, CH_3, J = 7.3 Hz); 0.91 (t, 3 H, CH_3, J = 7.3 Hz); 1.49 - 1.66 (m, 4 H, CH_2); 1.84 (s, 3 H, CH_3); 3.39 (m, 2 H, NCH_2, H(3'')); 3.68 (s, 3 H, OCH_3); 3.84 (dd, 1 H, NCH_2, J = 3.7 Hz, J = 11.1 Hz); 4.24 (d, H(4'), J = 3.9 Hz); 4.40 (s, H(3')); 7.87 (br.s, 1 H, NH). ¹³C NMR (CDCl_3), 8: 9.17, 10.08 (CH_3); 12.69 (CH_3); 25.45, 26.15 (CH_2); 50.80 (OCH_3); 53.85 (NCH_2); 72.29, 81.44 (C(3'), C(4')); 82.85 (C(3'')); 88.24 (=CMe); 158.84 (C(2')); 171.47 (CO_2).$

(4S,5S)-2,2-Diethyl-4,5-bis(hydroxymethyl)-1,3-dioxolane (6). The ketalized dimethyl tartrate 5 (1.0 g, 3.87 mmol) was added dropwise to a suspension of LiAlH₄ (0.3 g, 7.75 mmol) in anhydrous diethyl ether (15 mL) under argon at room temperature. The reaction mixture was stirred for 4 h, then saturated aqueous Na_2SO_4 was added, the organic layer was separated, Et₂O was evaporated, and the residue was extracted with CHCl₃ (5×10 mL). The combined organic exstracts were washed with brine, dried with MgSO₄, and concentrated to obtain diol 6 (0.63 g, 85%). [α]_D²⁰ –1.4 (*c* 1.202, CHCl₃). MS, *m/z* (*I*_{rel} (%)): $161 [M - C_2H_5]^+ (100), 99 (4), 87 (41), 75 (16), 69 (29), 57 (58).$ IR, v/cm⁻¹: 3458, 3439, 3419, 3400, 3361, 3014, 2974, 2941, 2884, 1792, 1749, 1464, 1445, 1379, 1356, 1339, 1273, 1217, 1204, 1173, 1139, 1084, 1055, 1042, 979, 934, 891, 756, 667. ¹H NMR (CDCl₃), δ : 0.85 (t, 6 H, J = 7.4 Hz); 1.60 (q, 4 H, CH_2 , J = 7.3 Hz; 3.33 (br.s, 2 H, OH); 3.68 (br.s, 4 H, OCH₂); 3.86 (s, 2 H, H(4'), H(5')). ¹³C NMR (CDCl₃), δ: 8.02 (CH₃); 30.34 (CH₂); 62.60 (OCH₂); 79.03 (C(4'), C(5')); 113.03 (C(2')).

