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AbstractÐThe synthesis and biological pro®le in vitro of a series of coumarin inhibitors of gyrase B bearing a N-propargyloxy-
carbamate at C-30 of noviose is presented. Replacement of the 5-methylpyrrole-2-carboxylate of coumarin drugs with an N-pro-
pargyloxycarbamate bioisostere leads to analogues with improved antibacterial activity. Analysis of crystal structures of coumarin
antibiotics with the 24 kDa N-terminal domain of the gyrase B protein provides a rational for the excellent inhibitory potency of
C-30 N-alkoxycarbamates. # 2000 Elsevier Science Ltd. All rights reserved.

Introduction

As part of our continuing structure±activity relationship
(SAR) study of coumarin antibiotics (1±3),1±5 we
describe our e�orts aimed at modi®cation of 5-methyl-
pyrrole-2-carboxylate moiety linked to the C-30 position
of the sugar noviose. Coumarin antibiotics are inhibi-
tors of the catalytic functions of DNA gyrase that are
dependent on ATP hydrolysis (i.e. DNA supercoiling
and decatenation), by competitive inhibition of ATP
binding6 (for a review on structure and function of
DNA gyrase, see refs 7±10). Family members of coumer-
mycin antibiotics (3±6) produced by Streptomyces
species di�er by the presence of 5-methylpyrrole-2-car-
boxylate or pyrrole-2-carboxylate moiety in the mole-
cule.11 The comparative studies of antibacterial activity
of this group of coumarin analogues indicated that the
superior antibacterial pro®le of coumermycin A1 could
be attributed to the 5-methyl group of the 5-methyl-
pyrrole-2-carboxylate. Similarly, Berger and Batcho12

pointed out that 5-methylpyrrole-2-carboxylate, and not
the replacement of the C-8 methyl group of the cou-
marin by a chlorine atom, is the principal reason for
higher antibacterial potency of clorobiocin 2 compared
to novobiocin 1. As clorobiocin displays 2-fold higher
inhibitory activity in negative supercoiling of DNA
gyrase with respect to novobiocin, whereas 10-fold

higher antibacterial potency, it appears that 5-methy-
pyrrole-2-carboxylate contibutes to higher hydro-
phobicity and higher membrane permeability.

In order to develop e�ective bioisosteres of 5-methyl-
pyrrole-2-carboxylate13 it was necessary to ful®l two
criteria. Firstly, isosteric replacement of 5-methylpyr-
role-2-carboxylate should maintain similar, or provide
stronger inhibitory potency of negative supercoiling of
DNA gyrase to that of clorobiocin or novobiocin. Sec-
ondly, as DNA gyrase is an intracellular target, isosteric
replacement should confer membrane permeability to
the analogue. Since X-ray crystal structures of several
coumarin drugs with 24 kDa N-terminal domain of
gyrase B of E. coli have been solved,14±17 these results
were an obvious starting point for our research.

Examination of the binding site of the noviose portion
of clorobiocin bearing at C-30 5-methylpyrrole-2-car-
boxylate moiety revealed that the pyrrole ring is sur-
rounded by hydrophobic amino acid residues Val-43,
Val-71, Val-120, Val-167, and Ile-78 (hydrophobic
pocket; Fig. 1). Besides these hydrophobic contacts,
there is an important hydrogen-bonding interaction
between the N±H of the pyrrole and the side chain of
Asp-73, and the hydrogen bonding that links the car-
bonyl group of the pyrrole-2-ester, an ordered water
molecule and the side chain of Thr-165 and Gly-77.
As will be seen by the results of biological activity
(vide infra) of coumarin analogues, both hydrophobic
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interactions as well as s-cis orientation of Ha±N and
C�O groups around the amide bond are crucial in
achieving a bioisostere with good biological activity.

Chemistry

The standard synthetic route that could be used to
introduce potential pyrrole isosters consists of opening
the conveniently a-glycosylated noviose 20,30-carbonate
7 with nucleophiles (Scheme 1).13,19,20 However, it is
known that the opening of the corresponding carbonate
under thermodynamic control leads to a mixture of 30-
substituted 8 and 20-substituted 9 derivatives. Although
thermodynamic equilibrium favours regioisomer 8
(from 4:1 to 1:1 depending on nucleophile), in many
cases separation of the regioisomers is troublesome. In
order to avoid testing the mixtures 8 and 9, we wanted
to develop a synthetic approach that would enable
regioselective introduction of potential bioisosteres at
the C-30 position of noviose.

Previously, we have described the short synthesis of a
valuable intermediate for the construction of coumarin
drugs: 7-hydroxy-8-methyl-4-benzhydryloxycoumarin
(10).3 The preparation of the equally useful coumarin
building block 13 starting with THP protected deriva-
tive 11 is depicted in Scheme 2.

