Copper-Catalyzed Aerobic Oxidative Carbocyclization– Ketonization Cascade: Selective Synthesis of Quinolinones

Peng Xie,^{a,b} Zhi-Qiang Wang,^a Guo-Bo Deng,^a Ren-Jie Song,^a Jia-Dong Xia,^{a,b} Ming Hu,^a and Jin-Heng Li^{a,*}

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China

Fax: (+86)-731-8871-3642, phone: (+86)-731-8871-3642; e-mail: jhli@hnu.edu.cn

^b Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, People's Republic of China

Received: February 17, 2013; Revised: May 19, 2013; Published online: August 9, 2013

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201300160.

Abstract: A new thematic extension method is de-	noteworthy that the oxygen atom of the newly
scribed for the carbocyclization of α -C(<i>sp</i> ³)–H bonds	formed carbonyl group is from atmospheric molecu-
of amides with alkynes followed by ketonization of	lar oxygen.
the alkynes that utilizes the inexpensive copper(II)	
acetoacetonate $[Cu(acac)_2]$ as catalyst under an	Keywords: carbocyclization; copper; $C(sp^3)$ -H func-
oxygen atmosphere to synthesize quinolinones. It is	tionalization; ketonization; quinolinones

Introduction

Quinolinones are important structural motifs in a great number of bioactive natural products, pharmaceuticals, and organic functional materials.^[1] For these reasons, great interest has been directed to the direct construction of the quinolinone skeleton.^[2-4] To date. the cyclization approaches have been the major focus of study in this area,^[3–5] such as classic base-catalyzed Friedländer reaction,^[3] acid-catalyzed Knorr reaction,^[4] the Baylis–Hillman reaction,^[5] and recent transition metal-catalyzed cyclization of acyclic precursors.^[6] However, the transition metal-catalyzed approaches are much less abundant, and many are focused on the "prefunctionalization" strategy that restricts it to the use of expensive substrates (often aryl halides) and catalytic systems (often Pd combined with a ligand). A fascinating strategy for quinolinone synthesis is metal-catalyzed C-H functionalizationcyclization cascade, but unfortunately, the reported step- and atom-economic methods have been typically achieved by rare and noble transition metal catalysts (e.g. Pd, Pt, Ru, and Au), and are limited to the sp^2 C-H bond functionalization, including (i) arylation of N-arylpropiolamides^[7] or N-(2-haloaryl)-benzamides^[8] and (ii) amidation of 3-arylacrylamides.^[9]

We recently reported the first example of an RuCl₃-catalyzed carbocyclization-hydration cascade

for quinolinone synthesis using CuCl₂ combined with O_2 as the terminal oxidants: without Ru catalysts the reaction could not take place even in the presence of CuCl₂ and O₂, and the oxygen atom in the newly formed carbonyl group of quinolinones is from water by hydration (Scheme 1).^[10] However, the chemical disadvantages of this protocol center around using Ru catalysts as well as special α -C(sp³)–H bonds of amides adjacent to a nitrogen atom. An alternative catalytic system for the α -C(*sp*³)–H bonds in common amides with more sustainable perspectives is therefore highly appealing. Herein we report a novel Cu(acac)₂-catalyzed aerobic oxidative carbocyclization and oxygenation of an alkyne with two α -C(sp³)-H bonds in a common amide with the aid of a base (Scheme 1). Notably, this work represents a different thematic extension of the metal-catalyzed oxidative $C(sp^3)$ -H functionalization-carbocyclization-ketonization cascade for quinolinone synthesis, and the oxygen atom of the newly formed carbonyl group is incorporated from atmospheric molecular oxygen.