Methyl (E)-3-[(4S,5S)-2,2-diethyl-5-hydroxymethyl-1,3-dioxolan-4-yl]-2-methylacrylate (9). Pyridinium dichromate (PDC) (1.52 g, 4.05 mmol) was added in one portion to a solution of diol 6 (0.6 g, 3.11 mmol) in anhydrous CH2Cl2 (10 mL) at room temperature with stirring. The reaction mixture was stirred for 3 h, then filtered through a short layer of SiO₂, the solvent was evaporated. The crude lactol 7 (0.56 g) was dissolved in CH₂Cl₂ (10 mL), followed by the addition of phosphorane 8 (2.12 g, 5.60 mmol). The reaction mixture was stirred for 5 h at room temperature (TLC monitoring) and concentrated, the residue was purified by column chromatography on SiO_2 (eluent AcOEt—light petroleum, 1:2) to obtain compound 9(0.37 g, 45%). $[\alpha]_{D}^{20}$ -32.0 (c 0.881, CHCl₃). HRMS, found: m/z 257.1 $[M - H]^+$. $C_{13}H_{22}O_5$. Calculated: $[M - H]^+ = 257.139$. MS, m/z $(I_{\text{rel}}(\%)): 257 [M - H]^+(6), 229 [M - C_2H_5]^+(65), 198 (9), 167$ (10), 155 (34), 141 (35), 123 (28), 112 (40), 97 (15), 87 (19), 58 (100). IR, v/cm⁻¹: 3440, 2974, 2941, 1721, 1690, 1462, 1439, 1379, 1336, 1317, 1265, 1225, 1198, 1173, 1138, 1115, 1082, 1057, 970, 941, 746. ¹H NMR (CDCl₃), δ: 0.95 (t, 6 H, CH₃, J = 7.4 Hz; 1.71 (q, 4 H, CH₂, J = 7.4 Hz); 1.94 (d, 3 H, CH₃, J = 1.3 Hz); 2.00 (m, 1 H, OH); 3.55 (m, 1 H, OCH₂); 3.76 (s, 3 H, OCH₃); 3.85 (m, 1 H, OCH₂, J = 3.7 Hz); 3.90 (m, 1 H, H(5'); 4.77 (d, 1 H, H(4'), J = 8.5 Hz); 6.66 (dq, 1 H, =CH, J = 1.3 Hz, J = 8.4 Hz). ¹³C NMR (CDCl₃), δ : 8.19 (CH₃); 13.28 (CH₃); 30.44 (CH₂); 52.17 (OCH₃); 60.49 (OCH₂); 73.31 (C(5')); 81.22 (C(4')); 113.79 (C(2')); 132.14 (C(2)); 137.10 (C(3)); 167.85 (CO₂).

Methyl (2*E*,4*S*,5*S*)-5,6-dihydroxy-2-methyl-4-(pent-3-yloxy)hex-2-enoate (10) and methyl (2*E*,4*S*,5*S*)-4,6-dihydroxy-2methyl-5-(pent-3-yloxy)hex-2-enoate (11) were obtained simi-

Gimalova et al.

