ChemComm

COMMUNICATION

Check for updates

Cite this: DOI: 10.1039/d1cc00118c

Received 8th January 2021, Accepted 23rd August 2021

DOI: 10.1039/d1cc00118c

rsc.li/chemcomm

Cell-specific activation of gemcitabine by endogenous H₂S stimulation and tracking through simultaneous fluorescence turn-on⁺

Mrinmoy Maiti,‡^a Shin A. Yoon,‡^b Yujin Cha,^b K. K. Athul,^c Sankarprasad Bhuniya ^b*^c and Min Hee Lee ^{*}

The endogenous H_2S -driven theranostic H_2S -Gem has been invented. The theranostic prodrug H_2S -Gem is selectively activated in cancer cells, releasing active gemcitabine with a simultaneous fluorescence turn-on. H_2S -Gem selectively inhibited cancer cell growth compared to the mother chemotherapeutic gemcitabine. Overall, it is a unique protocol for tracking and transporting chemotherapeutic agents to tumor areas without the guidance of tumor-directive ligands.

Cancer is a major disease burden that threatens people's lives worldwide, and the majority of cancer-related deaths are due to metastasis of the original tumor.¹ Current treatment options at the diagnosis level are multimodal and include chemotherapy, radiotherapy, and surgical resection or combination therapy. Although chemotherapy and radiotherapy show significant treatment modalities for cancer, they are still hindered by acute side effects on neighboring healthy cells/tissues due to their high toxicity and non-selectivity.²⁻⁹ Indeed, cancer cells are resistant to radiotherapy and chemotherapy.^{10,11} Therefore, new concepts are highly desirable for the precise diagnosis and effective treatment of cancer. One such type of modality is theranostics, a modern technology with a bi-functional system that serves as both a therapy and the diagnosis. This technique is particularly interesting as it provides real-time information on cancer therapy. By using this method, different cancer targeting molecules, anticancer drugs, and fluorophores are covalently conjugated through chemical reactions that provide

^a Department of Science, School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India

 $\begin{array}{c} H_{2}S \text{ responsive} \\ \text{Acide molety} \\ \downarrow \\ H_{0} \\ \downarrow \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{1} \\ H_{2} \\ H$

Scheme 1 Activation mechanism of H_2S -Gem for H_2S .

View Article Online View Journal

biodistributed chemotherapeutic and therapeutic interventions

through fluorescence imaging. Several endogenous stimulators

have been considered to develop such an all in one system.¹²

produced to a large extent in several cancer cells, increasing cell proliferation activity.¹³ Mostly, cystathionine β -synthase

(CBS) and cystathionine γ -lyase are the major enzymes respon-

sible for producing endogenous H_2S in cancer cells.¹³ Recently, by considering endogenous H_2S as a stimulator a few theranostic molecules¹⁴ have been developed including inhibition of

cancer cell growth selectively in cancer cells. Thus, we believe

that endogenous H₂S can be a suitable stimulator for transport-

ing chemotherapeutics to the desired area with maximum

secondary amine bond with an inactive form of coumarin

(Scheme 1). Gemcitabine was used as a model drug because it

treats various cancers and has serious adverse effects.^{15,16} In

addition, this strategy may increase the half-life of gemcitabine.

Also, as gemcitabine is a non-fluorescent therapeutic, tracking

with a fluorescent reporter is important. The endogenous H₂S

induced reduction of N_3 to amine, triggering a secondary

amine bond cleavage that releases the gemcitabine via a self-

immolative pathway is proposed in Scheme 1. In this event, the reduction of an azide group to an electron rich NH₂ group in

coumarin will increase the fluorescence intensity. The detail of

In the present work, gemcitabine is linked through a labile

clinical benefits without causing adverse side effects.

Recently, it has been observed that endogenous H₂S is

^b Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea. E-mail: minheelee@sookmyung.ac.kr

^c Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Salt Lake, Kolkata, 700091, India. E-mail: spbhuniya@jisiasr.org

 $[\]dagger$ Electronic supplementary information (ESI) available. See DOI: 10.1039/ d1cc00118c

[‡] These authors equally contributed to this work.