Generally, activation of the α -positioned carbon of a carbonyl system requires a base to deprotonate it leading to a carbon nucleophile or an enol intermediate followed by complexation of a metal and addition to an electrophile (aryl halide and pseudohalide)^[11a,b] or a carbon-carbon multiple bond.^[11c] Although the Cu-catalyzed cyclization of an alkyne with an α -

a) RuCl₃-catalyzed hydration–carbocyclization cascade (ref.^[10])

b) new strategy: Cu-catalyzed carbocyclization-oxygenation

Scheme 1. Synthesis of quinolinones through $C(sp^3)$ -H bond functionalization.

carbon of a carbonyl system has been illustrated, the *in-situ* generated carbon nucleophile **A** in this cyclization process required another electron-withdrawing group to stabilize it and the vinyl-Cu(II) intermediate **B** is readily protonated (Scheme 2).^[11c] Therefore, the development of a new strategy to trap the vinyl-Cu(II) intermediate for valuable synthetic utilization is highly desirable. To the best of our knowledge, however, trapping of the vinyl-Cu(II) intermediate with atmospheric molecular oxygen through the *sp*³-carbon cyclization with alkynes has not been established.^[12]

Results and Discussion

Our study began to examine the feasibility of the proposed carbocyclization-oxygenation cascade using N-methyl-2-phenyl-N-[2-(phenylethynyl)phenyl]acetamide (**1a**), O₂, a series of copper catalysts and bases

(Table 1). Gratifyingly, the amide **1a** was successfully reacted with O_2 , CuCl₂ and Cs₂CO₃ in DMF at 110 °C, affording the desired product **2** in 65% yield

Entry	[Cu]	Base	Solvent	Temp. [°C]	Yield [%] ^[b]
1	$CuCl_2(2)$	Cs ₂ CO ₃	DMF	110	65
2	$CuCl_2(5)$	Cs_2CO_3	DMF	110	59
3 ^[c]	$CuCl_2(1)$	Cs_2CO_3	DMF	110	61
4 ^[d]	_	Cs ₂ CO ₃	DMF	110	20
5 ^[e]	_	Cs ₂ CO ₃	DMF	110	<5%
6	_	Et ₃ N	DMF	110	0
7	_	DABCO	DMF	110	0
8	_	P_4 - <i>t</i> -Bu	DMF	110	0
9	CuCl (2)	Cs_2CO_3	DMF	110	58
10	$CuBr_2(2)$	Cs ₂ CO ₃	DMF	110	53
11	$Cu(OTf)_2$ (2)	Cs_2CO_3	DMF	110	64
12	$Cu(acac)_{2}$ (2)	Cs_2CO_3	DMF	110	68
13	$Cu(acac)_2$ (2)	K ₂ CO ₃	DMF	110	41
14	$Cu(acac)_{2}$ (2)	CsOH	DMF	110	54
15	$Cu(acac)_2$ (2)	t-BuONa	DMF	110	67
16	$Cu(acac)_{2}$ (2)	Et ₃ N	DMF	110	16
17	$Cu(acac)_{2}$ (2)	Cs_2CO_3	DMSO	110	73
18	$Cu(acac)_2(2)$	Cs_2CO_3	toluene	110	9
19	$Cu(acac)_{2}$ (2)	Cs_2CO_3	DMSO	95	70
20	$Cu(acac)_2$ (2)	Cs_2CO_3	DMSO	125	61
21 ^[f]	$Cu(acac)_2$ (2)	Cs_2CO_3	DMSO	110	19

^[a] *Reaction conditions:* **1a** (0.3 mmol), [Cu], O_2 (1 atm), base (2 equiv.) and solvent (2 mL) for 14 h. P_4 -*t*-Bu is phosphazene base solution and the purity of Cs_2CO_3 is about 99% w/w.

^[b] Isolated yield.

^[c] For 24 h.

- ^[d] Some unidentified products together with traces of 4benzyl-1-methyl-3-phenylquinolin-2(1H)-one (3a) were observed by GC-MS analysis. There are about 0.005% w/w of Cu in Cs₂CO₃ (purity: 99% w/w) by ICP-MS analysis: 0.05 mol% Cu (2 equiv. Cs₂CO₃) vs. substrate 1a.
- ^[e] 99.999% w/w Cs₂CO₃ (2 equiv.) was used.

^[f] Under an air atmosphere.