As in the case of the Mitsunobu's coupling of com-
pound 10 with noviose 14 (Scheme 4), coupling of the
noviose 14 with coumarin 13 under same conditions

provided an a-glycoside 15 as the major product after
chromatographic separation (Scheme 3). Having pre-
pared diol 15, we investigated regioselective protection
of 30-OH with Et3Si, MEM (MeOCH2CH2OCH2-), and
BOM (PhCH2OCH2-) protecting groups. In all cases the
major regioisomers formed 16a±c were at 30-OH and
could be easily separated by chromatography from 20-
regioisomers 17a±c. In general, deprotection of silyl
groups is relatively easy and we decided to continue our
synthetic scheme with this protecting group. Dihy-
dropyranylation of 16a a�orded a diastereomeric mix-
ture of THP derivatives (�1:1) 18 that was smoothly
desilylated and hydrogenolysed to furnish intermediate
19. The free 30-OH of the noviose derivative 19 could be
selectively transformed under standard conditions
(RCOCl, DMAP, Py or EDAC, DMAP, CH2Cl2) into
30-noviose esters. Similarly, intermediate 19 could
be selectively converted by the reaction of its p-nitro-
phenylcarbonate activated form with amines into 30-
carbamates 20a, or, by the reaction with hydroxyl-
amines into 30-N-alkoxycarbamates 20b. Once the
potential pyrrole bioisosteres were introduced at C-30,
the intermediates were subjected to hydrolytic condi-
tions with TosOH cat. in MeOH to remove tetra-
hydropyranyl group and a�ord 30-carbamates 21a±d or
30-N-alkoxycarbamates 22a±g of the coumarin-3-car-
boxy series. Alternatively, the 3-ester group in 20a,b
could be ®rst exchanged by ammonia, amines or
hydroxylamines to provide coumarin-3-carboxamide
24a, N-substituted coumarin-3-carboxamides 24b±d or
coumarin-3-hydroxamate derivatives 25a±c, respectively,
after subsequent THP deprotectection.

Figure 1. Interactions between the 24 kDa N-terminal protein fragment of gyrase B of E. coli with clorobiocin and novobiocin.16,18

Scheme 1.
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A similar synthetic approach to that described, but
starting with coumarin intermediate 10 provided access
to a 3-acetylcoumarin 31 and a series of corresponding
oxime analogues 32a±h bearing the a 30-N-propargyl-
oxycarbamate moiety (Scheme 4).

Biological Results

Table 1 shows the inhibition in the supercoiling and
antibacterial activity of E. coli or S. aureus DNA gyrase
by novobiocin, clorobiocin and the coumarin-3-carb-

ethoxy inhibitors possessing 30-carbamates 21a±c or
30-N-alkoxycarbamates 22a±g and a series of diverse
coumarin analogues with 30-N-propargyloxycarbamate
on the sugar noviose. For the comparative assessment,
in the Table 1 results are also presented showing the
biological activity of some pyrrole counterparts (26, 27,
Scheme 3 and 33, 34, Scheme 4). A carbamoyl deriva-
tive 21a gave similar inhibition in negative supercoiling
of DNA gyrase as novobiocin. With N-alkyl substi-
tution, a diminution of the inhibitory potency was
observed (21b±d). In the series of N-alkoxycarbamates
22a±g, an inverse e�ect dominated. Increasing the

Scheme 2. Reagents and conditions: (a) ClCOOEt, DMAP, CH2Cl2, rt, 55%; (b) BnOH, PPh3, EtO2CN=NCO2Et, CH2Cl2, rt, 49%; (c) HCl (1
M), THF, rt, 89%.

Scheme 3. Reagents and conditions: (a) PPh3, EtO2CN�NCO2Et, CH2Cl2, rt, 54%; (b) Et3SiCl, DIPEA, Im, CH2Cl2, rt, 66%; (c) MEMCl,
DIPEA, Im, CH2Cl2, rt, 60%; (d) BOMCl, DIPEA, Im, CH2Cl2, rt, 60%; (e) DHP, TosOH cat, CH2Cl2, rt, 79%; (f) H2, Pd-C/10%, THF, rt; (g)
Bu4NF, THF, rt, (81% from 16a); (h) (i) p-NO2C6H4OCOCl, DMAP, CH2Cl2, 0

�C; (ii) R0NH2 or R0ONH2, DMAP, DMF, rt; (i) TosOH cat,
MeOH, rt, (40±60% from 19); (j) NH3, R

0NH2, THF, rt; or R0ONH2, Py, rt, (k) TosOH cat, MeOH, rt. (30±60% from 19).