Fig. 1 (a) UV-absorption and (b) fluorescence spectra of H_2S -Gem (5 μ M) for various concentrations of NaHS (0–200 μ M) after 1 h incubation at 37 °C. (c) Plot of fluorescence intensity at 507 nm in the presence of NaHS (0–50 μ M). Fluorescence changes of H_2S -Gem (5 μ M) with NaHS (200 μ M) at different time intervals (d) 0–35 min and (e) 40–180 min. (f) Time-dependent fluorescence changes of H_2S -Gem (5 μ M) in the absence (black) and presence (red) of NaHS (200 μ M). All data were obtained in a PBS (10 mM, pH 7.4) solution containing 1% (v/v) of DMSO using an excitation wavelength of 410 nm.

the synthetic route for H_2S -Gem is available in the ESI† including spectroscopic analysis data (Scheme S1 and Fig. S1–S22).

To continue to prove our concept, initially, we have examined the exogenous H_2S response of H_2S -Gem by recording UV-absorption changes in H_2S (NaHS) treated H_2S -Gem under physiological conditions (Fig. 1a and Fig. S23, ESI†). We observed that the UV-absorption of H_2S -Gem showed a bathochromic shift from 350 nm to 410 nm with increasing doses of H_2S (Fig. 1a). Similarly, in the H_2S dose-dependent titration, we observed the fluorescence intensity at 507 nm increased compared to the shoulder peak at 450 nm (Fig. 1b). The fluorescence increment with different doses of H_2S showed perfect linearity ($R^2 = 0.99$) with a low detection limit (LOD) of 37 nM (Fig. 1c).¹⁷ The time-course study initially (0–35 min) showed increments in fluorescence at 450 nm and 507 nm (Fig. 1d); however, as time progressed (after 35 min), it showed a ratiometric fluorescence change at 450 nm and

Fig. 2 Time-dependent cancer cell labeling. Cells were administered with H₂S-Gem (15 μ M) for 0–80 min. Emission collected in the 505–600 nm region with the excitation wavelength set at 405 nm. Scale bar: 20 μ m.

507 nm (Fig. 1e). The fluorescence intensity reached saturation within 120 min (Fig. 1f).

Further, we tested the chemoselectivity between H_2S -Gem and H_2S in comparison with other biologically relevant analytes such as various metal ions, ROS, Cys, Hcy, GSH, NaNO₂, Na₂CO₃ and ascorbic acid. It was noticed that H_2S -Gem remains inactive in altering the fluorescence signal in all cases (Fig. S24, ESI†). In addition, the kinetic stack plot of H_2S -Gem with 1 mM of various thiols such as Cys, Hcy, GSH and NaHS firmly showed that NaHS dominantly increases the fluorescence of H_2S -Gem, unlike the other thiols (Fig. S25, ESI†). These results proved that H_2S -Gem is chemoselective towards H_2S . Moreover, the pH-dependent chemoselective reaction between H_2S -Gem and H_2S has been investigated. The result in Fig. S26 (ESI†) indicated that within a biologically relevant pH, H_2S -Gem reacted with H_2S . Nonetheless, the reactivity between H_2S -Gem and H_2S is highest in the pH 6 to 8 range.

Next, the H₂S-driven structural changes in H₂S-Gem that cause the fluorescence signal were confirmed using mass analysis of H₂S pretreated H₂S-Gem. It was observed that mass peaks for gemcitabine and the fluorophore appeared (Fig. S27, ESI[†]).