(entry 1). This finding prompted us to examine the amount of $CuCl_2$: identical results were achieved at a loading of either 5 mol% or 1 mol% $CuCl_2$, but the latter (1 mol% $CuCl_2$) required a prolonged reaction

EWG = electron-withdrawing group

Scheme 2. Cu-catalyzed carbocyclization-protonation cascade.

2258 asc.wiley-vch.de

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 2. Cu-catalyzed oxidative cyclization of N-(2-ethynylaryl)acetamides (1).^[a]

^[a] *Reaction conditions:* **1** (0.3 mmol), Cu(acac)₂ (2 mol%), O₂ (1 atm), Cs₂CO₃ (2 equiv.) and DMSO (2 mL) at 110°C for 14 h.

time (entries 2 and 3). To our surprise, in the absence of Cu catalyst product **2** could form in the presence of 99% purity Cs₂CO₃, albeit with a low yield (entry 4). We deduced that Cs₂CO₃ might contain some copper to realize the reaction, which was supported by the ICP-MS analysis results. To verify it, both 99.999% purity Cs₂CO₃ and organic bases were inversigated without Cu catalysts (entries 5–8): the yield of **2** was lowered to <5% with 99.999% purity Cs₂CO₃, and the use of organic bases, such as Et₃N, DABCO or P₄*t*-Bu, resulted in no detectable formation of product **2**. In the light of these results, a number of other Cu catalysts, CuCl, CuBr₂, Cu(OTf)₂ and Cu(acac)₂ was tested (entries 9–12): all displayed high reactivity for the reaction, and Cu(acac)₂ was superior. Therefore, Cu(acac)₂ was employed to evaluate the effect of bases and solvents (entries 13–18). Screening revealed that the reaction using Cs₂CO₃ as base in DMSO medium gave the best results (entry 17). It is noteworthy that Cu(acac)₂ conbined with Et₃N can furnish the desired product **2** in 16% yield (entry 16). Among the reaction temperatures examined, the reaction at 95 °C offered an identical result to that at 110 °C (entry 19), but a higher temperature (125 °C) had a negative effect (entry 20). However, substrate **1a** displayed a rather low reactivity under an air atmosphere (entry 21).

We next turned our attention to the scope of N-[2-(ethynyl)aryl]acetamides 1 for the carbocyclizationketonization cascade under the optimal reaction conditions, and the results are summarized in Table 2. While 2-phenyl-*N*-[2-(phenylethynyl)phenyl]acetamide was not viable for this reaction (product 3), when the N-H group was replaced by benzyl or allyl groups the respective substrates were found to furnish the corresponding products 4 and 5 in good yields, while replacement by an acetyl group resulted in a trace of the desired product 6. Subsequently, substituents at the terminal alkyne were examined in the presence of O₂, Cu(acac)₂ and Cs₂CO₃: a variety of aryl groups, such as 2-BrC₆H₄, 4-MeC₆H₄, 4-MeOC₆H₄, 4-ClC₆H₄, 4-BrC₆H₄, naphthalen-1-yl and even thiophen-2-yl groups, at the terminal alkyne were well-tolerated (products 7–13), but an aliphatic group displayed less reactivity (product 14). Importantly, in these cases some halo functional groups, Br and Cl, on the aromatic ring were compatible with the optimal conditions, thereby facilitating additional modifications at the halogenated positions (products 7, 10 and 11).

Gratifyingly, substrates with several substituents, like alkyl, F, CF₃ and Cl, on the aryl ring of the N-[2-(ethynyl)aryl]acetamide moiety displayed sufficient reactivity for the carbocyclization-oxygenation cascade in the presence of O_2 , $Cu(acac)_2$ and Cs_2CO_3 (products 15-20). For example, the CF₃-substitued amide offered the desired quinolinone 17 in 77% yield. Using a di-Cl-substitued amide, a good yield was still achieved (product 19). It was noted that hetreo- or carbocyclic rings were consisitent with the optimal conditions, making this methodology more useful in organic synthesis (products 13 and 20). Fianlly, a number of substrates with α -carbon in the amides were tested, and the results disclosed that the α -carbon atom joined to either an aryl group or an aliphatic group was also highly effective in the reaction (products 21-25).

