This article was downloaded by: [Lulea University of Technology] On: 18 August 2013, At: 02:46 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

Application of Baylis-Hillman Methodology in the Synthesis of Coumarin Derivatives

Prof. Perry T. Kaye ^a & M. A. Musa ^a

^a Department of Chemistry, Rhodes University, Grahamstown, Republic of South Africa Published online: 17 Aug 2006.

To cite this article: Prof. Perry T. Kaye & M. A. Musa (2003) Application of Baylis-Hillman Methodology in the Synthesis of Coumarin Derivatives, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 33:10, 1755-1770

To link to this article: http://dx.doi.org/10.1081/SCC-120018937

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS[®] Vol. 33, No. 10, pp. 1755–1770, 2003

Application of Baylis–Hillman Methodology in the Synthesis of Coumarin Derivatives

Perry T. Kaye* and M. A. Musa

Department of Chemistry, Rhodes University, Grahamstown, Republic of South Africa

ABSTRACT

A general, chemoselective approach to 3-substituted coumarins via Baylis–Hillman reactions of *O*-benzylated salicylaldehyde precursors has been demonstrated. Competitive cyclization to chromene derivatives is inhibited by conjugate addition of benzylamine or piperidine to the α , β -unsaturated ester intermediates.

Key Words: Coumarins; Baylis-Hillman reaction; Synthesis.

Coumarins (2*H*-1-benzopyran-2-ones) are widely distributed in nature,^[1] and many are known to exhibit pharmacological activity. These include the anti-coagulant, dicoumarol,^[2] the antibiotics, novobiocin and chlorobiocin,^[3] and the calanolides A and B, which have been shown to inhibit HIV-1 replication in vitro.^[4] We have previously demon-

DOI: 10.1081/SCC-120018937 Copyright © 2003 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Correspondence: Prof. Perry T. Kaye, Department of Chemistry, Rhodes University, Grahamstown, 6140 Republic of South Africa; Fax: 27 46 6225109; E-mail: p.kaye@ru.ac.za.

¹⁷⁵⁵

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

strated the utility of the Baylis–Hillman reaction in the construction of benzannulated heterocycles, such as indolizines^[5] and quinolines.^[6] However, earlier attempts to use this approach to access 2*H*-1-chromenes from salicylaldehyde precursors afforded complex mixtures of chromene and coumarin derivatives^[7,8] via putative Baylis–Hillman intermediates (Sch. 1). Attention was subsequently focussed on the chemoselective synthesis of 2*H*-1-chromenes^[9] and 2*H*-1-thiochromenes^[10] and, in this communication, we now report the application of Baylis–Hillman methodology in the preparation of 3-substituted coumarins.

The strategy adopted to inhibit the formation of chromene derivatives (Path I; Sch. 1) involved three phases, viz., (i) protection of the salicylaldehyde phenolic hydroxyl group; (ii) nucleophilic interception of the electrophilic vinylic centre in the Baylis-Hillman product; and (iii) deprotection of the phenolic oxygen to permit cyclization to coumarins via acyl substitution. Attempts to protect the phenolic hydroxyl group as the O-silylated or O-acetylated derivatives had proved unsatisfactory,^[11] and it was decided to make use of O-benzylated analogues, as reported by Drewes et al.^[12] Consequently, the salicylaldehyde derivatives **1a-f** (Sch. 2) were treated with benzyl bromide in the presence of K₂CO₃ and NaI to afford the corresponding benzyl ethers 2a-f in yields ranging from 66 to 89%. The next phase involved treatment of the benzyl ethers 2a-f with methyl acrylate 3 under Baylis-Hillman conditions. In order to optimize yields, the reaction of 2-benzyloxybenzaldehyde 2a with methyl acrylate in the presence of DABCO was investigated in some detail. The reagent and catalyst concentrations and the solvent system were varied until, finally, the required Baylis-Hillman product 4a was obtained in ca. 95% yield (as determined by ¹H NMR analysis of the crude reaction mixture). This protocol was then applied to the synthesis of the Baylis-Hillman products 4a-f, which were obtained in isolated yields of 66-84%.

Drewes et al.^[12] have reported conjugate addition of dimethylamine to compound 4a, but we decided to use the less volatile amines, benzyl-amine and piperidine, to effect protection of the olefinic moiety in com-

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Reagents. i, PhCH₂Br, K₂CO₃, NaI; ii, DABCO, CDCl₃; iii, PhCH₂NH₂, MeOH or piperidine, THF; iv, H₂, Pd-C, EtOH.

Scheme 2.

pounds 4a-f. The novel, conjugate addition products 5a-f and 6a-f were isolated in moderate to good yield (55–87%) and fully characterized. Selected systems (5a-d and 6a-d) were then subjected to hydrogenolysis in the presence of 10% palladium-on-carbon catalyst. Fission of the benzyl ether and spontaneous cyclization via acyl substitution afforded, in each case, the expected 3-substituted coumarins 7a-d and 8a-d. Somewhat surprisingly, the piperidinyl derivatives 8a-d were accompanied by the corresponding de-aminated derivatives 9a-d in yields ranging from 9-21%.

YY

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1758

Kaye and Musa

A possible explanation for the concomitant formation of the 3-methylcoumarins 9a-d lay in the cyclization and dehydration of hydroxy intermediates of type 10 [arising from in situ elimination of piperidine $(6 \rightarrow 4)$ or incomplete conjugate addition $(4 \rightarrow 6)$] (Sch. 3). However, various attempts to effect reductive cyclization of compound 4a failed to yield the corresponding 3-methylcoumarin 9a. Thus, (i) hydrogenolysis using 10% palladium-on-carbon catalyst in ethanol yielded the phenolic product 11; (ii) use of the same reagents in the presence of 1,4-cyclohexadiene yielded the benzyl ether 12; and (iii) use of ethanethiol and BF₃-Et₂O yielded the 3-substituted coumarin 13. An alternative explanation for the formation of the 3-methylcoumarins

Reagents. i, H₂, Pd-C, EtOH; ii, H₂, Pd-C, 1,4-cyclohexadiene, EtOH; iii, EtSH, BF_3 -Et₂O

Scheme 3.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Baylis–Hillman Methodology in Coumarin Synthesis

9a–d, finds a possible precedent in a report by Weir et al.,^[13] which describes the reductive elimination of piperidine from allylic amine precursors, using triethylammonium formate as a reducing agent and 10% palladium-on-carbon as the catalyst. The formation of non-terminal alkenes as the dominant products, in their study, parallels the formation of the 3-methylcoumarins **9a–d** from the corresponding "allylic amines" **8a–d**. In fact, hydrogenolysis of the piperidino derivative **8a**, (Sch. 2), in the presence of 10% palladium-on-carbon catalyst, afforded 3-methylcoumarin **9a** as the sole product.