larly to compound 2 from alcohol 9 (0.30 g, 1.15 mmol), Et₃SiH (0.18 g, 1.55 mmol), and TiCl₄ (0.24 g, 1.29 mmol). Chromatographic purification on a column with SiO₂ (eluent AcOEt-light petroleum, 1:2) gave compound 10 (97 mg) and compound 11 (63 mg) (54% total yield). <u>Compound 10</u>. $[\alpha]_D^{20}$ -32.4 (c 2.785, CHCl₃). MS, m/z (I_{rel} (%)): 243 [M – OH]⁺ (0.3), 231 [M – C₂H₅]⁺ $(0.4), 213 [M - C_2H_5 - H_2O]^+ (6), 183 (6), 155 [M - C_5H_{11}O - C_5H_{12}O]^+ (6), 183 (6), 155 [M - C_5H_{12}O]^+ (6), 183$ $(-H_2O]^+$ (7), 141 (9), 130 (100), 123 (28), 111 (10), 97 (30), 71 (22), 61 (8). IR, v/cm⁻¹: 3441, 3426, 2965, 2936, 2876, 1719, 1715, 1697, 1651, 1470, 1435, 1384, 1246, 1132, 1089, 1043, 937, 750. ¹H NMR (CDCl₃), δ: 0.83 (t, 3 H, CH₃, *J* = 7.3 Hz); 0.85 (t, 3 H, CH₃, J = 7.3 Hz); 1.38–1.52 (m, 4 H, CH₂); 1.89 (d, 3 H, CH₃, J = 1.3 Hz); 2.74 (m, 1 H, OH); 3.13 (m, 1 H, H(3')); 3.19 (br.s, 1 H, OH); 3.45 (m, 1 H, OCH₂); 3.54–3.64 (m, 2 H, H(5), OCH₂); 3.72 (s, 3 H, OCH₃); 4.28 (dd, 1 H, H(4), J = 7.0 Hz, J = 9.5 Hz; 6.54 (dq, 1 H, =CH, J = 1.3 Hz, J = 9.6 Hz). ¹³C NMR (CDCl₃), δ : 9.50, 9.90 (CH₃); 13.24 (CH₃); 25.33, 26.55 (CH₂); 52.11 (OCH₃); 62.60 (OCH₂); 73.61, 74.18 (C(4), C(5)); 80.00 (C(3')); 131.77 (C(2)); 138.94 (C(3)); 167.87 (CO₂). Found (%): C, 60.23; H, 9.38. C₁₃H₂₄O₅. Calculated (%): C, 59.98; H, 9.29. <u>Compound 11</u>. $[\alpha]_D^{20}$ -25.85 (c 0.928, CHCl₃). ¹H NMR (CDCl₃), δ : 0.86 (t, 3 H, CH₃, J = 7.3 Hz); 0.87 (t, 3 H, CH₃, J = 7.6 Hz); 1.46 (m, 4 H, CH₂, J = 7.3); 1.89 $(d, 3 H, CH_3, J = 1.3 Hz); 2.96 (d, 1 H, OH, J = 5.9 Hz); 3.14 - 3.17$ (m, 2 H, OH, H(3')); 3.46 (dd, OCH₂, 1 H, J = 5.0 Hz, J = 9.6 Hz);3.53 (dd, 1 H, OCH₂, J = 4.0 Hz, J = 9.7 Hz); 3.65 (m, 1 H, H(5), J = 5.0 Hz, J = 5.3 Hz; 3.73 (s, 3 H, OCH₃); 4.49 (m, 1 H, H(4)); 6.69 (dq, 1 H, =CH, J = 1.3 Hz, J = 9.0 Hz). ¹³C NMR (CDCl₃), δ: 9.47 (CH₃); 13.28 (CH₃); 25.64 (CH₂); 52.06 (OCH₃); 69.77 (OCH₂); 69.53, 72.89 (C(4), C(5)); 82.92 (C(3')); 130.73 (C(2)); 139.18 (C(3)); 168.18 (CO₂).

Methyl (E)-3-[(4S,5S)-2,2-diethyl-5-(tert-butyldiphenylsilyloxymethyl)-1,3-dioxolan-4-yl]-2-methylacrylate (12). Imidazole (50 mg, 0.77 mmol) and Bu^tPh₂SiCl (0.17 g, 0.60 mmol) were added to a solution of compound 9 (0.14 g, 0.55 mmol) in anhydrous CH₂Cl₂ (10 mL). The reaction mixture was stirred until the starting alcohol was consumed (TLC monitoring), then diluted with CH₂Cl₂ (10 mL) and saturated aqueous NH₄Cl (5 mL), the organic layer was separated, washed with brine, and dried with MgSO₄, the solvent was evaporated. The residue was subjected to column chromatography on SiO₂ (eluent AcOEt-light petroleum, 1 : 5) to obtain silvl ether 12 (0.27 g, 98%). $[\alpha]_D^{20}$ $-6.5 (c 2.114, CHCl_3)$. MS, $m/z (I_{rel} (\%))$: 467 $[M - C_2H_5]^+ (14)$, 353 (100), 323 (12), 269 (10), 213 (61), 199 (50), 135 (25), 112 (16), 69 (37). IR, v/cm⁻¹: 3440, 2957, 2930, 2887, 1720, 1710, 1470, 1420, 1390, 1330, 1230, 1113, 1040, 1001, 960, 822, 741, 702, 505, 489. ¹H NMR (CDCl₃), δ : 0.97 (t, 3 H, CH₃, J = 7.3 Hz); 0.98 (t, 3 H, CH₃, J = 7.3 Hz); 1.10 (s, 9 H, CMe₃); 1.75 (m, 4 H, CH₂); 1.92 (d, 3 H, CH₃, J = 1.3 Hz); 3.69 (dd, 1 H, OCH₂, J = 3.3 Hz, J = 11.3 Hz; 3.77 (s, 3 H, OCH₃); 3.87 (m, 2 H, OCH₂, H(5'); 4.89 (t, 1 H, H(4'), J = 8.4 Hz); 6.70 (dq, 1 H, =CH, J = 1.3 Hz, J = 8.4 Hz); 7.42 (m, 6 H, Ph); 7.75 (m, 4 H, Ph). ¹³C NMR (CDCl₃), δ: 8.06, 8.24 (CH₃); 13.20 (CH₃); 19.10 (<u>C</u>Me₃); 26.78 (3 CH₃); 30.23, 30.50 (CH₂); 52.03 (OCH₃); 62.19 (OCH₂); 73.91 (C(5')); 81.55 (C(4')); 113.67 (C(2')); 127.72, 129.65, 134.81, 135.18 (Ph); 133.00 (C(2)); 137.59 (C(3)); 168.10 (CO₂).