The results in Table 1 disclosed that the yield was lowered sharply when using air instead of O_2 (entries 17 vs. 21, Table 1), suggesting that the source of the oxygen atom in the newly formed carbonyl group is from atmospheric molecular oxygen. To understand of the mechanism of the carbocyclization–oxygenation cascade, some control experiments were carried out. As shown in Scheme 3, in the presence of $H_2^{18}O$ treatment of amide **1a** with ¹⁶O₂, Cu(acac)₂ and Cs₂CO₃ only afforded the ¹⁶O-labelled product **2**. In contrast, the presence of ¹⁸O₂ resulted in highly ¹⁸Olabelled product **2-¹⁸O** as determined by GC-MS, HMRS and NMR analysis (see the Supporting Information). These results confirmed that the oxygen atom was really incorporated from atmospheric mo-

Scheme 3. Control experiments.

lecular oxygen, and the reaction includes a Cu-peroxo species-forming process. Notably, cyclization of substrate **26** was not observed [Eq. (3)], which ruled out the mechanism including the ketone intermediate **26** from the first oxidation of the α -C(*sp*³)–H bonds.

As outlined in Scheme 4, a possible mechanism is proposed on the basis of the results described above. Initially, complexation of Cu(II) with an α -carbon nucleophile, which is generated by deprotonation of the α -C(*sp*³)–H bond in amide **1** by Cs₂CO₃, yields intermediate **A**.^[11] Nucleophilic cyclization with alkyne in intermediate **A** takes place to afford intermediate **B**, followed by oxidation of intermediate **B** with O₂ which forms a Cu(III) peroxo species **C**.^[12,13] Reductive elimination of intermediate **C** furnishes a peroxide intermediate **D**.^[12] Finally, The peroxide intermediate **D** undergoes sequentially the O–O bond cleavage, reductive elimination and isomerization to construct quinolinone **2** and the Cu(I) species.

Conclusions

In summary, we have illustrated a new thematic extension route to quinolinone synthesis by the Cu-catalyzed oxidative $C(sp^3)$ -H functionalization-carbocyclization-ketonization cascade. Most importantly, this present protocol provides an alternative to implant an oxygen atom from molecular oxygen into the quinolinone framework, establishing a new synthetic utility for both copper catalysts and molecular oxygen. Applications of this Cu-catalyzed oxidative carbocyclization-ketonization transformation in organic synthesis are currently under study in our laboratory.

Scheme 4. Possible mechanism.

Experimental Section

Typical Experimental Procedure for the Cu-Catalyzed carbocyclization-ketonization Reaction

To a Schlenk tube were added amide 1 (0.3 mmol), Cu-(acac)₂ (2 mol%), Cs₂CO₃ (2 equiv.) and DMSO (2 mL). Then the tube was charged with O₂ (1 atm), and the mixture was stirred at 110 °C overnight until complete consumption of starting material as monitored by TLC analysis. After the reaction had finished, the reaction mixture was washed with brine. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄, concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane/ ethyl acetate) to afford the desired product.

4-Benzoyl-1-methyl-3-phenylquinolin-2(1*H***)-one (2): White solid; mp 193.1–194.9 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃): \delta = 7.63 (d,** *J* **= 8.0 Hz, 2H), 7.52 (t,** *J* **= 8.0 Hz, 1H), 7.40–7. 36 (m, 2H), 7.30 (d,** *J* **= 8.0 Hz, 1H), 7.23–7.18 (m, 4H), 7.12–7.07 (m, 4H), 3.78 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): \delta = 195.6, 161.1, 145.2, 139.6, 136.0, 133.9, 130.8, 130.1, 129.8, 129.2, 128.5, 128.0, 127.7, 126.9, 122.5, 118.2, 114.5, 30.2; IR (KBr): \nu = 1695, 1621 cm⁻¹; LR-MS (EI 70 eV):** *m/z* **(%) = 339 (M⁺, 76), 310 (100), 262 (56), 105 (56), 77 (79); HR-MS (ESI):** *m/z* **= 340.1339, calcd. for C₂₃H₁₈NO₂ [M+H]⁺: 340.1338.**

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21172060), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120161110041) and Fundamental Research Funds for the Central Universities (Hunan University) for financial support.