Scheme 4. Reagents and conditions: (a) 10, PPh3, iPrO2CN�NCO2iPr, CH2Cl2, rt, 67%; (b) Et3SiCl, DIPEA, Im, CH2Cl2, rt, 70%; (c) DHP,
TosOH cat, CH2Cl2, rt; (d) H2, Pd-C/10%, THF, rt; (e) Ac2O, CH2Cl2, 0

�C; (f) Bu4NF, THF, rt, (70% from 28); (g) (i) p-NO2C6H4OCOCl,
DMAP, CH2Cl2, 0

�C; (ii) HC�CCH2ONH2
.HCl, DMAP, DMF, rt; (h) TosOH cat, MeOH, rt, (67%, from 28); (i) RONH2HCl, KOAc, EtOH, rt,

80%-quant.
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length of the substituent (up to a 3-carbon substituent)
produced an increase in inhibitory potency. The poor
activity of the carbamate series (21b±d) could be a
re¯ection of their preferred s-trans conformation 35b
around the amide bond (Fig. 2).21,22 This conformation

is placing N±H and C�O bonds in the opposite direc-
tion to that observed by the X-ray model in Figure 1.

In the case of N-alkoxycarbamates (22a±g), s-cis con-
former 36b prevails, directing at the same time the alkyl

Table 1. In vitro activity of coumarin inhibitors against E. coli/S. aureus DNA gyrase supercoiling (IC50),
a,b and selected in vitro antibacterial

activity (MIC)c

Compound R1 Ratio
IC50nova;b

IC50comp

MIC (mg/mL)

S. aureus
011HT3

S. aureus
011GO64

O¯oOxaEry-R

S. aureus
011HT1
Nov-R

S. epidermidis
012GO42
Oxa-R

S. pyogenes
02A1UC1

E. faecium
02D31P2

VanTeiEry-R

Novobiocin 1a,b �0.04 �0.04 10 �0.04 0.3 0.6
Clorobiocin 1.7a �0.04 ND 0.6 ND �0.04 �0.04

Scheme 3
21a -NH2 1.6a >40 ND >40 ND >40 >40
21b -NH-Allyl 0.38a >40 >40 >40 20 >40 >40
21c -NH-Propargyl 0.38a 40 >40 >40 20 >40 >40
21d -NHiPr 0.025a >40 >40 >40 >40 >40 >40
22a -NHOMe 0.66a >40 >40 >40 >40 >40 >40
22c -NHOEt 2.0a 20 >40 >40 >40 40 >40
22d -NHOiPr 2.0a >40 >40 >40 >40 >40 >40
22e -NHO-Allyl 2.0a 10 20 >40 20 20 >40
22f -NHO-Propargyl 5.6a 1.2 2.5 >40 0.3 20 10
22g -NHO-But-2-ynyl 0.5b 10 40 >40 10 >40 >40
24a -NH2 1.0a �0.04 �0.04 0.3 �0.04 0.6 0.08
24b -NH-3-Pyridyl 0.67b �0.04 �0.04 1.2 �0.04 0.08 0.6
24c 2.6b �0.04 0.08 1.2 0.08 1.2 2.5

24d -NHCH2CH2OH 2.6b �0.04 0.08 1.2 �0.04 0.6 1.2
25a -NHOMe 11.1b 0.08 0.6 10 0.08 0.6 2.5
25b -NHOEt 5.6b �0.04 0.08 1.2 0.6 0.15 0.6
25c 2.0b �0.04 �0.04 0.6 0.15 0.08 0.3

26 3.1a 0.3 ND >20 ND 0.3 5
27 1.67a �0.04 ND 2.5 ND 0.15 2.5

Scheme 4
31 8.1b �0.04 0.6 2.5 �0.04 0.3 1.2
32a -Me 12.5b 0.15 0.15 5 0.08 0.6 2.5
32b -Et 8.3b 0.08 0.15 2.5 0.15 0.6 1.2
32c 4.0b 0.15 0.6 5 0.15 1.2 20

32d -CH2O(CH2)2OMe 4.0b 0.08 0.6 10 1.2 0.6 5
32e 1.3b �0.04 �0.04 2.5 �0.04 0.15 0.6

