
10.1021/ol4010323 r XXXX American Chemical Society

ORGANIC
LETTERS

XXXX
Vol. XX, No. XX

000–000

Parallel Copper Catalysis:
Diastereoselective Synthesis
of Polyfunctionalized Azetidin-2-imines

Yanpeng Xing, Hongyang Zhao, Qiongyi Shang, Jing Wang, Ping Lu,* and
Yanguang Wang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

orgwyg@zju.edu.cn; pinglu@zju.edu.cn

Received April 8, 2013

ABSTRACT

An efficient and diastereoselective synthesis of highly functionalized azetidin-2-imines has been achieved through a parallel catalysis strategy,
including a copper-catalyzed azide�alkyne cycloaddition, a copper-catalyzed Csp�Csp2 cross-coupling reaction, and an intermolecular [2 þ 2]
cycloaddition. The products could be conveniently converted into the structurally interesting dihydroazeto[1,2-a]benzo[e]azepin-2(4H)-imines.

As a new concept, cascade catalysis1 or concurrent
tandem catalysis2 is becoming a rapid, efficient, and con-
venient strategy in organic synthesis. This strategy inte-
grates multiple catalytic cycles in a single procedure and
allows sophisticated compounds to be easily prepared
from commercially available starting materials.3 Since
both time and resources can be efficiently saved by simpli-
fying the operating procedures, this concept fits the basic
requirements of green chemistry and is of unique impor-
tance for unstable intermediates.

Recently, copper-catalyzed azide�alkyne cycloadditions
(CuAACs) were developed for the formation of keteni-
mines,4,5 which could be efficiently transformed into a
variety of nitrogen-containing heterocyclic compounds
with economic and ecological values.6,7 Inspired by our
previous success with ketenimine chemistry3d,7 and the
literature on the copper-catalyzedCsp�Csp2 cross-coupling
reaction,8 we became interested in cascade reactions that
can combine a copper-catalyzed azide�alkyne cycloaddi-
tion and a copper-catalyzed Csp�Csp2 cross-coupling in a
parallel catalysis approach (Figure 1).
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Our investigation started with the reaction of phenyla-
cetylene (1a), 4-methylbenzenesulfonyl azide (2a), and
imidoyl chloride (3a) as the model reaction using CuI as
a single catalyst source (Table 1, entry 1). Primarily, a four-
component adduct 4a was isolated in 64% yield after the
reaction was conducted in THF at room temperature for
6 h. The relative configuration of 4a was comparatively
confirmedbyX-ray crystallographic analysis of its analogs
4b and 4q as well as its derivative 7a,9 while an 85:15
cis/trans ratio for 4a was determined with 1H NMR
spectroscopy. Since 4a contains an azetidin-2-one core,
which is the key structure unit of a large class of antibiotics
and might potentially possess biological activity,10 we
screened the reaction conditions to develop an efficient
approach to the azetidin-2-one ring system. As shown in
Table 1, the best yield and stereoselectivity were obtained
when the reaction was carried out in dichloromethane
(DCM) using 10 mol % CuI as the catalyst and 3 equiv
of Et3N as the base (Table 1, entries 5 and 13).

Under the optimized reaction conditions, we investi-
gated the scope of substrates. A variety of terminal alkynes
1a�1f were examined for this transformation (Table 2).

Both aromatic alkynes (Table 2, entries 1�5) and aliphatic
alkynes (Table 2, entry 6) reacted smoothly with 2a and 3a

to afford the corresponding azetidin-2-ones 4a�4f in yields

between 63% and 76%. The electronic effect of the sub-
stituent on aromatic ring of aromatic alkynes was not
apparent. However, it indeed affected the diastereomeric
ratio (dr) of the products. 1-Ethynyl-4-methylbenzene (1b)
and 1-ethynyl-4-methoxybenzene (1c) produced 4b and 4c

with dr values of 84:16 and 77:23, respectively, while
excellent diastereoselectivity (dr > 95:5) was observed
for 4a and 4d�4f.
Both aryl sulfonyl azides (Table 3, entries 1�6) and alkyl

sulfonyl azide (Table 3, entry 7) worked for the reaction to
afford the desired products 4g�4m in moderate to excellent
yields. Among these tested azides, naphthalene-2-sulfonyl
azide furnished 4k in the best yield (95%) with the highest dr
value (>95:5) (Table 3, entry 5), while 2,4,6-trimethylbenze-
nesulfonyl azideproduced4j in the lowest yield (60%)with the
lowest dr value (77:23) althoughahigher reaction temperature
and a longer reaction time were applied (Table 3, entry 4).
To further examine the generality of this method, var-

ious imidoyl chlorides 3 were allowed to react with 1a�1b

and 2a under the established conditions (Table 4). Imidoyl
chlorides 3 were prepared from the corresponding amides
and sulfonyl chlorides at refluxing temperature for 3 h.
When the imidoyl chlorides 3b�3f derived from N-benzyl
amideswere used as the substrates, 4n�4rwere obtained in
yields between 66% and 83% with excellent diastereos-
electivities (Table 4, entries 1�5). For the imidoyl chlorides

Figure 1. Cascade strategy involving parallel catalysis.