References

 For selected examples, see: a) T. Fujioka, S. Teramoto, T. Mori, T. Hosokawa, T. Sumida, M. Tominaga, Y. Ya-

buuchi, J. Med. Chem. 1992, 35, 3607; b) P. Cheng, Q. Zhang, Y.-B. Ma, Z.-Y. Jiang, X.-M. Zhang, F.-X. Zhang, J.-J. Chen, Bioorg. Med. Chem. Lett. 2008, 18, 3787; c) J. M. Kraus, C. L. M. J. Verlinde, M. Karimi, G. I. Lepesheva, M. H. Gelb, F. S. Buckner, J. Med. Chem. 2009, 52, 1639; d) D. S. Hong, S. M. Sebti, R. A. Newman, M. A. Blaskovich, L. Ye, R. F. Gagel, S. Moulder, J. J. Wheler, A. Naing, N. M. Tannir, C. S. Ng, S. I. Sherman, A. K. E. Naggar, R. Khan, J. Trent, J. J. Wright, R. Kurzrock, Clin. Cancer Res. 2009, 15, 7061; e) A. K. Gupta, N. Sabarwal, Y. P. Agrawal, S. Prachand, S. Jain, Eur. J. Med. Chem. 2010, 45, 3472; f) F. O'Donnell, T. J. P. Smyth, V. N. Ramachandran, W. F. Smyth, Int. J. Antimicrob. Agents 2010, 35, 30; g) B. S. Jayashree, S. Thomas, Y. Nayak, Med. Chem. Res. 2010, 19, 193.

- [2] a) P. Friedlander, Ber. Dtsch. Chem. Ges. 1882, 15, 2572; b) L. Knorr, Ber. Dtsch. Chem. Ges. 1883, 16, 2593; c) G. Jones, in: Comprehensive Heterocyclic Chemistry II, (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon, New York, 1996, Vol. 5, p 167; d) M. Balasubramanian, J. G. Keay, in: Comprehensive Heterocyclic Chemistry II, (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon, Oxford, 1996, Vol. 5, p 245; e) R. D. Larsen, in: Science of Synthesis, Georg Thieme Verlag, Stuttgart, 2005, Vol. 15, p 551.
- [3] a) B. A. Kulkarni, A. Ganesan, Chem. Commun. 1998, 785; b) K. Li, L. N. Foresee, J. A. Tunge, J. Org. Chem. 2005, 70, 2881; c) J. T. Kuethe, A. Wong, I. W. Davies, Org. Lett. 2003, 5, 3975; d) S. R. Inglis, C. Stojkoski, K. M. Branson, J. F. Cawthray, D. Fritz, E. Wiadrowski, S. M. Pyke, G. W. Booker, J. Med. Chem. 2004, 47, 5405; e) J. M. Fourquez, A. Godard, F. Marsais, G. Quéguiner, J. Heterocycl. Chem. 1995, 32, 1165; f) G. M. Coppolar, G. E. Hardtmann, J. Heterocycl. Chem. 1979, 16, 1605; g) F. Domínguez-Fernández, J. López-Sanz, E. Pérez-Mayoral, D. Bek, R. M. Martín-Aranda, A. J. López-Peinado, J. Čejka, ChemCatChem 2009, 1, 241.
- [4] a) P. Hewawasam, W. Fan, J. Knipe, S. L. Moon, C. G. Boissard, V. K. Gribkoff, J. E. Starrett Jr, *Bioorg. Med. Chem. Lett.* 2002, *12*, 1779; b) M. Marull, O. Lefebvre, M. Schlosser, *Eur. J. Org. Chem.* 2004, 54; c) S. Marcac-

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

cini, R. Pepino, M. C. Pozo, S. Basurto, M. García-Valverde, T. Torrobab, *Tetrahedron Lett.* **2004**, *45*, 3999; d) L. Ismaili, A. Nadaradjane, L. Nicod, C. Guyon, A. Xicluna, J. Robert, B. Refouvelet, *Eur. J. Med. Chem.* **2008**, *43*, 1270; e) M. Grzegożek, *J. Heterocycl. Chem.* **2008**, *45*, 1879.

