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ABSTRACT

Optical resolution by HPLC

/O on a chiral column R
Ar—Te\ ! v (DA
OH
1 (racemic) /
\\\\ oH . a small amount of
HO - Ar—Te: n\. H,0 in solvent
[ YoH
Ar = 2,4,6--Pr;CqHy OH

Optically active tellurinic acid was obtained for the first time by chromatographic resolution of racemic 2,4,6-triisopropylbenzenetellurinic acid
(1) using a chiral column. Optically active tellurinic acid (+)-1 was stable toward racemization in hexane, although racemization occurred in
hexane/2-propanol. The kinetic studies for the racemization, oxygen exchange reaction using H,*0, and theoretical studies clarified that the
racemization of the optically active tellurinic acid in solution proceeds via a hypervalent tellurane formed by addition of water remaining in
solvent.

Recently, we reported the optical resolution of areneseleniniccolumns and succeeded in obtaining an optically active
acids by means of liquid chromatography on an optically tellurinic acid for the first time. In this paper, we report the
active columf? and the isolation of optically pure meth- optical resolution and the kinetic studies of the racemization
aneseleninic acid as a stable solid by chiral crystallization. of a tellurinic acid.
As far as we know, no study has been reported on optically  2,4,6-Triisopropylbenzenetellurinic acidl)(was prepared
active tellurinic acids, which are analogues of the seleninic in 32% yield from the corresponding ditelluride by oxidation
acids. Moreover, there are few reports on the preparation ofwith ozone followed by hydrolysis (Scheme 1). Tellurinic
racemic tellurinic acids so fdr. acid 1 showed broad signals in both the aromatic and
We examined the optical resolution of an arenetellurinic aliphatic regions on théH NMR (CDCls) spectrum, and
acid by means of liquid chromatography on optically active broad bands centering on 3400 (OH) and 64709 cn1!
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on the IR (KBr) spectrum. These results may be due to || |

intermolecular interactions among tellurinic acids both in
solution and in the solid state.

When tellurinic acidl was subjected to chromatography
on two types of chiral column (4.6 mm 250 mm), one
packed with amylose carbamate derivative-silica gel and the
other with cellulose carbamate derivative-silica gel, using
hexane/2-propanol as the eluent, the chromatograms showed
only one peak. However, we surmised that the ratio of the
enantiomers differs between the former portion and the latter
portion of the peak. Then tellurinic acidwas subjected to
chromatography on a larger column (10 mm250 mm)
that was packed with cellulose carbamate derivative-silica Figure 2. First-order rate plots for the racemization of optically
gel using hexane as the eluent, and the eluates were dividedctive tellurinic acid {)-1 (ca. 0.02 mM): (a) in hexane/2-propanol
into several fractions. The fraction corresponding to the (89/1); (b) in 2-propanol/kD (4/1); (c) in 2-propanol/ED (4/1).
first half of the peak showed a positive specific rotation
{[0]3352.5 x 10° (c 0.0012, hexang) as well as a positive  |ives are 98.2 and 5.34 min, respectively. The rate constant
first Cotton effect and a negative second Cotton effect at in 2-propanol/HO is much larger than that in hexane/2-
270 and 238 nm (Figure 1), respectively, on the circular propanol, indicating that a small amount of water in the
distilled 2-propanol may have caused the racemization of
the optically active tellurinic acid. Two mechanisms of the
racemization in which water participates are proposed. One
3 involves the formation of an achiral tellurane by the addition
2| ] of water to tellurinic acid, and the other involves the
270 nm formation of an achiral tellurinate anion by deprotonation

B /\ of tellurinic acid by water. When racemic tellurinic acld
z 0 was dissolved in 2-propanolfHO (4/1, 95 atom 960) and

0 100 200 300
t/mn ——

-1} ] allowed to stand for 2 h, the ratio of 2,4i82r;CsH,Te®O,H:
ol ] 2,4,6i-PrCsH,Tet%0¥0H:2,4,61-PrCsH,Te®O,H was 5:3:5
238 nm based on the peak intensities on the MS spectrum, meaning
3 that the ox toms of the tellurinic acid hanged
200 250 200 350 ygen atoms of the tellurinic acid were exchange
A/nm via an achiral tellurane formed by the addition of water. The
) ) ) ) ) rate constant for the racemization was also measured in
Figure 1. Circular dichroism spectrum ofH)-1 in hexane. 2-propanol/RO (4/1) (Figure 2c). The rate constant (7.87

x 1074 s7%) is approximately one-third of that in 2-propanol/

. . . . H.0, indicating that there is a primary kinetic isotope effect
dichroism spectrum, whereas the following fractions showed Do . .
of the racemization and the rate-controlling step is the

no Cotton effect. In the case of optically active seleninic protonation to tellurinic acid. Vertex inversion and edge

acids, concentration of the eluates caused complete racem- : ' : o
N . P "~ "inversion are also first-order mechanisms for the racemization
ization!2 By contrast, concentration of the hexane solution

; T of tricoordinated optically active chalcogen compouhds.
of (+)-1 d!d no t reduce the_molar ell!ptlcny, |r_1d_|cat|r_lg that However, the barriers for vertex inversion and edge inversion
no racemization of the optically active tellurinic acid took

. of benzenetellurinic acid were estimated to be 82 and 26
place by concentrating the eluate under reduced pressure

1 . .
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s acid does. The absolute configuration ef){1 is under

Scheme 2. Mechanism of Racemization of Optically Active  investigation.
Tellurinic Acid in Solution

o OH N Supporting Information Available: Experimental pro-
1 H,0 [ v 0 Ar\TeQOH cedures; IR,'H NMR, UV, and MS spectra forl; and
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AT NG -Hp0 [ ~oH H,0 é chiroptical properties of()-1; and computational data for
OH the theoretical studies. This material is available free of

charge via the Internet at http://pubs.acs.org.
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Sé H* S| \ H3;0 SL (9) Optical Resolution of 1. Racemic sample of (30 mg) in hexane

'.\“"/ “OH H=U B e\o H WX (0.5 mL) was charged to a chiral column packed with cellulose carbamate
Ar 3 Ar Ar o derivative-silica gel (Daicel Chiralcel OD; 10 mm 250 mm) and eluted

with hexane at a flow rate of 1.0 mL mik About 1 mg of tellurinic acid

was collected from the first half of the peak. The chemical structure was

o _ ) o _ confirmed bylH NMR spectrum after concentration. )
racemization between optically active seleninic acid and (10)Kinetic Study for Racemization of (+)-1. Kinetic studies for

. : . . racemization of {)-1 were examined in solutions (ca.x210°° M) at 25
tellurinic acid seems to be that tellurinic acid forms a + 1 °C. The rates of racemization were calculated on the basis of the circular

hypervalent tellurane structure more easily than seleninic dichroism spectra and were plotted to the first-order rate equation.
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