After confirming the H_2S triggered gemcitabine release, we investigated the *in vitro* cell labeling to determine the cellspecific gemcitabine release from H_2S -Gem. In a timedependent fluorescence study, we observed that the extent of fluorescence labeling in a couple of cancer cell lines (HeLa and A549) increased with the incubation period (Fig. 2). It indicated that both cervical cancer cells (HeLa) and adenocarcinoma human alveolar basal epithelial cells (A549) have sufficient endogenous H_2S that released active gemcitabine from H_2S -Gem. On the contrary, H_2S -Gem pretreated human normal fibroblast WI38 cells did not show such fluorescence. Whereas

Fig. 3 Dose-dependent cancer cell labelling. Cells were incubated with H₂S-Gem (0–20 μ M) for 60 min prior to imaging using a confocal microscope. Emission collected in the 505–600 nm region with the excitation wavelength set at 405 nm. Scale bar: 20 μ m.

WI38 cells treated with exogenous H_2S were labeled with green fluorescence (Fig. S28, ESI[†]). This implied that the theranostic H_2S -Gem entered into the WI38 cells, but due to insufficient endogenous H_2S it failed to activate the H_2S -Gem to provide fluorescence images.

Further, in a concentration-dependent study, we observed that the extent of fluorescence labeling in cancer cells (HeLa and A549 cells) increased with the dose of H_2S -Gem (Fig. 3); however, normal fibroblast cells (WI38 cells) did not show any fluorescence under identical conditions. Moreover, the fluorescence intensity also increased according to the concentration of NaHS (Fig. S29, ESI†). This indicated that the endogenous H_2S level in cancer cells is higher than that in normal cells.

Next, we clarified whether such fluorescence images in the H_2S -Gem pretreated cancer cells were due to endogenous H_2S or other thiol species. Thus, we recorded fluorescence images of living cells by altering the formation of endogenous H_2S in living cells. In Fig. 4 and Fig. S30 (ESI⁺), we noticed that while

cells were pretreated with exogenous H_2S (NaHS), the fluorescence images in the green channel increased because of H_2S -Gem. Further, the exogenous addition of a substrate (cysteine) produces excess H_2S ,¹³ which is well reflected in the fluorescence images by an increment in fluorescence intensity. On the other hand, cystathionine β -synthase and cystathionine γ -lyase inhibitor *i.e.* aminooxyacetic acid (AOAA) and *N*-propargyl glycine (PAG)^{13,18} pretreated cancer cells showed a decreased fluorescence signal in the green channel. This suggested that inhibition of the H_2S producing enzymes reduces the release of gemcitabine from the theranostic H_2S -Gem and the formation of the fluorophore.

Finally, we evaluated the anticancer activity of the theranostic H₂S-Gem using both the dose- and time-dependent MTT assay methods. We observed that about 50% of the cell growth was inhibited upon incubation (48-72 h) with 5 µM of H₂S-Gem with A549 and HeLa cells, respectively (Fig. 5a, b and Fig. S31a, ESI^{\dagger}). Concentrations of up to 60 μ M of H₂S-Gem failed to show considerable cell growth inhibition in normal human fibroblast WI38 cells (Fig. 5c and Fig. S31a, ESI⁺). While the theranostic H₂S-Gem has shown cancer cell specific activation of gemcitabine, gemcitabine alone has shown nonspecific cell growth inhibition irrespective of cancer cells and normal WI38 cells (Fig. S31b, ESI[†]). Additionally, the anti-proliferative activity of H₂S-Gem was monitored in NaHS and PAG-treated HeLa cells. Compared to the untreated HeLa cells, for H₂S-Gem, the NaHS-treated cells showed a decreased cell viability whereas the PAG-treated cells exhibited an increased cell viability (Fig. S32, ESI[†]). Additionally, the high cell viability of the released fluorophore pretreated HeLa cells indicates that the growth inhibition of H2S-Gem incubated cancer cells is because of the release of nascent gemcitabine from H₂S-Gem (Fig. S33, ESI[†]). Such specific cell growth inhibition toward cancer cells indicated that endogenous H2S in cancer cells allows H2S-Gem to release active chemotherapeutic gemcitabine. In contrast,