EXPERIMENTAL

Infrared spectra were recorded on a Perkin Elmer Spectrum 2000 FT-IR spectrometer. The ¹H and ¹³C NMR spectra were recorded using CDC₃ solutions on a Bruker Avance 400 MHz NMR spectrometer and are referenced using the solvent signals. Low-resolution mass spectra were recorded on a Finnigan-Mat GCQ mass spectrometer; FAB mass spectra were obtained on a MASPEC II system and high-resolution mass spectra on a VG70-SEQ double-focusing magnetic sector instrument by Dr. P. Boshoff at the Mass Spectrometry Unit, Cape Technikon, Cape Town.

The following compounds have been reported previously:- 2a $(79\%)^{[14]}$; 2b $(89\%)^{[15]}$; 2c $(85\%)^{[16]}$; 2e $(71\%)^{[17]}$; 2f $(66\%)^{[17]}$; 4a $(75\%)^{[12]}$; 9a $(20\%)^{[18]}$; and 9d $(9\%)^{.[18]}$ Illustrative general synthetic procedures and analytical data for new compounds prepared in this study are as follows.

2-Benzyloxy-5-chlorobenzaldehyde 2d

A solution of 5-chlorosalicylaldehyde (4.9 g, 31 mmol), benzyl bromide (3.72 mL, 31.3 mmol), anhydrous K₂CO₃ (26 g, 0.19 mol) and NaI (28.2 g, 0.19 mol) in distilled acetone (100 mL) was boiled under reflux for 12 h. Water (50 mL) was then added and the aqueous layer extracted with CHCl₃ (2 × 100 mL). The combined extracts were washed with satd. brine and dried (anhyd. Na₂SO₄), filtered and concentrated in vacuo to give a dark brown oil. Crystallization from hexane afforded, as yellow crystals, 2-benzyloxy-5-chlorobenzaldehyde **2d**, (5.15 g, 67%), m.p. 70–72°C (from hexane) (Found: M⁺, 246.04567. C₁₄H₁₁O₂³⁵Cl requires *M*, 246.04476.); ν_{max} (KBr)/cm⁻¹ 1680 (C=O); $\delta_{\rm H}$ 5.18 (2H, s, OCH₂Ph), 7.00 (1H, d, Ar-H), 7.34–7.47 (6H, series of multiplets, Ar-H), 7.79 (1H, d, ArH) and YYY.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1760

Kaye and Musa

10.47 (1H, s, CHO); $\delta_{\rm C}$ 71.0 (OCH₂Ph), 114.8, 126.2, 126.8, 127.3, 128.0, 128.5, 128.8, 135.3, 135.6 and 159.4 (Ar-C) and 188.3 (C=O); *m*/*z* 246 [M⁺ (³⁵Cl), 9.6%] and 91 (100).

Methyl 3-(2-benzyloxy-3-methoxyphenyl)-3-hydroxy-2-methylenepropanoate 4b (General Procedure)

A mixture of 2-benzyloxy-3-methoxybenzaldehyde **2b** (1.21g, 5 mmol), methyl acrylate **3** (2.37 mL, 26.3 mmol) and DABCO (294 mg, 2.63 mmol) in CDCl₃ (0.25 mL) was stirred in a stoppered reaction flask for three weeks. The mixture was concentrated in vacuo to give a brown oil, which was purified by flash chromatography [elution with hexane–EtOAc (3:1)] to afford, as pale yellow oil, methyl 3-(2-benzyloxy-3-meth-oxyphenyl)-3-hydroxy-2-methylenepropanoate **4b** (1.34 g, 84%) (Found: M^+ , 328.13079. $C_{19}H_{20}O_5$ requires M, 328.13107.); ν_{max} (thin film)/cm⁻¹ 3501 (OH) and 1714 (C=O); δ_H 2.88 (1H, d, OH), 3.69 and 3.89 (6H, 2 × s, 2 × OCH₃), 5.07 (2H, s, OCH₂), 5.71 and 6.27 (2H, 2 × s, C=CH₂), 5.86 (1H, d, CHOH) and 6.89–7.45 (8H, series of multiplets, Ar-H); δ_C 51.8 and 55.8 (2 × OCH₃), 67.7 (CHOH), 74.7 (OCH₂), 112.1, 119.4, 124.1, 125.8, 128.0, 128.2, 128.4, 135.1, 137.6, 141.7, 145.3 and 152.5 (C=CH₂ and Ar-C) and 166.8 (C=O); *m*/*z* 328 (M⁺, 9.7%) and 205 (100).

Methyl 3-(2-benzyloxy-3-ethoxyphenyl)-3-hydroxy-2-methylenepropanoate 4c as a pale yellow oil, (1.37 g, 80%). (Found: M⁺, 342.14677. C₂₀H₂₂O₅ requires M, 342.14672.); ν_{max} (thin film)/cm⁻¹ 3484 (OH) and 1720 (C=O); δ_{H} 1.47 (3H, t, CH₂CH₃), 2.93 (1H, d, OH), 3.69 (3H, s, OCH₃), 4.10 (2H, q, OCH₂CH₃), 5.10 (2H, s, OCH₂Ph), 5.72 and 6.28 (2H, 2 × s, C=CH₂) 5.87 (1H, d, CHOH) and 6.89–7.46 (8H, series of multiplets, Ar-H); δ_{C} 15.0 (OCH₂CH₃), 51.8 (OCH₃), 64.3 (OCH₂CH₃), 68.0 (CHOH), 74.7 (OCH₂Ph), 125.8 (C=CH₂), 113.2, 119.4, 124.1, 128.0, 128.35, 128.42, 135.2, 137.7, 141.7, 145.5 and 151.9 (C=CH₂ and Ar-C) and 166.9 (C=O); *m/z* 342 (M⁺, 15.6%) and 219 (100).

Methyl 3-(2-benzyloxy-3-chlorophenyl)-3-hydroxy-2-methylenepropanoate 4d as pale yellow oil (1.29 g, 78%). (Found: M⁺, 332.08243. $C_{18}H_{17}O_4^{35}Cl$ requires M, 332.08154.); ν_{max} (thin film)/cm⁻¹ 3479 (OH) and 1715 (C=O); δ_H 3.32 (1H, br s, OH), 3.73 (3H, s, OCH₃), 5.05 (2H, s, OCH₂Ph), 5.66 and 6.29 (2H, 2 × s, C=CH₂), 5.88 (1H, s, *CHOH*), 6.84 (1H, d, Ar-H) and 7.17–7.40 (7H, series of multiplets, Ar-H); δ_C 52.0 (OCH₃), 67.8 (CHOH), 70.5 (OCH₂Ph), 126.4 (C=*C*H₂), 113.1, 126.2, 127.3, 127.8, 128.2, 128.5, 128.6, 131.5, 136.3, 140.7 and 154.2 (*C*=CH₂ and Ar-C) and 166.9 (C=O); *m*/*z* 332 [M⁺(³⁵Cl), 5.7%] and 209 (100).

