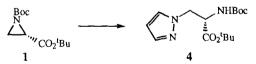


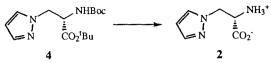
PII: S0040-4039(96)01061-1

Syntheses of (S)- β -Pyrazolylalanine and (S)-Quisqualic Acid from a Serine-derived Aziridine


Christopher N. Farthing, Jack E. Baldwin^{*}, Andrew T. Russell[†], Christopher J. Schofield and Alan C. Spivey[‡]

The Dyson Perrins Laboratory and the Oxford Centre for Molecular Sciences, South Parks Rd., Oxford, OX1 3QY, U.K.

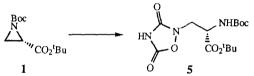
Abstract: The naturally occurring amino acids (S)- β -pyrazolylalanine and (S)-quisqualic acid are synthesised via the nucleophilic ring-openings of an optically active aziridine by pyrazole and 1,2,4-oxadiazolidine-3,5-dione, respectively. Copyright © 1996 Published by Elsevier Science Ltd


Of the known, naturally occurring α -amino acids a significant proportion are derivatives of β -aminoalanine. Many of these have been shown to be biosynthesised from O-acetyl serine in the presence of the appropriate nitrogen nucleophile and one of a variety of enzymes¹. Several useful general routes to β -amino acids have been described². The majority^{2c,d,e} of these can be considered to be 'biomimetic' processes, since they are based on a reaction between a nitrogen nucleophile and an alanine β -cation equivalent. We have reported a concise synthesis of (S)-tert-butyl-N-tert-butoxycarbonylaziridine-2-carboxylate 1 and its use for the preparation of α -amino acid derivatives via its ring-opening with copper 'catalysed' Grignard reagents³. Herein, we exemplify the use of 1 for the preparation of heterocyclic α -amino acids by the syntheses of (S)- β -pyrazolylalanine 2 and (S)-quisqualic acid 3.

 β -Pyrazolylalanine 2, which is isosteric with histidine⁵, was first isolated from *Citrullus vulgaris*, a water melon, in 1957⁴. Several racemic syntheses and resolution procedures for the preparation of 2 have been described, but only one enantiospecific synthesis has been reported^{2c}. We found that treatment of aziridine 1 with pyrazole results in the isolation of protected β -pyrazolylalanine 4 in good yield (Scheme 1).

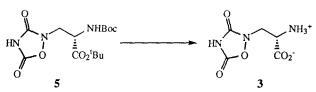
Scheme 1. Reagents and conditions: pyrazole (2 eq.), PhMe, reflux, 48hr, 65-80%

Deprotection of 4 to give 2 (mp 245°C, lit⁶ 239-244°C) was effected by CF₃CO₂H followed by ionexchange chromatography (Scheme 2). The optical rotation of 2 was determined to be +68.5° (c 0.35, H₂O), compared to the literature value⁶ of +72.0° (c 1.0, H₂O).



Scheme 2. Reagents and conditions: CF_3CO_2H , 0°C \rightarrow RT 14hr, then ion-exchange chromatography (Dowex[®] 50W-X8), 75%

(S)-Quisqualic acid 3 is the active ingredient of the ancient Chinese drug Shihchuntze, an anthelmintic made from seeds of *Quisqualis indica*⁷. Quisqualic acid 3 is unique in that it is the only known compound to act as an agonist at multiple excitatory amino acid receptor subtypes in the central nervous system⁸. The first enantiospecific synthesis of quisqualic acid employed N-Boc-(S)-serine as starting material, and proceeded in an overall yield of 36% over 7 steps^{2a}. More recently, Guibourdenche *et al.*⁹ reported an asymmetric synthesis based on a previous racemic study by Bycroft *et al.*¹⁰, with an overall yield of 17% over 11 steps.


Treatment of 1 with 1,2,4-oxadiazolidine-3,5-dione¹¹ gave the protected quisqualic acid 5 after chromatography in moderate yield (Scheme 3).

Present addresses: [†]Department of Chemistry and Applied Chemistry, University of Salford, Salford, M5 4WT. [‡]Department of Chemistry, University of Sheffield, Sheffield, S3 7HF.