- [5] For selected papers on both the Baylis-Hillman adducts and other methods, see: a) J. N. Kim, K. Y. Lee, H. S. Kim, T. Y. Kim, Org. Lett. 2000, 2, 343; b) J. N. Kim, K. Y. Lee, H.-S. Ham, H. R. Kim, E. K. Ryu, Bull. Korean Chem. Soc. 2001, 22, 135; c) O. B. Familoni, P. T. Kaye, P. J. Klaas, Chem. Commun. 1998, 2563; d) K. Y. Lee, J. N. Kim, Bull. Korean Chem. Soc. 2002, 23, 939; e) K. H. Kim, H. S. Lee, J. N. Kim, Tetrahedron Lett. 2009, 50, 1249; f) M. Soural, V. Krchňák, J. Comb. Chem. 2007, 9, 793; g) S. Křupková, M. Soural, J. Hlaváč, P. Hradil, J. Comb. Chem. 2009, 11, 951; h) Y. Kobayashi, K. Katagiri, I. Azumaya, T. Harayama, J. Org. Chem. 2010, 75, 2741.
- [6] a) N. A. Cortese, C. B. Ziegler Jr, B. J. Hrnjez, R. F. Heck, J. Org. Chem. 1978, 43, 2952; b) M. O. Terpko, R. F. Heck, J. Am. Chem. Soc. 1979, 101, 5281; c) M. Mori, K. Chiba, N. Ohta, Y. Ban, Heterocycles 1979, 13, 329; d) J.-C. Jung, S. Oh, W.-K. Kim, W.-K. Park, J. Y. Kong, O.-S. Park, J. Heterocycl. Chem. 2003, 40, 617; e) P. J. Manley, M. T. Bilodeau, Org. Lett. 2004, 6, 2433; f) K. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto, R. Yamaguchi, Org. Lett. 2004, 6, 2785; g) D. V. Kadnikov, R. C. Larock, J. Org. Chem. 2004, 69, 6772; h) R. Bernini, S. Cacchi, G. Fabrizi, A. Sferrazza, Heterocycles 2006, 69, 99; i) R. Bernini, S. Cacchi, I. De Salve, G. Fabrizi, Synlett 2006, 2947; j) G. Battistuzzi, R. Bernini, S. Cacchi, I. De Salve, G. Fabrizi, Adv. Synth. Catal. 2007, 349, 297; k) W. Zhong, H. Liu, M. R. Kaller, C. Henley, E. Magal, T. Nguyen, T. D. Osslund, D. Powers, R. M. Rzasa, H. Wang, W. Wang, X. Xiong, J. Zhang, M. H. Norman, Bioorg. Med. Chem. Lett. 2007, 17, 5384; 1) Z. Liu, C. Shi, Y. Chen, Synlett 2008, 1734; m) J. Minville, J. Poulin, C. Dufresne, C. F. Sturino, Tetrahedron Lett. 2008, 49, 3677; n) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058; o) A. C. Tadd, A. Matsuno, M. R. Fielding, M. C. Willis, Org. Lett. 2009, 11, 583; p) T. Tsuritani, Y. Yamamoto, M. Kawasaki, T. Mase, Org. Lett. 2009, 11, 1043; q) A. C. Tadd, M. R. Fielding, M. C. Willis, Chem. Commun. 2009, 6744; r) K. Nakai, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2011, 133, 11066.
- [7] For a review: a) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633; Pd: b) C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura, Y. Fujiwara, Science 2000,