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Baylis–Hillman Methodology in Coumarin Synthesis

1761

Methyl 3-(2-benzyloxy-5-bromophenyl)-3-hydroxy-2-methylenepropanoate 4e as pale yellow crystals (1.58 g, 84%), m.p. 114–116°C. (Found: M⁺, 376.02870. $C_{18}H_{17}O_4^{79}Br$ requires *M*, 376.03102.); ν_{max} (KBr)/cm⁻¹ 3217 (OH) and 1716 (C=O); δ_H 3.32 (1H, br s, OH), 3.72 (3H, s, OCH₃), 5.04 (2H, s, OCH₂Ph), 5.65 and 6.28 (2H, 2 × s, C=CH₂), 5.88 (1H, s, CHOH), 6.78 (1H, d, Ar-H), 7.30–7.39 (6H, series of multiplets, Ar-H) and 7.54 (1H, d, Ar-H); δ_C 52.0 (OCH₃), 67.7 (CHOH), 70.5 (OCH₂Ph), 113.5, 113.7, 126.4, 127.3, 128.2, 128.6, 130.6, 131.5, 131.9, 136.2, 140.8 and 154.7 (C=CH₂ and Ar-C) and 166.9 (C=O); *m/z* 376 [M⁺ (⁷⁹Br), 11.5%] and 255 (100).

Methyl 3-(2-benzyloxy-3,5-dibromophenyl)-3-hydroxy-2-methylenepropanoate 4f as a pale yellow oil (1.50 g, 66%). (Found: M⁺, 453.94193. C₁₈H₁₆O₄⁷⁹Br₂ requires *M*, 453.94153.); ν_{max} (thin film)/cm⁻¹ 3479 (OH) and 1715 (C=O); $\delta_{\rm H}$ 2.84 (1H, br s, OH) 3.69 (3H, s, OCH₃), 5.07 (2H, d, OCH₂Ph), 5.76 and 6.35 (2H, 2 × s, C=CH₂), 5.81 (1H, d, *CHOH*), 7.35–7.48 (6H, series of multiplets, Ar-H) and 7.68 (1H, d, Ar-H); $\delta_{\rm C}$ 52.1 (OCH₃), 67.2 (CHOH), 75.5 (OCH₂Ph), 126.9 (C=CH₂), 117.7, 118.3, 128.3, 128.5, 128.6, 130.2, 135.6, 136.3, 138.5, 140.5 and 152.5 (*C*=CH₂ and Ar-C) and 166.4 (C=O); *m*/*z* 454 [M⁺ (⁷⁹Br₂), 1.9%] and 333 (100).

Methyl 2-(benzylaminomethyl)-3-(2-benzyloxyphenyl)-3-hydroxypropanoate 5a (General Procedure)

A mixture of methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-methylenepropanoate 4a (0.6 g, 2 mmol) and benzylamine (0.22 mL, 2 mmol) in methanol (4 mL) was stirred in a stoppered reaction flask for 3 days. Excess benzylamine was evaporated in vacuo to give a yellow oil (0.80 g), which was purified by preparative layer chromatography [elution with hexane-MeOH-EtOAc (2:0.1:1)] to afford, as pale yellow crystals, methyl 2-(benzylaminomethyl)-3-(2-benzyloxyphenyl)-3-hydroxypropanoate 5a (0.50 g, 62%), m.p. 94–96°C (Found: MH⁺, 406.201633. C₂₅H₂₇ NO₄ requires M+1, 406.201834.); $\nu_{\rm max}$ (KBr)/cm⁻¹ 3308 (OH) and 1720 (C=O); δ_H 2.54 (1H, dd, CH_ANHCH₂Ph), 3.06-3.13 (2H, complex of overlapping signals, CHCH_BNHCH₂Ph), 3.64 and 3.69 (2H, $2 \times d$, NCH₂Ph), 3.75 (3H, s, OCH₃), 5.13 (2H, 2×d, OCH₂Ph), 5.77 (1H, m, *CHOH*), 6.90–6.96 (2H, m, Ar-H) and 7.20–7.47 (12H, series of multiplets, Ar-H); δ_C 46.2 (CH₂NHCH₂Ph), 47.4 (CHCO₂CH₃), 51.9 (OCH₃), 54.2 (CH₂NHCH₂Ph), 69.6 (OCH₂Ph), 71.8 (CHOH), 111.3, 120.9, 126.8, 127.0, 127.2, 127.7, 128.1, 128.37, 128.42, 128.5, 131.7, 137.0, 139.1 and 154.5 (Ar-C) and 174.2 (C=O); *m*/*z* 405 (M⁺, 0.1%) and 91 (100).

XŤ4

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1762

Kaye and Musa

Methyl 2-(benzylaminomethyl)-3-(2-benzyloxy-3-methoxyphenyl)-3hydroxypropanoate 5b as a pale yellow oil (0.76 g, 87%). (Found: MH⁺, 436.212314. $C_{26}H_{29}O_5N$ requires M + 1, 436.212398.); ν_{max} (thin film)/cm⁻¹ 3325 (OH) and 1732 (C=O); δ_H 2.48 (1H, dd, CH_ANHCH_2Ph), 3.04–3.12 (2H, complex of overlapping signals, $CHCH_BNHCH_2Ph$), 3.65 (2H, s, CH_2NHCH_2Ph), 3.73 and 3.90 (6H, 2 × s, OCH₃), 4.89 and 5.22 (2H, 2 × d, OCH₂), 5.65 (1H, m, *CHOH*) and 6.89–7.53 (13H, series of multiplets, Ar-H); δ_C 46.1 (*CH*₂NHCH₂Ph), 72.1 (CHOH), 74.5 (OCH₂Ph), 111.2, 118.8, 123.9, 127.1, 127.9, 128.19, 128.24, 128.3, 128.4, 137.1, 137.5, 139.0, 143.8 and 152.3 (Ar-C) and 173.8 (C=O); m/z 436 (M⁺, 17.3%) and 120 (100).

Methyl 2-(benzylaminomethyl)-3-(2-benzyloxy-3-ethoxyphenyl)-3hydroxypropanoate 5c as a pale yellow oil (0.64 g, 71%). (Found: MH⁺, 450.228102. C₂₇H₃₁O₅N requires M+1, 450.228048.); ν_{max} (thin film)/cm⁻¹ 3323 (OH) and 1733 (C=O); $\delta_{\rm H}$ 1.49 (3H, t, CH₂CH₃), 2.47 (1H, dd, CH₄NHCH₂Ph), 3.06–3.10 (2H, m, CHCH_BNHCH₂Ph), 3.64 (2H, s, NHCH₂Ph), 3.72 (3H, s, OCH₃), 4.10 (2H, q, OCH₂CH₃), 4.89 and 5.24 (2H, 2 × d, OCH₂Ph), 5.64 (1H, s, CHOH) and 6.86–7.52 (13H, series of multiplets, Ar-H); $\delta_{\rm C}$ (400 MHz, CDCl₃) 15.0 (OCH₂CH₃), 46.2 (CH₂NHCH₂Ph), 48.1 (CHCO₂CH₃), 51.9 (OCH₃), 54.2 (NHCH₂Ph), 64.1 (OCH₂CH₃), 72.2 (CHOH), 74.6 (OCH₂Ph), 112.2, 118.7, 123.9, 127.2, 128.0, 128.28, 128.31, 128.46, 128.50, 137.2, 137.7, 139.1, 143.9 and 151.7 (Ar-C) and 174.0 (C=O); *m/z* 450 (MH⁺, 6.9%) and 91 (100%).