Fig. 4 Confocal microscopy images of H₂S-Gem in HeLa cells. Cells were incubated with (a) gemcitabine (15 μ M) and (b) H₂S-Gem (15 μ M) for 1 h, respectively. (c) Cells were pretreated with H₂S-Gem for 1 h then incubated with NaHS (600 μ M) for 30 min. (d) Cells were pretreated with cysteine (200 μ M) for 1 h then incubated with H₂S-Gem for 1 h. (e) Cells were pretreated with AOAA/PAG (2 mM) for 1 h then incubated with H₂S-Gem for 1 h. (f) Cells were pretreated with AOAA/PAG (2 mM) for 1 h, respectively, then incubated with H₂S-Gem for 1 h. All images were obtained using a laser with an excitation wavelength of 405 nm and a band-path filter of 505–600 nm. Scale bar: 20 μ m. (g) Quantification of the fluorescence intensities from each cell. Error bars indicate the standard deviation (SD). Asterisks indicate statistically significant changes (*** $P \le 0.001$).

insufficient endogenous H_2S formation in WI38 cells disfavors H_2S -Gem to show a considerable extent of anti-proliferative activity.

In conclusion, we demonstrated the endogenous H₂S stimulated theranostic H₂S-Gem for selectively ending the progression of cancer via activation of chemotherapeutic gemcitabine. The theranostic prodrug H₂S-Gem constituted of a combination of coumarin and gemcitabine. It showed UV-absorption at 400 nm and emission at 505 nm in the presence of exogenous H₂S. This theranostic H₂S-Gem was even activated in the presence of a minimal quantity (37 nM) of H₂S. The gemcitabine release process is highly selective toward H₂S, and such a specific activation allows gemcitabine release exclusively in cancer cells. In vitro cellular images indicated that the endogenous H₂S level in cancer cells is relatively high compared to that in the normal WI38 cells. The inhibition assay study indicated that cystathionine β -synthase and cystathionine γ lyase are sources of H₂S formation in cancer cells. It showed selective antiproliferative activity exclusively in the cancer cells (HeLa and A549) over the human normal fibroblast cells (WI38). All of these facts advocated that it is a unique strategy for releasing cargo and selectively tracking therapeutic events in cancer cells without the support of any tumor/cancer cellspecific ligands.

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1F1A1045790). Also, this work is supported by the SERB, India (Grant No. CRG/2019/002068, SB), CSIR-India (Grant No. 02(0386)19/EMR II, SB), and the DST (INT/ RUS/RFBR/392, SB).

Conflicts of interest

There are no conflicts to declare.

Notes and references

- 1 R. L. Siegel, K. D. Miller and A. Jemal, Ca-Cancer J. Clin., 2019, 69, 7-34.
- 2 J. H. Atkins and L. J. Gershell, Nat. Rev. Cancer, 2002, 2, 645-646.
- 3 D. J. Irvine, Nat. Mater., 2011, 10, 342-343.
- 4 J. A. Hubbell and R. Langer, Nat. Mater., 2013, 12, 963-966.
- 5 S. Mura, J. Nicolas and P. Couvreur, Nat. Mater., 2013, 12, 991-1003.