Methyl (2*E*,4*S*,5*S*)-6-(*tert*-butyldiphenylsilyloxy)-5-hydroxy-2-methyl-4-(pent-3-yloxy)hex-2-enoate (13) and methyl (2*E*,4*S*,5*S*)-6-(*tert*-butyldiphenylsilyloxy)-4-hydroxy-2-methyl-5-(pent-3-yloxy)hex-2-enoate (14) were obtained similarly to diols 10 and 11 from compound 12 (0.11 g, 0.22 mmol), Et₃SiH (40 mg, 0.3 mmol), and TiCl₄ (50 mg, 0.25 mmol). The products were isolated by column chromatography on SiO₂ (eluent AcOEt—light petroleum, 1:5) to obtain compound 13 (50 mg) and compound 14 (20 mg) (60% total yield). Compound 13. $[\alpha]_{D}^{20}$ +32.4 (c 2.554, CHCl₃). MS, m/z (I_{rel} (%)): 454 (3), 431 $(0.5), 441 [M - C_4H_9]^+ (0.5), 353 (56), 277 (17), 241 (9), 213$ (36), 199 (100), 169 (18), 119 (15), 77 (7). IR, ν/cm^{-1} : 3520, 2961, 2932, 2876, 1719, 1645, 1462, 1427, 1389, 1362, 1317, 1248, 1219, 1134, 1113, 1063, 1009, 937, 824, 743, 702, 505. ¹H NMR (CDCl₃), δ : 0.87 (t, 3 H, CH₃, J = 7.4 Hz); 0.88 (t, 3 H, CH_3 , J = 7.4 Hz; 1.08 (s, 9 H, CMe_3); 1.44–1.56 (m, 4 H, CH_2 ; 1.93 (d, 3 H, CH_3 , J = 1.3 Hz); 2.67 (d, 1 H, OH, J = 7.4 Hz); 3.20 (quint, 1 H, H(3'), J = 5.3 Hz, J = 6.0 Hz); 3.64 (m, 1 H, H(5)); 3.69 (m, 2 H, OCH₂); 3.76 (s, 3 H, OCH₃); 4.52 (dd, 1 H, H(4), J = 4.3 Hz, J = 9.3 Hz; 6.74 (dq, 1 H, =CH, J = 1.3 Hz, J = 9.3 Hz); 7.41 (m, 6 H, Ph); 7.68 (m, 4 H, Ph). ¹³C NMR (CDCl₃), δ: 9.21, 9.96 (CH₃); 13.25 (CH₃); 25.47, 26.54 (CH₂); 26.86 (3 CH₃); 52.02 (OCH₃); 63.79 (OCH₂); 72.76, 74.20 (C(4), C(5)); 79.99 (C(3')); 127.74, 127.79, 129.69, 129.81, 133.18, 133.32, 135.57, 135.71 (Ph); 130.28 (C(2)); 140.03 (C(3)); 168.03 (CO₂). <u>Compound 14</u>. ¹H NMR (CDCl₃), δ: 0.74 (t, 3 H, CH₃, J = 7.4 Hz; 0.85 (t, 3 H, CH₃, J = 7.4 Hz); 1.07 (s, 9 H, CMe₃); 1.27-1.45 (m, 4 H, CH₂); 1.91 (d, 3 H, CH₃, J = 1.3 Hz); 2.66(d, 1 H, OH, J = 7.0 Hz); 3.14 (quint, 1 H, H(3'), J = 5.6 Hz, J = 6.0 Hz; 3.36 (m, 1 H, H(5), J = 4.3 Hz, J = 3.6 Hz); 3.62 (dd, 1 H, OCH₂, J = 4.3 Hz, J = 10.6 Hz); 3.76 (s, 3 H, OCH₃); 3.79 $(m, 1 H, OCH_2)$; 4.64 (ddd, 1 H, H(4), J = 3.6 Hz, J = 5.0 Hz, J = 8.6 Hz); 6.82 (dq, 1 H, =CH, J = 1.3 Hz, J = 8.6 Hz); 7.42 (m, 6 H, Ph); 7.68 (dt, 4 H, Ph, J = 1.7 Hz, J = 7.6 Hz).