Methyl 2-(benzylaminomethyl)-3-(2-benzyloxy-5-chlorophenyl)-3hydroxypropanoate 5d as a yellow solid (0.61 g, 69%), m.p. 68–70°C. (Found: MH⁺, 440.162907. C₂₅H₂₆O₄N³⁵Cl, requires: M+1, 440.162861.); ν_{max} (KBr)/cm⁻¹ 3298 (OH) and 1732 (C=O); $\delta_{\rm H}$ 2.51 (1H, dd, CH₄NHCH₂Ph), 3.05 (1H, dd, CHCH₂NH), 3.14 (1H, m, CH_BNHCH₂Ph), 3.68 (2H, s, NHCH₂Ph), 3.74 (3H, s, OCH₃), 5.06 (2H, 2 × d, OCH₂Ph), 5.72 (1H, d, CHOH) and 6.83–7.51 (13H, series of multiplets, Ar-H); $\delta_{\rm C}$ 46.3 (CH₂NHCH₂Ph), 47.0 (CHCO₂CH₃), 52.0 (OCH₃), 54.2 (CH₂NH₂CH₂Ph), 70.0 (OCH₂Ph), 71.5 (CHOH), 112.7, 126.3, 126.8, 127.3, 127.4, 127.8, 127.9, 128.2, 128.5, 128.6, 133.8, 136.5, 138.7 and 153.0 (Ar-C) and 173.8 (C=O); *m*/z 440 [MH⁺ (³⁵Cl), 1.8%] and 91 (100).

Methyl 2-(benzylaminomethyl)-3-(2-benzyloxy-5-bromophenyl)-3hydroxypropanoate 5e as a yellow oil (0.61 g, 63%). (Found: MH⁺, 484.112392. C₂₅H₂₆O₄N⁷⁹Br requires M + 1, 484.112345.); ν_{max} (thin film)/cm⁻¹ 3324 (OH) and 1732 (C=O); δ_{H} 2.53 (1H, dd, CH₄NHCH₂Ph), 3.07 (1H, dd, CHCH₂NHCH₂Ph), 3.16 (1H, ddd, YYY.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Baylis-Hillman Methodology in Coumarin Synthesis

1763

CH_BNHCH₂Ph), 3.69 (2H, dd, NHCH₂Ph), 3.75 (3H, s, OCH₃), 5.08 (2H, dd, OCH₂Ph), 5.74 (1H, s, *CH*OH), 6.80 (1H, d, Ar-H), 7.27–7.44 (11H, series of multiplets, Ar-H) and 7.69 (1H, d, Ar-H); $\delta_{\rm C}$ 46.3 (CH₂NHCH₂Ph), 47.0 (*C*HCO₂CH₃), 52.0 (OCH₃), 54.2 (NHCH₂Ph), 69.9 (OCH₂Ph), 71.3 (CHOH), 113.2, 113.6, 126.7, 127.3, 127.9, 128.1, 128.4, 128.5, 130.1, 130.8, 134.1, 136.3, 138.7 and 153.5 (Ar-C) and 173.7 (C=O); *m*/*z* 484 [MH⁺ (⁷⁹Br), 3.0%] and 121 (100).

Methyl 2-(benzylaminomethyl)-3-(2-benzyloxy-3,5-dibromophenyl)-3hydroxypropanoate 5f as a yellow oil (0.80 g, 71%). (Found: MH⁺, 562.022773. C₂₅H₂₅O₄N⁷⁹Br₂, requires: M + 1, 562.022856.); ν_{max} (thin film)/cm⁻¹ 3419 (OH) and 1747 (C=O); $\delta_{\rm H}$ 2.43 (1H, dd, CH_ANHCH₂Ph), 3.02 (1H, m, CHCH₂NH), 3.14 (1H, dd, CH_BNHCH₂Ph), 3.60 (2H, s, NHCH₂Ph), 3.70 (3H, s, OCH₃), 4.81 and 5.15 (2H, 2 × d, OCH₂Ph), 5.59 (1H, d, CHOH) and 7.27–7.57 (12H, series of multiplets, Ar-H); $\delta_{\rm C}$ 46.3 (CH₂NHCH₂Ph), 47.7 (CHCO₂CH₃), 52.1 (OCH₃), 54.2 (NHCH₂Ph), 72.1 (CHOH), 75.2 (OCH₂Ph), 117.9, 118.3, 127.6, 128.3, 128.48, 128.54, 128.6, 128.7, 130.0, 134.8, 136.1, 138.2, 140.6 and 151.3 (Ar-C) and 173.1 (C=O); *m*/*z* 562 [MH⁺ (⁷⁹Br₂), 1.2%] and 92 (100).

Methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-(piperidinomethyl)propanoate 6a (General Procedure)

A mixture of methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-methylenepropanoate 4a (0.56 g, 2 mmol) and piperidine (0.50 mL) in THF (5 mL) was stirred in a stoppered reaction flask for 3 days. Excess piperidine was evaporated in vacuo to give a yellow oil (0.77 g), which was purified by preparative layer chromatography [elution with CHCl₃-EtOAc (3:1)] to afford, as pale yellow crystals, methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-(piperidinomethyl)propanoate **6a** (0.61 g, 80%), m.p 102-104°C. (Found: M⁺, 383.21036. $C_{23}H_{29}NO_4$ requires M, 383.20966.); ν_{max} $(KBr)/cm^{-1}$ 3145 (OH) and 1722 (C=O); δ_H 1.43 (2H, m, $CH_2CH_2CH_2N$, 1.58 (4H, m, CH_2CH_2N), 2.41 and 2.51 (4H, 2 × br s, CH₂CH₂N), 2.69 (1H, d, CH_ANHCH₂Ph), 3.00 (1H, t, CHCH₂NH), 3.26 (1H, m, CH_BNHCH_2Ph), 3.40 (3H, s, OCH_3), 5.05 and 5.10 (2H, 2 × d, OCH₂Ph), 5.38 (1H, d, CHOH), 6.90 (1H, d, Ar-H), 6.94 (1H, t, Ar-H) and 7.18–7.37 (7H, series of multiplets, Ar-H); $\delta_{\rm C}$ 23.9, 25.8 and 54.8 (CH₂CH₂CH₂N), 47.3 (CHCO₂CH₃), 51.5 (OCH₃), 60.0 (CH₂CH₂N), 70.2 (OCH₂Ph), 72.9 (CHOH), 112.0, 120.9, 127.3, 127.7, 128.41, 128.43, 128.7, 130.5, 137.2 and 155.9 (Ar-C) and 172.6 (C=O); m/z 383 (M⁺, 1.0%) and 91 (100).