Table 1. Optimization of the Reaction Conditionsa

entry solvent base cat. yield (%)b drc

1 THF Et3N CuI 64 85:15

2 CH3CN Et3N CuI 44 84:16

3 toluene Et3N CuI 53 >95:5

4 DCE Et3N CuI 67 >95:5

5 DCM Et3N CuI 76 >95:5

6 DCM pyridine CuI <10 _

7 DCM DBU CuI <10 _

8 DCM K2CO3 CuI <10 _

9 DCM DABCO CuI NF _

10 DCM Et3N CuCl 39 >95:5

11 DCM Et3N CuBr 47 >95:5

12d DCM Et3N CuI 59 >95:5

13e DCM Et3N CuI 78 >95:5

aReaction conditions: 1a (2.5 mmol), 2a (1.2 mmol), 3a (1 mmol),
base (3mmol), andCu(I) (0.1mmol), solvent (5mL), room temperature,
6 h. b Isolated yield based on 3a. cDetermined from the 1HNMRspectra
of the crude product. dFor 3 h. eFor 12 h.

Table 2. Preparation ofAzetidin-2-imines 4: Scope withRespect
to the Terminal Alkyne Componenta

entry 1 (R1) product yield (%)b drc

1 1a (C6H5) 4a 76 >95:5

2 1b (p-MeC6H4) 4b 70 84:16

3 1c (p-MeOC6H4) 4c 68 77:23

4 1d (p-PhC6H4) 4d 71 >95:5

5 1e (p-BrC6H4) 4e 63 >95:5

6d 1f (n-C5H11) 4f 76 >95:5

aReaction conditions: 1 (2.5 mmol), 2a (1.2 mmol), 3a (1 mmol),
Et3N (3mmol), and Cu(I) (0.1 mmol), DCM (5mL), room temperature,
6 h. b Isolated yield based on 3a. cDetermined from the 1HNMRspectra
of the crude product. d 40 �C, 12 h.
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3g�3j derived frombenzamides with different substituents
at the nitrogen atom, 4s�4v were prepared in 73�93%
yields with dr values varied from 77:23 to>95:5 (Table 4,
entries 6�9).
We assumed that the ynimine 5, generated in situ from

terminal alkyne 1 and imidoyl chloride 3 via a copper-
catalyzed coupling, might be a key intermediate in this
transformation. Therefore, we prepared ynimine 5 from 1b

and 3j in the presence of CuI and then employed 5 for the
subsequent reaction with 2a and 1b (Scheme 1). As we
expected, the desired 4v was obtained with the same dr
value as the one obtained from the one-pot procedure
(Table 4, entry 9).
Since 2 equiv of the terminal alkynes 1 were used in

this transformation, two different terminal alkynes were
sequentially added. As shown in Scheme 2, after the reac-
tion of 1awith 3awas conducted in dichloromethane in the
presence of CuI at room temperature for 2 h, 1-heptyne
(1f), 2a, and additional CuI were sequentially added in one
pot to allow the reaction to proceed for an additional 6 h.
Finally, 6 was obtained in 61% yield with excellent dia-
stereoselectivity (>95:5 dr).
The stereochemistry of this transformation is attractive.

Two aryl groups in the azetidin-2-imine rings are in
cis-configurations (for 4f and 6, heptyl and phenyl are in
a cis-configuration). These results prompted us to look for
theoretical support. 4a, 4h, and 4u were therefore selected
as three representatives,whichhaveexcellent (>95:5dr), good
(84:16 dr), and moderate (77:23 dr) diastereoselectivities,
respectively (Figure 2). We calculated these three pairs of
azetidin-2-iminesandfoundthat theenergydifferencebetween
cis-4a and trans-4a is the largest, while the energy difference
between cis-4u and trans-4u is the smallest. The tendency for
the energy difference eventually supported what we observed
in the diastereoselectivity and implied that cis-azetidin-2-
imines (cis-4) were the thermodynamically favored products.
Based on these results, a possible mechanism is outlined

inScheme 3. In the presenceof a base, the copper-catalyzed

Csp�Csp2 coupling reaction between terminal alkyne 1a

and imidoyl chloride 3a forms the ynimine intermediate
A.11Meanwhile, the copper-catalyzed alkyne�azide cyclo-
addition occurs to form the ketenimine intermediate B.4,5

Subsequently, a [2 þ 2] cycloaddition between A and B

takes place to furnish azetidin-2-imine 4a. The remarkable
diastereoselectivity for the formation of cis-4a can
be contributed to the thermodynamic stability of the
cis-product.