(4S,5S)-2,2-Diethyl-4-mesyloxymethyl-5-(3-methoxy-2methyl-3-oxoprop-1E-enyl)-1,3-dioxolane (15). Triethylamine (0.41 mL, 2.93 mmol) and methanesulfonyl chloride (0.335 g, 2.93 mmol) were added to a solution of compound 9 (0.377 g,1.46 mmol) in CH₂Cl₂ (10 mL) at 0 °C, and the reaction mixture was stirred for 3 h at room temperature. Then, saturated aqueous NH₄Cl was added, the organic layer was separated, the aqueous layer was extracted with CH₂Cl₂ (3×5 mL). The combined organic layers were washed with brine and dried with MgSO₄. The solvent was evaporated, the residue was subjected to column chromatography on SiO₂ (eluent AcOEt-light petroleum, 1:5) to obtain compound **15** (0.40 g, 82%). $[\alpha]_D^{20}$ -32.6 (c 1.819, CHCl₃). MS, m/z (I_{rel} (%)): 307 [M - C₂H₅]⁺ (100), 267 (14), 219 (18), 155 (54), 112 (40), 95 (12). IR, ν/cm^{-1} : 2974, 2943, 2884, 1763, 1717, 1661, 1456, 1437, 1359, 1263, 1236, 1198, 1177, 1144, 1109, 1057, 1016, 966, 941, 831, 752, 528. ¹H NMR $(CDCl_3)$, δ : 0.83 (t, 3 H, CH₃, J = 7.4 Hz); 0.85 (t, 3 H, CH₃, J = 7.3 Hz); 1.61 (q, 4 H, CH₂, J = 7.3 Hz); 1.83 (d, 3 H, CH₃, J = 1.3 Hz); 2.99 (s, 3 H, SO₂CH₃); 3.68 (s, 3 H, OCH₃); 3.89 (m, 1 H, OCH₂, J = 4.4 Hz); 4.14 (dd, 1 H, OCH₂, J = 4.6 Hz, *J* = 11.4 Hz); 4.28 (m, 1 H, H(5[']), *J* = 3.0 Hz, *J* = 7.2 Hz); 4.59 (t, 1 H, H(4'), J = 8.8 Hz); 6.58 (dq, 1 H, =CH, J = 1.3 Hz, J = 8.8 Hz). ¹³C NMR (CDCl₃), δ : 7.96, 8.09 (CH₃); 13.30 (CH₃); 30.28, 30.37 (CH₂); 37.67 (SO₂CH₃); 52.21 (OCH₃); 67.11 (OCH₂); 73.72 (C(4')); 78.48 (C(5')); 114.69 (C(2')); 133.04 (C(2")); 135.61 (C(1")); 167.53 (CO₂). Found (%): C, 50.31; H, 7.24; S, 9.35. C₁₄H₂₄O₇S. Calculated (%): C, 49.98; H, 7.19; S, 9.53.