 \mathbb{N}^{+}

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1764

Kaye and Musa

Methyl 3-(2-benzyloxy-3-methoxyphenyl)-3-hydroxy-2-(piperidinomethyl)propanoate 6b as a pale yellow oil (0.46 g, 55%). (Found: M⁺, 413.22071. C₂₄H₃₁NO₅ requires M, 413.22022; $\delta_{\rm H}$ 1.42 (2H, m, CH₂CH₂CH₂N), 1.57 (4H, m, CH₂CH₂N), 2.37 and 2.52 (4H, 2 × br s, CH₂CH₂N), 2.64 and 2.96 (2H, 2 × dd, CH₂NHCH₂Ph), 3.21 (1H, m, CHCO₂CH₃), 3.41 and 3.88 (6H, 2 × s, OCH₃), 4.97 and 5.13 (2H, 2 × d, OCH₂Ph), 5.31 (1H, d, CHOH), 6.85 (1H, dd, Ar-H), 7.02–7.38 (5H, series of multiplets, Ar-H) and 7.52 (2H, d, Ar-H); $\delta_{\rm C}$ 23.9, 25.9 and 54.7 (CH₂CH₂CH₂N), 47.5 (CHCO₂CH₃), 51.5 and 55.8 (2 × OCH₃), 60.4 (CHCH₂N), 73.3 (CHOH), 74.8 (OCH₂Ph), 111.8, 120.2, 124.0, 127.6, 127.9, 128.2, 136.0, 138.2, 145.7 and 152.7 (Ar-C) and 172.4 (C=O); *m/z* 413 (M⁺, 1.3%) and 99 (100).

Methyl 3-(2-benzyloxy-3-ethoxyphenyl)-3-hydroxy-2-(piperidinomethyl)propanoate 6c as a pale yellow oil (0.50 g, 58%). (Found: M⁺, 427.23545. $C_{25}H_{33}NO_5$ requires M, 427.23587.); δ_H 1.47 (5H, overlapping signals, OCH₂CH₃ and CH₂CH₂CH₂N), 1.54 (4H, m, CH₂CH₂N), 2.37 (2H, br s, CH₂CH₂N), 2.53 (2H, m, CH₂CH₂N), 2.64 and 2.99 (2H, dd, CHCH₂N), 3.21 (1H, m, CHCO₂CH₃), 3.40 (3H, s, OCH₃), 4.06 (2H, q, OCH₂CH₃), 4.98 and 5.13 (2H, 2 × d, OCH₂Ph), 5.30 (1H, d, CHOH) and 6.84–7.53 (8H, series of multiplets, Ar-H); δ_C 15.0 (OCH₂CH₃), 23.9, 25.9 and 54.7 (CH₂CH₂CH₂N), 47.4 (CHCO₂CH₃), 51.5 (OCH₃), 60.3 (CH₂N), 64.2 (OCH₂CH₃), 73.4 (CHOH), 74.8 (OCH₂Ph), 113.0, 120.1, 123.9, 127.6, 128.1, 128.2, 136.1, 138.3, 146.0 and 152.0 (Ar-C) and 172.5 (C=O); *m*/*z* 427 (M⁺, 1.2%) and 99 (100).

Methyl 3-(2-benzyloxy-5-chlorophenyl)-3-hydroxy-2-(piperidinomethyl)propanoate 6d as a pale yellow oil (0.67 g, 63%). (Found: M⁺, 417.17090. C₂₃H₂₈NO₄³⁵Cl requires M, 417.17069.); $\delta_{\rm H}$ 1.43 (2H, m, CH₂CH₂CH₂N), 1.58 (4 H, m, CH₂CH₂N), 2.40 and 2.52 (4H, 2 × br s, CH₂CH₂N), 2.64 and 2.99 (2H, 2 × dd, CHCH₂N), 3.11 (1H, m, CHCO₂CH₃), 3.42 (3H, s, OCH₃), 5.04 (2H, 2 × d, OCH₂Ph), 5.41 (1H, d, CHOH), 6.80 (1H, d, Ar-H) and 7.13–7.46 (7H, series of multiplets, Ar-H); $\delta_{\rm C}$ 23.9, 25.9 and 54.8 (CH₂CH₂CH₂N), 47.3 (CHCO₂CH₃), 51.5 (OCH₃), 59.9 (CH₂CH₂N), 70.5 (OCH₂Ph), 71.9 (CHOH), 113.2, 126.1, 127.2, 127.9, 128.2, 128.4, 128.5, 132.8, 136.7 and 154.3 (Ar-C) and 172.2 (C=O); *m*/*z* 417 [M⁺ (³⁵Cl), 1.2%] and 98 (100).

Methyl 3-(2-benzyloxy-5-bromophenyl)-3-hydroxy-2-(piperidinomethyl)propanoate 6e as a pale yellow oil (0.60 g, 62%). (Found: M⁺, 461.12015. C₂₃H₂₈NO₄⁷⁹Br requires M, 461.12017.); ν_{max} (thin film)/cm⁻¹ 3419 (OH) and 1732 (C=O); $\delta_{\rm H}$ 1.43 (2H, m, CH₂CH₂CH₂N), 1.57 (4H, m, CH₂CH₂N), 2.39 and 2.51 (4H, 2 × br s, YYY.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Baylis-Hillman Methodology in Coumarin Synthesis

1765

CH₂CH₂N), 2.64 (1H, m, CHCH_AN), 2.99 (1H, t, CHCH_BN), 3.10 (1H, m, CHCO₂CH₃), 3.42 (3H, s, OCH₃), 5.03 (2H, q, $2 \times d$, OCH₂Ph), 5.41 (1H, d, CHOH), 6.75 (1H, d, Ar-H), 7.27–7.42 (6H, series of multiplets, Ar-H) and 7.53 (1H, d, Ar-H); $\delta_{\rm C}$ 23.9, 25.8 and 54.7 (CH₂CH₂CH₂CH₂N), 47.3 (CHCO₂CH₃), 51.5 (OCH₃), 59.8 (CHCH₂N), 70.4 (OCH₂Ph), 71.8 (CHOH), 113.4, 113.6, 127.1, 127.9, 128.5, 131.15, 131.17, 133.2, 136.6, 154.7 (Ar-C) and 172.1 (C=O); *m/z* 462 [M⁺ (⁷⁹Br), 3.4%] and 99 (100).

Methyl 3-(2-benzyloxy-3,5-dibromophenyl)-3-hydroxy-2-(piperidinomethyl)propanoate 6f as a pale yellow oil (0.73 g, 65%). (Found: M⁺, 539.02614. $C_{23}H_{27}NO_4^{79}Br_2$ requires M, 539.03068.); δ_H 1.44 (2H, m, $CH_2CH_2CH_2N$), 1.56 (4H, m, CH_2CH_2N), 2.38 and 2.56 (4H, 2 × br s, CH_2CH_2N), 2.63 (1H, d, $CHCH_AN$), 3.02 (2H, overlapping multiplets, $CHCH_BN$), 3.42 (3H, s, OCH_3), 4.91 and 5.12 (2H, 2 × d, OCH_2Ph), 5.24 (1H, d, *CHOH*), 7.33–7.53 (5H, series of multiplets, Ar-H),7.59 (1H, d, Ar-H) and 7.64 (1H, d, Ar-H); δ_C 23.8, 25.8 and 54.8 ($CH_2CH_2CH_2N$), 47.3 ($CHCO_2CH_3$), 51.8 (OCH_3), 60.4 ($CHCH_2N$), 73.1 (CHOH), 75.5 (OCH_2Ph), 117.6, 118.4, 127.9, 128.1, 128.4, 130.9, 135.1, 136.8, 139.6 and 152.8 (Ar-C) and 171.5 (C=O); m/z 539 [M⁺ (⁷⁹Br₂), 0.9%] and 91 (100).