Table 3. Preparation ofAzetidin-2-imines 4: Scope withRespect
to the Azide Componenta

entry 2 (R2) product yield (%)b drc

1 2b (C6H5) 4g 89 >95:5

2 2c (p-MeOC6H4) 4h 92 84:16

3 2d (p-ClC6H4) 4i 87 >95:5

4d 2e (2,4,6-Me3C6H2) 4j 60 77:23

5 2f (2-naphthalenyl) 4k 95 >95:5

6 2g (p-NO2C6H4) 4l 88 >95:5

7 2h (CH3) 4m 66 >95:5

aReaction conditions: 1a (2.5 mmol), 2 (1.2 mmol), 3a (1 mmol),
Et3N (3mmol), and Cu(I) (0.1 mmol), DCM (5mL), room temperature,
6 h. b Isolated yield based on 3a. cDetermined from the 1HNMRspectra
of the crude product. d 40 �C, 12 h.

Table 4. Preparation ofAzetidin-2-imines 4: Scope withRespect
to the Imidoyl Chloride Componenta

entry 1 3 (R3, R4) product/yield (%)b drc

1 1a 3b (p-MeC6H4, Bn) 4n/72 >95:5

2 1a 3c (m-ClC6H4, Bn) 4o/66 >95:5

3 1a 3d (p-MeOC6H4, Bn) 4p/83 >95:5

4 1a 3e (o-BrC6H4, Bn) 4q/69 >95:5

5 1a 3f (p-BrC6H4, Bn) 4r/75 >95:5

6 1a 3g (C6H5, n-C4H9) 4s/87 >95:5

7 1a 3h (C6H5, o-ClBn) 4t/93 >95:5

8 1a 3i (C6H5, c-C6H11) 4u/88 77:23

9 1b 3j (C6H5, p-MeC6H4) 4v/73 80:20

aReaction conditions: 1 (2.5mmol), 2a (1.2mmol), 3 (1mmol), Et3N
(3 mmol), and Cu(I) (0.1 mmol), DCM (5 mL), room temperature, 6 h.
b Isolated yield based on 3. cDetermined from the 1H NMR spectra of
the crude product.

Scheme 1. Preparation of Azetidin-2-imine 4v Step-by-Step

Scheme 2. Preparation of Azetidin-2-imine 6 fromMixedAlkynes
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As a synthetic application of this method, the synthe-
sized azetidin-2-imines 4 were conveniently converted into
dihydroazeto[1,2-a]benzo[e]azepin-2(4H)-imines 7 via an
electrophilic cyclization using 10 equiv of H2SO4 in DCE
(Scheme 4). The structure of 7a was unambiguously con-
firmed by the X-ray crystallographic analysis.9

In conclusion, we have developed a Cu-catalyzed four-
component reactionof imidoly chlorides, sulfonyl azides, and
two terminal alkynes, which afforded polyfunctionalized

azetidin-2-imines in good to excellent yield with high
diastereoselectivity. Startingmaterials are easily accessible.
This one-pot reaction proceeded smoothly at room tem-
perature with easy operation. It occurred in a parallel
catalysis manner, including a copper-catalyzed Csp�Csp2

coupling, a copper-catalyzed alkyne�azide cycloaddition,
and a [2þ 2] cycloaddition. All of these separate reactions
represent the frontier of modern organic chemistry and fit
the basic requirements of green chemistry with high atom
economy. Moreover, the synthesized azetidin-2-imines
could be conveniently converted into the structurally
interesting dihydroazeto[1,2-a]benzo[e]azepin-2(4H)-imines.
Further research on synthetic applications of this method is
underway in our laboratory.
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Figure 2. Rrelative potential energy (kJ/mol) of cis/trans-4a,
cis/trans-4h, and cis/trans-4u, calculated by Spartan 10, using
the DF B3LYP/6-31G* method.

Scheme 3. Proposed Mechanism for the Formation of
Azetidin-2-imines

Scheme 4. Preparation of Dihydroazeto[1,2-a]benzo[e]azepin-
2(4H)-imines 7 from 4
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