Methyl (2*E*,5*S*)-6-(*tert*-butyldiphenylsilyloxy)-2-methyl-4oxo-5-(pent-3-yloxy)hex-2-enoate (16). The reagents $PhI(OAc)_2$ (54 mg, 0.17 mmol) and TEMPO (1 mg, 0.006 mmol) were added to a solution of silyl ether 14 (20 mg, 0.04 mmol) in CH₂Cl₂ (5 mL) under argon, and the reaction mixture was stirred for 3 h at room temperature (TLC monitoring). Then the solvent was evaporated, the residue was purified by column chromatography on SiO₂ (eluent AcOEt-light petroleum, 1:5) to obtain compound **16** (10 mg, 66%). $[\alpha]_D^{20}$ –29.6 (c 0.7191, CHCl₃). MS, m/z (I_{rel} (%)): 439 [M - C₄H₉]⁺ (0.2), 337 (9), 291 (100), 261 (22), 199 (43), 163 (21), 91 (6). IR, v/cm⁻¹: 2974, 2941, 2880, 2106, 1718, 1655, 1464, 1437, 1377, 1354, 1315, 1265, 1245, 1225, 1198, 1173, 1140, 1086, 1057, 1030, 970, 941, 850, 758, 680. ¹H NMR (CDCl₃), δ : 0.83 (t, 3 H, CH₃, J = 7.4 Hz); $0.89 (t, 3 H, CH_3, J = 7.4 Hz); 1.02 (s, 9 H, CMe_3); 1.49 (q, 4 H, J)$ CH₂, *J* = 6.6 Hz, *J* = 7.6 Hz); 2.28 (d, 3 H, CH₃, *J* = 1.7 Hz); $3.19 (t, 1 H, H(3'), J = 5.6 Hz); 3.81 (s, 3 H, OCH_3); 3.87 (t, 2 H, J)$ OCH_2 , J = 4.3 Hz, J = 5.3 Hz); 3.94 (dd, 1 H, H(5), J = 4.6 Hz, J = 5.3 Hz); 7.54 (dq, 1 H, =CH, J = 1.3 Hz, J = 1.7 Hz); 7.42 (m, 6 H, Ph); 7.66 (dd, 2 H, Ph, J = 1.3 Hz, J = 7.6 Hz); 7.69 (dd, 2 H, Ph, J = 1.3 Hz, J = 7.6 Hz). ¹³C NMR (CDCl₃), δ: 9.05, 9.69 (CH₃); 14.64 (CH₃); 19.19 (CMe₃); 25.10, 26.19 (CH₂); 26.64 (3 CH₃); 52.52 (OCH₃); 65.05 (OCH₂); 82.07, 84.15 (C(5), C(3')); 127.71, 127.75, 129.77 (2 C), 132.93, 133.09, 135.65, 135.76 (Ph); 130.81 (C(2)); 141.56 (C(3)); 168.24 (CO₂); 203.38 (C(4)). Found (%): C, 70.55; H, 7.98; Si, 5.97. C₂₉H₄₀O₅Si. Calculated (%): C, 70.12; H, 8.12; Si, 5.65.