3-(Benzylaminomethyl)coumarin 7a (General Procedure)

A mixture of methyl 2-(benzylaminomethyl)-3-(2-benzyloxyphenyl)-3-hydroxypropanoate 5a (490 mg, 1.21 mmol) and pre-equilibrated 10% Pd-C catalyst (84 mg) in 95% EtOH (6.7 mL) was hydrogenated at room temperature and atmospheric pressure. (Hydrogen absorption ceased after the uptake of one equivalent of hydrogen.) The mixture was filtered and the solvent removed in vacuo to give the crude mixture (360 mg) as a pale yellow oil, which was purified using preparative layer chromatography [on silica; elution with CHCl3-EtOAc (3:1)] to afford, as a pale yellow solid, 3-(benzylaminomethyl)coumarin 7a (170 mg, 53%), m.p. 70–74°C. (Found: M⁺, 265.10796. $C_{17}H_{15}O_2N$ requires M, 265.11028.); $\nu_{\rm max}$ (KBr)/cm⁻¹ 3323 (N-H) and 1713 (C=O); $\delta_{\rm H}$ 1.95 (1H, br, s, NH), 3.76 (2H, d, 1'-CH₂), 3.86 (2H, s, CH₂Ph), 7.23-7.51 (9H, series of overlapping signals, Ar-H) and 7.72 (1H, s, 4-H); $\delta_{\rm C}$ 48.3 and 53.2 $(2 \times CH_2)$, 116.4, 119.2, 124.3, 127.0, 127.4, 127.5, 128.1, 128.4, 130.9, 139.1, 139.7 and 153.1 (Ar-C) and 161.4 (C=O); m/z 265 (M⁺, 0.9%) and 174 (100).

3-(Benzylaminomethyl)-8-methoxycoumarin 7b as a pale yellow oil (190 mg, 50%). (Found: M⁺, 295.11855. $C_{18}H_{17}O_3N$ requires M, 295.12084.); ν_{max} (KBr)/cm⁻¹ 3394 (NH) and 1714 (C=O); δ_H 1.88 (1H, br s, NH), 3.76 (2H, d, 1'-CH₂), 3.84 (2H, s, CH₂Ph), 3.95 (3H, s,

 \mathbb{H}

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1766

Kaye and Musa

OCH₃), 7.04 (2H, d, Ar-H), 7.17–7.36 (6H, series of multiplets, Ar-H) and 7.69 (1H, d, 4-H); $\delta_{\rm C}$ 48.4 and 53.2 (2 × CH₂), 56.3 (OCH₃), 113.0, 119.1, 120.0, 124.2, 127.1, 127.7, 128.2, 128.5, 139.3, 139.7, 142.9 and 147.1 (Ar-C) and 160.9 (C=O); m/z (FAB) 296 (MH⁺, 100%).

3-(Benzylaminomethyl)-8-ethoxycoumarin 7c as a pale yellow solid (250 mg, 66%), m.p. 98–102°C. (Found: M⁺, 309.13418. $C_{19}H_{19}O_3N$ requires M, 309.13649.); $\nu_{max}(KBr)/cm^{-1}$ 3300 (NH) and 1712 (C=O); δ_H 1.49 (3H, t, OCH₂*CH*₃), 2.00 (1H, br s, 3.75 (2H, d, 1'-CH₂), 3.84 (2H, s, CH₂Ph), 4.20 (2H, q, O*CH*₂CH₃), 7.01–7.36 (8H, series of multiplets, Ar-H) and 7.68 (1H, s, 4-H); δ_C 14.7 (OCH₂*CH*₃), 48.4 and 53.1 (2 × CH₂), 64.9 (OCH₂CH₃), 114.3, 119.0, 120.0, 124.2, 127.0, 127.5, 128.1, 128.4, 139.3, 139.8, 143.1 and 146.4 (Ar-C) and 161.0 (C=O); *m*/*z* (FAB) 310 (MH⁺, 100%).

3-(Benzylaminomethyl)-6-chlorocoumarin 7d as a yellow solid (190mg, 50%), m.p. 106–110°C. (Found: M⁺, 298.06240. $C_{17}H_{14}O_3N^{35}Cl$ requires M – 1, 298.06348.); ν_{max} (KBr)/cm⁻¹ 3322 (NH) and 1719 (C=O); δ_{H} 1.82 (1H, br s, NH), 3.74 (2H, d, 1'-CH₂), 3.85 (2H, s, CH₂Ph), 7.23–7.45 (8H, series of multiplets, Ar-H) and 7.69 (1H, s, 4-H); δ_{C} 48.1 and 53.2 (2 × CH₂), 117.8, 120.3, 126.7, 127.1, 128.0, 128.4, 128.8, 129.5, 130.8, 137.7, 139.6 and 151.4 (Ar-C) and 160.7 (C=O); *m/z* (FAB) 300 [MH⁺ (³⁵Cl), 96.1%] and 91 (100).

3-(Piperidinomethyl)coumarin 8a and 3-methylcoumarin 9a (General Procedure)

A mixture of methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-(piperidinomethyl)propanoate **5a**, (466 mg, 1.22 mmol) and pre-equilibrated 10% Pd-C catalyst (84 mg) in absolute EtOH (6.7 mL) was hydrogenated at room temperature and atmospheric pressure for 6 h. The resulting mixture was filtered and the solvent removed from the filtrate in vacuo to give a pale yellow oil (380 mg), which was purified by preparative layer chromatography [on silica; elution with CHCl₃–EtOAc (3:1)] to afford two products:

(i) 3-(Piperidinomethly)coumarin 8a as a brown solid (150 mg, 51%), m.p. 66–68°C. (Found: M⁺, 243.12588. $C_{15}H_{17}O_2N$ requires M, 243.12593.); ν_{max} (KBr)/cm⁻¹ 1723 (C=O); δ_H 1.46 (2H, m, CH₂CH₂CH₂N), 1.59 (4H, m, CH₂CH₂N), 2.48 (4H, br s, CH₂CH₂N), 3.42 (2H, d, J 0.4 Hz, 1'-CH₂), 7.23–7.49 (4H, series of multiplets, Ar-H) and 7.78 (1H, s, Ar-H); δ_C 24.1, 25.9 and 54.7 (CH₂CH₂CH₂N), 56.9 (1'-CH₂), 116.3, 119.3, 124.2, 126.0, 127.5, 130.7, 139.4 and 152.9 (Ar-C) and 161.5 (C=O); m/z 243 (M⁺, 62.9%) and 200 (100); and

(ii) 3-Methylcoumarin 9a as a pale yellow solid (40 mg, 20%).^[18]