33 2a �0.04 ND 5 ND 0.3 2.5
34 3.3a 0.15 ND 40 ND 0.3 10

aIC50 was determined for gyrase B of E. coli against novobiocin (0.25 mg/mL) as reference. For details see ref 3.
bSupercoiling assay using puri®ed DNA Gyrase from S. aureus: the enzyme was puri®ed from a crude extract of S. aureus E34159. The frozen cells
were suspended in TGED bu�er (pH 7.5) supplemented with 9 mM dithiothreitol, 20 mM EDTA, 0.4% Brij 58, 60 mg of lysostaphin per mL,
proteases inhibitors and incubated for 30 min at 20 �C and 25 min at 37 �C. After the addition of 0.4 M KCl, incubation was repeated 30 min at
20 �C. The cell suspension were sonicated, centrifuged at 100,000 g for 45 min. The supernatant was treated with 4% streptomycin for the removal of
DNA. After centrifugation, the supernatant was supplemented with 65% (NH4)2SO4. The precipitate was dissolved and dialysed in TGED bu�er.
The dialysate was directly puri®ed on novobiocin±Sepharose a�nity column. The gyrase A was eluted with TGED bu�er containing 1 M KCl and
the gyrase B was eluted with TGED bu�er containing 1 M KCl and 5 M urea. After dialyse, the proteins were concentrated with PEG 2000. Relaxed
DNA was prepared from pBR322 plasmid with calf thymus topoisomerase I (GIBCO-BRL), 1 h at 37 �C. The DNA concentration was determined
by spectrophotometric measurements. Supercoiling assay was performed on 40 mL assay mixture containing 40 mM Tris±HCl pH 7.3, 20 mM KCl,
4 mM MgCl2, 2 mM ATP, 2 mM spermidine-HCl, 0.8 mg tRNA, 50 ng relaxed DNA and 1 unit of DNA-gyrase. One unit of gyrase was de®ned as
the amount of activity that supercoiled 50 ng of relaxed pBR322 in 60 min at 37 �C. The reaction was stopped by addition of protease K and
separated by electrophoresis. IC50 was determined for inhibitors against novobiocin (0.5 mg/mL) as reference.
cMIC, minimum inhibitory concentrations (mg/mL) were measured by using a 2-fold broth microdilution after 24 h incubation. Particular phenotype
of resistance (-R) of the tested bacterial strains were mentioned: O¯o for o¯oxacin, Oxa for oxacillin, Ery for erythromycin, Nov for novobiocin, Tei
for teicoplanin, Van for vancomycin. Otherwise, strains were fully susceptible.
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group to the hydrophobic pocket. However, this
hydrophobic domain is not large enough to accom-
modate the alkyl chains containing more than three
carbon atoms, and an important loss of activity was
observed with analogue 22g.

Comparison of the analogues possessing N-propargyl-
oxycarbamate moiety and 5-methylpyrrole-2-carboxy
group: 22f and 26 (Scheme 3), 24a and 27 (Scheme 3), 31
and 33 (Scheme 4), 32 and 34 (Scheme 4), clearly indi-
cates improved inhibitory potency of the ®rst. Thus, N-
propargyloxycarbamate has ful®lled the ®rst criteria
imposed for a good bioisostere of 5-methylpyrrole-2-
carboxylate: superior inhibitory potency to analogues
possessing 5-methylpyrrole-2-carboxylate. While three
N-alkoxycarbamates 22d±f display almost the same
inhibitory activity, a dramatic di�erence between the
three in MIC values is observed. While 22d is devoid of
antibacterial activity, 22f displays similar antibacterial
spectrum to pyrrole analogue 26. In this way, N-pro-
pargyloxycarbamate has ful®lled the second criteria of
the good bioisostere: it conferred the membrane perme-
ability that is prerequisite for a good antibacterial
activity.

Di�erent coumarin classes having 30-N-propargyloxy-
carbamate: coumarin-3-esters (22f), -3-amides (24a), -3-
O-alkylhydroxamates (25a), -3-ketones (31) and -3-
alkoxyimino (32a) derivatives, were highly active
against all the Gram-positive strains tested including
Enteroccus and multi-resistant staphylococci. In general,
improved anti-Enterococcal activity was observed with
the novel series compared to pyrrole analogues. Amide
and hydroxamate derivatives 24a and 25c, respectively,
displayed the best antibacterial activity, particularly
against novobiocin-resistant strains.

In conclusion, based on the results of crystallographic
determination of the active site of 24 kDa N-terminal
subdomain of gyrase B with coumarin antibiotics, we
succeeded in designing N-propargyloxycarbamate as an
e�ective 5-methylpyrrole-2-carboxylate bioisostere. This
leads to analogues with improved in vitro inhibitory
potency of the negative supercoiling of DNA gyrase as
well as improved antibacterial activity. Among the can-
didates, amido 24a±d and hydroxamate 25a±c deriva-
tives with the uniformly good antibacterial activity seem
to be the most promising ones.
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