Methyl (E)-3-[(4S,5S)-5-azidomethyl-2,2-diethyl-1,3-dioxolan-4-yl]-2-methylacrylate (17) was obtained similarly to the preparation of compound 4 from mesylate 15 (0.2 g, 0.60 mmol) and NaN₃ (0.15 g, 2.38 mmol). The yield was 0.16 g (95%). $[\alpha]_{D}^{20}$ –97.3 (c 2.731, CHCl₃). MS, m/z (I_{rel} (%)): 268 [M – CH₃]⁺ $(0.2), 254 [M - Et]^+ (100), 198 (8), 155 (12), 112 (35), 97 (11).$ IR, ν/cm^{-1} : 2974, 2941, 2880, 2106, 1718, 1655, 1464, 1437, 1377, 1354, 1315, 1265, 1245, 1225, 1198, 1173, 1140, 1086, 1057, 1030, 970, 941, 850, 758, 680. ¹H NMR (CDCl₃), δ: 0.91 $(t, 3 H, CH_3, J = 7.4 Hz); 0.93 (t, 3 H, CH_3, J = 7.4 Hz); 1.63 - 1.74$ $(m, 4 H, CH_2)$; 1.88 (d, 3 H, CH₃, J = 1.3 Hz); 3.15 (dd, 1 H, NCH_2 , J = 4.3 Hz, J = 13.6 Hz); 3.56 (dd, 1 H, NCH_2 , J = 3.5 Hz, J = 13.6 Hz; 3.85 (s, 3 H, OCH₃); 3.87 (m, 1 H, H(5')); 4.67 (t, 1 H, H(4'), J = 8.6 Hz); 6.58 (dq, 1 H, =CH, J = 1.3 Hz,J = 8.6 Hz). ¹³C NMR (CDCl₃), δ : 7.77, 7.86 (CH₃); 13.01 (CH₃); 30.09, 30.20 (CH₂); 50.19 (NCH₂); 51.84 (OCH₃); 74.21 (C(4')); 79.55 (C(5')); 114.12 (C(2')); 132.24 (C(2)); 136.15 (C(3)); 167.38 (CO₂).

Methyl (2E,4S,5S)-5,6-epoxy-2-methyl-4-(pent-3-yloxy)hex-2-enoate (18). A. Sodium hydrogen carbonate (60 mg, 0.69 mmol) was added to a solution of mesylate 2 (0.15 g, 0.43 mmol) in a mixture of EtOH $-H_2O(2:1)$ (10 mL), and the mixture was heated for 1 h at 55-60 °C. Then ethanol was evaporated, the reaction mixture was diluted with water and extracted with AcOEt (3×10 mL). The combined organic exstracts were washed with water and dried with MgSO₄, the solvent was evaporated. Column chromatography of the product on silica gel (eluent AcOEt-light petroleum, 1:2) gave epoxide 18 (90 mg, 90%). $[\alpha]_D^{20}$ -27.17 (c 3.746, CHCl₃). MS, m/z $(I_{rel}(\%)): 242 [M]^+ (1), 213 [M - C_2H_5]^+ (5), 199 [M - C_5H_{11}]^+$ (22), 155 (48), 129 (100), 110 (17), 95 (34), 82 (13), 43 (24). IR, v/cm⁻¹: 2963, 2930, 2880, 1718, 1653, 1456, 1437, 1385, 1298, 1273, 1238, 1192, 1157, 1136, 1111, 1059, 1032, 959, 914, 852, 813, 744. ¹H NMR (CDCl₃), δ : 0.88 (t, 3 H, CH₃, J = 7.4 Hz); 0.94 (t, 3 H, CH₃, J = 7.4 Hz); 1.48 (dq, 2 H, CH₂, J = 7.4 Hz, J = 1.4 Hz); 1.52–1.56 (m, 2 H, CH₂); 1.89 (d, 3 H, CH₃, J = 1.3 Hz); 2.57 (dd, 1 H, OCH₂, J = 2.8 Hz, J = 4.8 Hz); 2.75 (t, 1 H, OCH₂, J = 4.5 Hz); 3.12 (m, 1 H, H(5)); 3.31 (q, 1 H, H(3'), J = 5.7 Hz; 3.76 (s, 3 H, OCH₃); 4.04 (dd, 1 H, H(4),

J = 6.0 Hz, J = 9.2 Hz); 6.65 (dq, 1 H, =CH, J = 1.3 Hz, J = 9.2 Hz). ¹³C NMR (CDCl₃), δ : 9.42, 9.76 (CH₃); 13.30 (CH₃); 26.05, 26.37 (CH₂); 43.64 (OCH₂); 52.09 (OCH₃); 53.80 (C(5)); 75.34 (C(4)); 80.54 (C(3')); 130.58 (C(2)); 137.37 (C(3)); 167.96 (CO₂). Found (%): C, 64.80; H, 9.08. C₁₃H₂₂O₄. Calculated (%): C, 64.44; H, 9.15.