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Baylis-Hillman Methodology in Coumarin Synthesis

1767

The general procedure was followed. Work-up and chromatography afforded:

(i) 8-Methoxy-3-(piperidinomethyl)coumarin 8b as a pale yellow oil (150 mg, 45%). (Found: M^+ , 273.13684. $C_{16}H_{19}O_3N$ requires M, 273.13649.); ν_{max} (thin film)/cm⁻¹ 1714 (C=O); δ_H 1.45 (2H, m, CH₂CH₂CH₂CH₂N), 1.60 (4H, m, CH₂CH₂N), 2.47 (4H, t, CH₂CH₂N), 3.42 (2H, d, 1'-CH₂), 3.93 (3H, s, OCH₃), 7.02 (1H, d, Ar-H), 7.06 (1H, d, Ar-H), 7.18 (1H, t, Ar-H) and 7.77 (1H, s, Ar-H); δ_C 24.1, 26.0 and 54.7 (CH₂CH₂CH₂N), 56.2 (OCH₃), 56.9 (1'-CH₂), 112.7, 119.1, 120.1, 124.1, 126.3, 139.7, 142.7 and 147.0 (Ar-C) and 161.1 (C=O); *m*/*z* 273 (M⁺, 91.2%) and 230 (100); and

(ii) 8-Methoxy-3-methylcoumarin 9b as a grey solid, (22 mg, 9.5%), m.p. 68–72°C. (Found: M⁺, 190.06299. $C_{11}H_{10}O_3$ requires M, 190.06299.); ν_{max} (KBr)/cm⁻¹ 1716 (C=O); δ_H 2.20 (3H, s, CH₃), 3.94 (3H, s, OCH₃), 6.99 (2H, t, Ar-H), 7.16 (1H, t, Ar-H) and 7.48 (1H, s, 4-H); δ_C 17.2 (CH₃), 56.2 (OCH₃), 112.4, 118.4, 120.2, 124.1, 126.1, 139.3, 142.9 and 147.0 (Ar-C) and 161.6 (C=O); *m/z* 190 (M⁺, 100%).

The general procedure was followed. Work-up and chromatography afforded:

(i) 8-Ethoxy-3-(piperidinomethyl)coumarin 8c as a pale yellow oil (170 mg, 49%). (Found: M⁺, 287.15293. $C_{17}H_{21}O_3N$ requires M, 287.15214.); ν_{max} (thin film)/cm⁻¹ 1714 (C=O); δ_H 1.47 (5H, m, OCH₂CH₃ and CH₂CH₂CH₂N), 1.62 (4H, m, CH₂CH₂N), 2.49 (4H, t, CH₂CH₂N), 3.45 (2H, s, 1'-CH₂), 4.17 (2H, q, OCH₂CH₃), 7.02 and 7.05 (2H, 2 × d, Ar-H), 7.15 (1H, t, Ar-H) and 7.77 (1H, s, 4-H); δ_C 14.8 (OCH₂CH₃), 24.2, 26.0 and 54.7 (CH₂CH₂CH₂N), 56.9 (1'-CH₂), 65.0 (OCH₂CH₃), 114.3, 119.1, 120.3, 124.1, 126.3, 139.8, 143.1 and 146.4 (Ar-C) and 161.3 (C=O); *m*/*z* 287 (M⁺, 74.4%) and 176 (100); and

(ii) 8-Ethoxy-3-methylcoumarin 9c as a pale yellow oil (35mg, 14%). (Found: M⁺, 204.07884. $C_{12}H_{12}O_3$ requires M, 204.07864.); ν_{max} (thin film)/cm⁻¹ 1714 (C=O); $\delta_{\rm H}$ 1.47 (3H, t, CH₂CH₃), 2.19 (3H, d, 3-CH₃), 4.16 (2H, q, OCH₂CH₃), 6.95 and 6.98 (2H, 2 × dd, Ar-H), 7.13 (1H, t, Ar-H) and 7.47 (1H, dd, Ar-H); $\delta_{\rm C}$ 14.7 (OCH₂CH₃), 17.1 (3-CH₃), 64.8 (OCH₂CH₃), 113.7, 118.4, 120.3, 124.0, 125.9, 139.4, 143.1 and 146.3 (Ar-C) and 161.8 (C=O); m/z 204 (M⁺, 59.1%) and 176 (100).

The general procedure was followed. Work-up and chromatography afforded:

(i) 6-chloro-3-(1-piperidinylmethyl)coumarin 8d, as a pale yellow solid (205 mg, 61%), m.p. 116–118°C. (Found: M⁺, 277.08708. $C_{15}H_{16}O_2N^{35}Cl$ requires M, 277.08696.); $\nu_{max}(KBr)/cm^{-1}$ 1724 (C=O); δ_H 1.47 (2H, m, $CH_2CH_2CH_2N$), 1.63 (4H, m, CH_2CH_2N), 2.48 (4H, t, CH_2CH_2N), 3.42 (2H, d, 1'-CH₂), 7.25 (1H, t, Ar-H),

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1768

Kaye and Musa

7.40 and 7.42 (2H, 2×dd, Ar-H), 7.48 (1H, d, Ar-H) and 7.72 (1H, s, 4-H); $\delta_{\rm C}$ 24.2, 26.1 and 54.8 (CH₂CH₂CH₂N), 57.0 (1'-CH₂), 117.8, 120.6, 126.8, 127.8, 129.5, 130.7, 138.0 and 151.4 (Ar-C) and 161.0 (C=O); *m*/*z* 277 [M⁺ (³⁵Cl), 52.3%] and 234 (100); and

(ii) 6-chloro-3-methylcoumarin 9d, as a pale yellow solid (22 mg, 9%).^[18]

Methyl 3-(2-hydroxyphenyl)-2-methylpropanoate 11

A mixture of methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-methylenepropanoate **4a** (0.36 g, 1.2 mmol) and pre-equilibrated 10% Pd-C catalyst (84 mg) in absolute EtOH (6.7 mL) was hydrogenated at room temperature and atmospheric pressure for 6 h. The mixture was filtered and the solvent removed from the filtrate in vacuo to give a yellow oil (204 mg), which was purified using flash chromatography [elution with hexane– EtOAc (3:1.5)] followed by extraction with acetone to afford, as a pale yellow oil, methyl 3-(2-hydroxyphenyl)-2-methylpropanoate **11** (186 mg, 80%). (Found: M⁺, 194.09567. C₁₁H₁₄O₃ requires M, 194.09429.); ν_{max} (thin film)/cm⁻¹ 3396 (OH) and 1709 (C=O); $\delta_{\rm H}$ 1.26 (3H, d, 2-CH₃), 2.70 (1H, dd, *CH*_AH), 2.86 (1H, m, *CH*CH₃), 3.01 (1H, dd, *CH*_BH), 3.65 (3H, s, OCH₃), 6.84 (2H, m, Ar-H), 6.92 (1H, br s, ArOH), and 7.05–7.11 (2H, m, Ar-H); $\delta_{\rm C}$ 17.9 (CH*C*H₃), 33.5 (CH₂), 40.7 (CHCH₃), 52.1 (OCH₃), 116.8, 120.5, 125.8, 127.9, 131.2 and 154.2 (Ar-C) and 178.7 (C=O); *m*/*z* 194 (M⁺, 11.5%) and 162 (100).