Scheme 3. Reagents and conditions: 1,2,4 oxadiazolidine-3,5-dione, DMF, 98°C, 18hr, 49%

Acidic deprotection (CF₃CO₂H, anisole) of 5 gave (S)-quisqualic acid 3 as a white powder (mp 190-192°C, lit^{2a} 190-191°C) in high yield (Scheme 4). The identity of the product was confirmed by mixed melting point and spectroscopic comparisons with an authentic sample¹². The optical rotation of 3 prepared via 1 was determined to be +14.5° (c 0.66, 6N HCl), compared with the reported value^{2a} of +17.0° (c 2.0, 6N HCl).

Scheme 4. Reagents and conditions: CF₃CO₂H, anisole, 0°C, 16hr, then ion-exchange chromatography (Amberlite[®] IR-45), quant.

In summary, optically enriched natural products (S)- β -pyrazolylalanine 2 and (S)-quisqualic acid 3 have been synthesised by a route involving the ring-opening of an optically active aziridine¹³. In the case of 3 the synthesis proceeds in an overall yield comparable with the best previously reported route^{2a}, and utilises less steps. The syntheses of 2 and 3 exemplify the use of aziridine 1 for the synthesis of β -aminoalanine derivatives.

Acknowledgements

We thank Roche Products Ltd. for a C.A.S.E. award (to C.N.F.) and the E.P.S.R.C. for support (to A.C.S. and C.N.F.).

References and notes

- 1. Ikegami, F.; Murakoshi, I. Phytochem., 1994, 35, 1089.
- See for example: (a) Baldwin, J.E.; Adlington, R.M.; Birch, D.J. J. Chem. Soc., Chem. Commun., 1985, 256.
 (b) Baldwin, J.E.; Adlington, R.M.; Mellor, L.C. Tetrahedron, 1994, 50, 5049. (c) Arnold, L.D.; May, R.G.; Vederas, J.C. J. Am. Chem. Soc., 1988, 110, 2237. (d) Shiba, T.; Ukita, T.; Mizuno, K.; Teshima, T.; Wakamiya, T. Tetrahadron Lett., 1977, 18, 2681. (e) Imae, K.; Kamachi, H.; Yamashita, H.; Okiti, T.; Okuyama, S.; Tsuno, T.; Yamasaki, T.; Sawada, Y.; Ohbayashi, M.; Naito, T.; Oki, T. J. Antibiot., 1991, 44, 76.
- 3. Baldwin, J.E.; Farthing, C.N.; Russell, A.T.; Schofield, C.J.; Spivey, A.C. Tetrahedron Lett., 1996, in press.
- 4. Shinano, S.; Kaya, T. J. Agric. Chem. Soc. Japan, 1957, 31, 759.
- 5. Hofmann, K.; Bohn, J. J. Am. Chem. Soc., 1966, 88, 5914.
- 6. Takeshita, M.; Nishizuka, Y.; Hayaishi, O. J. Biol. Chem., 1963, 238, 660.
- 7. Chuan, P.P.; Din, F.S.; Chao, T.C. Scientia Sinica, 1976, 21, 691.
- 8. Subasinghe, N.; Schultz, M.; Roon, R.J.; Koerner, J.F.; Johnson, R.L. J. Med. Chem., 1992, 35, 4602.
- 9. Guibourdenche, C.; Roumestant, M.L.; Viallefont, P. Tetrahedron Asymm., 1993, 4, 2041.
- 10. Bycroft, B.; Chhabra, S.R.; Grout, R.J.; Crowley, P.J. J. Chem. Soc., Chem. Commun., 1984, 1156.
- 11. Zinner, G.; Stoffel, R. Arch. Pharm., 1969, 302, 691.
- 12. Available from the Sigma-Aldrich Chemical Co.
- 13. Racemic aziridine (±)-1 reacted with other nitrogen based nucleophiles to produce β -substituted alanines in good yields. For example, reaction of (±)-1 with sodium azide led to the isolation of protected β azidoalanine in quantitative yield, and reaction with imidazole resulted in the isolation of protected β imidazolylalanine in 57% yield.