B. A solution of pyrrolidine derivative **4** (83.4 mg, 0.32 mmol) in THF (2 mL) was added dropwise to a solution of CF₃COOH (0.12 mL, 1.62 mmol) in THF (3 mL) at 0 °C. The mixture was stirred for 30 min at this temperature, followed by the addition of 10% aqueous NaOH to pH ~8. Then, THF was evaporated on a rotary evaporator, the residue was extracted with CHCl₃ (3×5 mL), The combined organic exstracts were washed with brine, dried with MgSO₄, and the solvent was evaporated. Column chromatography of the product on silica gel (eluent AcOEt—light petroleum, 1 : 2) gave compound **18** (30 mg, 38%), whose spectroscopic characteristics agreed with those obtained for compound **18** synthesized by the preceding procedure.

This work was financially supported by the Russian Foundation for Basic Research (Program Povolzh'e, Project No. 11-03-97013 r a).

References

- 1. Y. Cheng, Z.-T. Huang, M.-X. Wang, Curr. Org. Chem., 2004, 8, 325.
- Y. Konda, T. Sato, K. Tsushima, M. Dodo, A. Kusunoki, M. Sakayanagi, N. Sato, K. Takeda, Y. Harigaya, *Tetrahedron*, 1999, 55, 12723.
- M. X. Wang, W.-S. Miao, Y. Cheng, Z.-T. Huang, *Tetrahedron*, 1999, 55, 14611.
- 4. X.-P. Jiang, Y. Cheng, G.-F. Shi, Z.-M. Kang, J. Org. Chem., 2007, 72, 2212.
- 5. S. R. Hussaini, M. G. Moloney, *Org. Biomol. Chem.*, 2006, **4**, 2600.
- 6. S. Lang, J. A. Murphy, Chem. Soc. Rev., 2006, 35, 146.
- 7. E. F. V. Scriven, K. Turubull, Chem. Rev., 1988, 88, 297.
- C.-K. Sha, S.-L. Ouyang, D.-Y. Hsieh, R.-C. Chang, S.-C. Chang, J. Org. Chem., 1986, 51, 1490.
- Y. Konda-Yamada, K. Asano, T. Satou, S. Monma, M. Sakayanagi, N. Satou, K. Takeda, Y. Harigaya, *Chem. Pharm. Bull.*, 2005, 53, 529.
- W. O. Moss, R. H. Bradbury, N. J. Hales, T. Gallagher, J. Chem. Soc., Perkin Trans. 1, 1992, 1901.
- L. Werner, A. Machara, B. Sullivan, I. Carrera, M. Moser, D. R. Adams, T. Hudlicky, *J. Org. Chem.*, 2011, **76**, 10050.
- 12. M. Shibasaki, M. Kanai, Eur. J. Org. Chem., 2008, 1839.
- M. Shibasaki, M. Kanai, K. Yamatsugu, *Isr. J. Chem.*, 2011, 51, 316.
- 14. J. Magano, Chem. Rev., 2009, 109, 4398.
- 15. J. Weng, Y.-B. Li, R.-B. Wang, F.-Q. Li, C. Liu, A. S. C. Chan, G. Lu, J. Org. Chem., 2010, 75, 3125.
- A. Mori, K. Ishihara, H. Yamamoto, *Tetrahedron Lett.*, 1986, 27, 987.
- E. A. Mash, K. A. Nelson, S. V. Densen, S. B. Hemperly, Org. Synth. Coll., 1993, 8, 155.

Received February 20, 2012; in revised form December 25, 2012