- 6 R. Mahato, W. Tai and K. Cheng, Adv. Drug Delivery Rev., 2011, 63, 659–670.
- 7 S. Zhang, K. H. Chan, R. K. Prud'Homme and A. Link, *Mol. Pharmaceutics*, 2012, 9, 2228–2236.
- 8 E. Kim, D. Kim, H. Jung, J. Lee, S. Paul, N. Selvapalam, Y. Yang, N. Lim, C. G. Park and K. Kim, *Angew. Chem., Int. Ed.*, 2010, 49, 4405–4408.
- 9 G. Cafeo, G. Carbotti, A. Cuzzola, M. Fabbi, S. Ferrini, F. H. Kohnke, G. Papanikolaou, M. R. Plutino, C. Rosano and A. J. P. White, *J. Am. Chem. Soc.*, 2013, 135, 2544–2551.
- 10 C. Sawyers, Nature, 2004, 432, 294-297.
- 11 I. Brigger, C. Dubernet and P. Couvreur, Adv. Drug Delivery Rev., 2012, 64, 24-36.
- 12 (a) Y. Zhou, M. Maiti, A. Sharma, L. Yu, X. W. Lv, J. Shin, M. Won, J. Han, A. Podder, K. N. Bobba, S. Bhuniya and J. S. Kim, J. Controlled Release, 2018, 288, 14-22; (b) A. Sharma, M.-G. Lee, H. Shi, M. Won, J. F. Arambula, J. L. Sessler, J. Y. Lee, S.-G. Chi and J. S. Kim, Chem, 2018, 4, 2370-2383; (c) S. Barman, S. K. Mukhopadhyay, S. Biswas, S. Nandi, M. Gangopadhyay, S. Dey, A. Anoop and N. D. Pradeep Singh, Angew. Chem., 2016, 128, 4266-4270; (d) S. Maiti, N. Park, J. H. Han, H. M. Jeon, J. H. Lee, S. Bhuniya, C. Kang and J. S. Kim, J. Am. Chem. Soc., 2013, 135, 4567-4572; (e) R. Kumar, E.-J. Kim, J. Han, H. Lee, W. S. Shin, H. M. Kim, S. Bhuniya, J. S. Kim and K. S. Hong, Biomaterials, 2016, 104, 119–128; (f) F. Kong, Z. Liang, D. Luan, X. Liu, K. Xu and B. A. Tang, Anal. Chem., 2016, 88, 6450-6456; (g) T. Kim, H. M. Jeon, H. T. Le, T. W. Kim, C. Kang and J. S. Kim, Chem. Commun., 2014, 50, 7690-7693; (h) P. Liu, D. Yan, P. Zhang, F. Zeng, B. Li and S. A. Wu, Chem. Commun., 2015, 51, 9567–9570; (i) D. Dutta, S. M. Alex, K. N. Bobba, K. K. Maiti and S. Bhuniya, ACS Appl. Mater. Interfaces, 2016, 8, 33430-33438.
- 13 C. Szabo, C. Coletta, C. Chao, K. Módis, B. Szczesny, A. Papapetropoulos and M. R. Hellmich, *Proc. Natl. Acad. Sci.* U. S. A., 2013, **110**, 12474–12479.
- 14 (a) H. Zhang, X. Kong, Y. Tang and W. Lin, ACS Appl. Mater. Interfaces, 2016, 8, 16227–16239; (b) D. Zheng, Z. Gao, T. Xu, C. Liang, Y. Shi, L. Wang and Z. Yang, Nanoscale, 2018, 10, 21459–21465; (c) K. N. Bobba, G. Saranya, P. T. Sujai, M. M. Joseph, N. Velusamy, A. Podder, K. K. Maiti and S. Bhuniya, ACS Appl. Bio Mater., 2019, 2, 1322–1330; (d) K. N. Bobba, A. Binoy, S. Koo, A. Podder, N. Mishra, J. S. Kim and S. Bhuniya, Chem. Commun., 2019, 55, 6429–6432; (e) B. Shi, N. Ren, L. Gu, G. Xu, R. Wang, T. Zhu, Y. Zhu, C. Fan, C. Zhao and H. Tian, Angew. Chem., Int. Ed., 2019, 58, 16826–16830.
- 15 A. Henthorn and M. D. Pluth, J. Am. Chem. Soc., 2015, 137, 15330–15336.
- 16 H. C. Zhu, C. X. Liang, X. X. Cai, H. M. Zhang, C. Y. Liu, P. Jia, Z. L. Li, Y. M. Yu, X. Zhang, W. L. Sheng and B. C. Zhu, *Anal. Chem.*, 2019, **92**, 1883–1889.
- 17 S. Y. Park, W. Kim, S. H. Park, J. Han, J. Lee, C. Kang and M. H. Lee, *Chem. Commun.*, 2017, **53**, 4457–4460.
- 18 N. Velusamy, A. Binoy, K. N. Bobba, D. Nedungadi, N. Mishra and S. Bhuniya, *Chem. Commun.*, 2017, 53, 8802.