287, 1992; c) C. Jia, W. Lu, J. Oyamada, T. Kitamura, K. Matsuda, M. Irie, Y. Fujiwara, J. Am. Chem. Soc.
2000, 122, 7252; d) C. Jia, D. Piao, T. Kitamura, Y. Fujiwara, J. Org. Chem. 2000, 65, 7516; e) D.-J. Tang, B.-X. Tang, J.-H. Li, J. Org. Chem. 2009, 74, 6749; Pt: f) C. Nevado, A. M. Echavarren, Chem. Eur. J. 2005, 11, 3155; Au: g) D. B. England, A. Padwa, Org. Lett. 2008, 10, 3631; Ru: h) M. Y. Yoon, J. H. Kim, D. S. Choi, U. S. Shin, J. Y. Lee, C. E. Song, Adv. Synth. Catal. 2007, 349, 1725; Lewis acids: i) C. E. Song, D.-u. Jung, S. Y. Choung, E. J. Roh, S.-g. Lee, Angew. Chem. 2004, 116, 6309; Angew. Chem. Int. Ed. 2004, 43, 6183.

- [8] Pd: a) L.-C. Campeau, K. Fagnou, *Chem. Commun.* 2006, 1253; b) L.-C. Campeau, M. Parisien, A. Jean, K. Fagnou, *J. Am. Chem. Soc.* 2006, *128*, 581.
- [9] Pd: a) M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058; b) K. Inamoto, T. Saito, K. Hiroya, T. Doi, J. Org. Chem. 2010, 75, 3900; c) S. Rakshit, F. W. Patureau, F. Glorius, J. Am. Chem. Soc. 2010, 132, 9585; d) K. Inamoto, J. Kawasaki, K. Hiroya, Y. Kondo, T. Doi, Chem. Commun. 2012, 48, 4332; Cu: e) R. Berrino, S. Cacchi, G. Fabrizi, A. Goggiamani, J. Org. Chem. 2012, 77, 2537; f) A. Arcadi, S. Cacchi, G, Fabrizi, F. Manna, P. Pace, Synlett 1998, 446; g) A. Arcadi, F. Marinelli, E. Rossi, Tetrahedron 1999, 55, 13233.
- [10] Ru: B.-X. Tang, R.-J. Song, C.-Y. Wu, Z.-Q. Wang, Y. Liu, X.-C. Huang, Y.-X. Xie, J.-H. Li, *Chem. Sci.* 2011, 2, 2131.
- [11] a) D. A. Culkin, J. F. Hartwig, Acc. Chem. Res. 2003, 36, 234; b) F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082; c) F. Dénès, A. Pérez-Luna, F. Chemla, Chem. Rev. 2010, 110, 2366.
- [12] To the best of our knowledge, trapping of the vinyl-Cu(II) intermediate with atmospheric molecular oxygen is quite rare. For a review, see: a) C. Zhang, C. Tang, N, Jiao, *Chem. Soc. Rev.* 2012, *41*, 3464; b) C. Zhang, N. Jiao, *J. Am. Chem. Soc.* 2010, *132*, 28; c) J. Wang, J. Wang, Y. Zhu, P. Liu, Y. Wang, *Chem. Commun.* 2011, *47*, 3275; d) Z.-Q. Wang, W.-W. Zhang, L.-B. Gong, R.-Y. Tang, X.-H. Yang, Y. Liu, J.-H. Li, *Angew. Chem.* 2011, *123*, 9130; *Angew. Chem. Int. Ed.* 2011, *50*, 8968.
- [13] a) M. Fontecave, J.-L. Pierre, Coord. Chem. Rev. 1998, 170, 125; b) P. Gamez, P. G. Aubel, W. L. Driessen, J. Reedijk, Chem. Soc. Rev. 2001, 30, 376; c) E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047; d) M. Rolff, F. Tuczek, Angew. Chem. 2008, 120, 2378; Angew. Chem. Int. Ed. 2008, 47, 2344.
- [14] T. Shimada, I. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 10546.

2262