Methyl 3-(2-benzyloxyphenyl)-2-methylpropenoate 12

A solution of methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-methylenepropanoate 4a (0.30 g, 1 mmol) in ethanol (4 mL) was stirred, under N_2 , in a two-necked, round-bottomed flask, immersed in a water bath at 25°C. Pre-equilibrated 10% Pd-C catalyst (84 mg) was then added, followed by 1,4-cyclohexadiene (0.94 mL, 10 mmol). The resulting mixture was boiled under reflux for 2h and filtered through celite. The solid residue was washed with ethanol (ca. 5 mL), and the filtrate and washings were combined and evaporated in vacuo to afford a crude product (0.25 g), which was purified using preparative layer chromatography [elution with hexane-EtOAc (3:1)] to afford, as a yellow oil, methyl 3-(2-benzyloxyphenyl)-2-methylpropenoate 12 (50 mg, 18%). (Found: M⁺, 282.12610. $C_{18}H_{18}O_3$ requires M, 282.12559.); ν_{max} (thin film)/cm⁻¹ 1711 (C=O); δ_H 2.08/2.12^[19] (3H, 2 × d, J 1.6 and 1.6 Hz, CH₃C=C), 3.59/3.82 (3H, 2 × s, OCH₃), 5.10/5.14 (2H, 2 × s, OCH₂OPh), 6.90–7.44 (9H, series of multiplets, Ar-H) and 7.95 (1H, br s, ArCH=C)^[20]; m/z 282 (M⁺, 15.4%) and 92 (100).

STA.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Baylis-Hillman Methodology in Coumarin Synthesis

1769

3-(Ethylsulfanylmethyl)coumarin 13

To a solution of methyl 3-(2-benzyloxyphenyl)-3-hydroxy-2-methylenepropanoate 4a (0.22 g, 0.72 mmol) in EtSH (2 mL) was added boron trifluoride etherate (1 mL, 8 mmol), and the resulting mixture was stirred at room temperature for 40 min. The mixture was poured into water and extracted with Et₂O. The combined organic extracts were washed with satd. brine, dried (anhyd. Na₂SO₄), filtered and concentrated in vacuo to afford an oil (0.54g), which was purified using preparative layer chromatography [elution with hexane-EtOAc (3:1)] to afford, as a yellow solid, 3-(ethylsulfanylmethyl)coumarin 13 (15 mg, 10%), m.p. 68-72°C (Found: M⁺, 220.05715. C₁₂H₁₂O₂S requires M, 220.05580.); $\nu_{\rm max}$ (KBr)/cm⁻¹ 1720 (C=O); $\delta_{\rm H}$ 1.29 (3H, t, SCH₂CH₃), 2.58 (2H, q, SCH₂CH₃), 3.66 (2H, s, CH₂S), 7.27 (1H, d, Ar-H), 7.33 (1H, d, Ar-H), 7.48 (2H, d, Ar-H) and 7.71 (1H, s, Ar-H); $\delta_{\rm C}$ 14.4 (SCH₂CH₃), 26.3 and 30.8 (CH₂SCH₂CH₃) 116.6, 119.2, 124.4, 126.4, 127.5, 131.2, 139.4 and 153.3 (Ar-C) and 161.1 (C=O); m/z (FAB) 220 (M⁺, 37%) and 160 (100).

ACKNOWLEDGMENT

The authors thank the National Research Foundation (NRF) and Rhodes University for generous financial support.

REFERENCES

- Murray, R.D.H. Progress in the Chemistry of Natural Products; Herz, W., Grisebach, H., Kirby, G.W., Eds.; Springer-Verlag: Wien-New York, 1978; 199–429.
- Hermodson, M.A.; Barker, W.M.; Link, K.P. J. Med. Chem. 1971, 14, 167; Conlin, G.M.; Gear, J.R. J. Nat. Prod. 1993, 56 (8), 1402–1405.
- Periers, A.-M.; Laurin, P.; Benedetti, Y.; Lachaud, S.; Ferroud, D.; Iltis, A.; Haesslein, J.-L.; Klich, M.; L'Hermite, G.; Musicki, B. Tetrahedron Lett. 2000, 41, 867–871; Peixoto, C.; Laurin, P.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. Tetrahedron Lett. 2000, 41, 1741–1745.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1770

Kaye and Musa

- Fuller, R.W.; Bokesch, H.R.; Gustafson, K.R.; McKee, T.C.; Cardellina, J.H. II; McMahon, J.B.; Cragg, G.M.; Soejarto, D.D.; Boyd, M.R. Bioinorganic and Medicinal Chemistry Letters 1994, 4 (16), 1961–1964.
- Bode, M.L.; Kaye, P.T. J. Chem Soc., Perkin Trans. 1 1990, 2612–2613.
- 6. Familoni, O.B.; Kaye, P.T.; Klaas, P.J. Chem. Commun. 1998, 2563–2564.
- 7. Kaye, P.T.; Robinson, R.S. Synth. Commun. 1996, 26, 2085-2097.
- Bacsa, J.; Kaye, P.T.; Robinson, R.S. S. Afr. J. Chem. 1998, 51 (1), 47–54; Bode, M.L.; English, R.B.; Kaye, P.T. S. Afr. J. Chem. 1992, 45 (1), 25–27.
- Kaye, P.T.; Nocanda. X.W. J. Chem. Soc., Perkin Trans. 1 2000, 1331–1332.
- 10. Kaye, P.T.; Nocanda, X.W. Synthesis 2001, (16), 2389–2392.
- 11. Robinson, R. Ph.D. thesis, Rhodes University, 1997.
- Drewes, S.E.; Njamela, O.L.; Emslie, N.D.; Ramesar, N.; Field, J.S. Synth. Commun. 1993, 23 (20), 2807–2815.
- 13. Weir, J.R.; Patel, B.A.; Heck, R.F. J. Org. Chem. **1980**, 45, 4926–4931.
- 14. Harris, T.D.; Roth, G.P. J. Org. Chem. 1979, 44 (12), 2004–2007.
- Merz, K.W.; Fink, J. Arch. Pharm. 1956, 289, 347–358; Chem. Abstr. 1957, 51, 3498a.
- Profft, E. J. Prakt. Chem. [4], 1957, 5, 175–181. Chem. Abstr. 1958, 52, 10940d.
- 17. Raiford, L.; Chas.; Tanzer, L.K. J. Org. Chem. 1941, 6, 722-731.
- 18. Cartwright, G.A.; McNab, H. J. Chem. Res. (S) 1997, 296–297.
- 19. The chemical shift data reported in this format reflect a mixture (1:1.7) of the geometric isomers.
- 20. The COSY spectrum indicates weak coupling to the allylic methyl protons and to an aromatic proton.

Received in the USA August 16, 2002