Efficient Convergent Synthesis of 1α,25-Dihydroxyvitamin D₃ and Its Analogues by Suzuki–Miyaura Coupling

2003 Vol. 5, No. 4 523–525

ORGANIC LETTERS

Takeshi Hanazawa, Akiko Koyama, Takeshi Wada, Eiko Morishige, Sentaro Okamoto, and Fumie Sato*

Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

fsato@bio.titech.ac.jp

Received December 4, 2002

ABSTRACT

 1α ,25-Dihydroxyvitamin D₃ was synthesized by the Suzuki–Miyaura coupling of the A-ring intermediate 1, which was efficiently prepared from readily available 1,7-enyne 2, with the corresponding boronate compound of the C,D-ring portion. The method was applied to prepare *des*-C,D analogues of 1α ,25-dihydroxyvitamin D₃.

1α,25-Dihydroxyvitamin D₃ [1,25-(OH)₂-VD₃], which plays an important role in human physiology, has attracted substantial interest in its pharmacology and therapeutic potential.¹ The chemical synthesis of 1,25-(OH)₂-VD₃ and its analogues, therefore, has been the subject of much research because organic synthesis is the only means of supplying sufficient quantities and creating more effective compounds.² Recently, we synthesized 19-nor-1a,25-(OH)₂-VD₃ by the Suzuki-Miyaura coupling³ between the corresponding A-ring and C,D-ring parts.⁴ Herein we report a new efficient synthetic method of 1,25-(OH)₂-VD₃ that involves, as shown in Scheme 1, by a retrosynthetic pathway, the synthesis of A-ring portion 1 from the known starting compound 1,7-envne 2^5 by Ti(II)-mediated cyclization reaction⁶ and its coupling with C,D-ring unit **3** by the Suzuki-Miyaura coupling.

A similar coupling approach to $1,25-(OH)_2-VD_3$ using the Stille coupling and/or Negishi coupling was proposed by Mouriño and co-workers; however, they only synthesized 3-deoxy-1-hydroxyvitamin D₃ by this approach.⁷ It is also noteworthy that the starting enyne **2** can be utilized, after

10.1021/ol0274007 CCC: \$25.00 © 2003 American Chemical Society Published on Web 01/28/2003

removing the trimethylsilyl group, for producing 1,25-(OH)₂-VD₃ by a Pd-catalyzed tandem carbometalation–cyclization reaction (Trost method).⁸ The conversion of **2** to [(3*S*)-(1*Z*,3 α ,5 β)]-[2-[3,5-bis[[(1,1-dimethyl)dimethylsilyl]oxy]-2methylenecyclohexylidene]ethyl]diphenylphosphine oxide, the A-ring intermediate for synthesizing 1,25-(OH)₂-VD₃ by the Horner–Wittig reaction (Lythgoe–Roche method⁹) was also reported.^{5,10}

Preparation of 2 from optically active epichlorohydrin (4) was carried out in 45% overall yield according to the

⁽¹⁾ Vitamin D; Feldman, D., Glorieux, F. H., Pike, J. W., Eds.; Academic Press: New York, 1997. Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocr. Rev. **1995**, *16*, 200.

⁽²⁾ Zhu, G.-D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877.

⁽³⁾ Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.

⁽⁴⁾ Hanazawa, T.; Wada, T.; Masuda, T.; Okamoto, S.; Sato, F. Org. Lett. 2001, 3, 3975.

⁽⁵⁾ Tazumi, K.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1994, 1903.

⁽⁶⁾ Urabe, H.; Sato, F. Tetrahedron Lett. 1998, 39, 7329.

⁽⁷⁾ García, A. M.; Mascareñas, J. L.; Castedo, L.; Mouriño, A. J. Org. Chem. 1997, 62, 6353.

^{(8) (}a) Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc. **1992**, 114, 9836. (b) Trost, B. M.; Hanson, P. R. Tetrahedron Lett. **1994**, 35, 8119.

procedure shown in Scheme 2. Thus, **4** was converted to epoxide **5** according to the procedure reported by Ogasawara

with minor modifications.^{5,11} Epoxide ring-opening of **5** with alkynyllithium **6** in the presence of boron trifluoride etherate provided, after hydrolysis, diol **7** in 82% yield. Selective acylation of the primary hydroxyl group of **7** to **8** was attained by treatment with vinyl acetate in the presence of porcine pancreatic lipase (PPL) in 96% yield. Protection of the secondary hydroxy group of **8** as *tert*-butyldimethylsilyl ether, and the following treatment with sodium bis(2-

524

methoxyethoxy)-aluminum hydride (Red-Al) provided (*E*)allyl alcohol **9** in 97% overall yield. Preparation of **2** from **9** was carried out in 78% overall yield by the conventional reaction sequence, which involves Sharpless catalytic asymmetric epoxidation (Ti(O-*i*-Pr)₄, L-(+)-DIPT, TBHP, CH₂Cl₂, -20 °C), conversion of the hydroxy group to iodide, and reductive opening of the epoxy iodide moiety.⁵

The titanacyclization of **2** mediated by a divalent titanium reagent, $Ti(O-i-Pr)_4/2i$ -PrMgX, and the following reaction with NBS afforded dibromo compound **10** in 88% yield.^{6,12} Although the stereochemistry of the bromomethyl moiety of **10** could not be assigned by the ¹H NMR analysis, it was tentatively assigned as depicted in Scheme 3 on the basis of

our previous results of the cyclization of similar compounds.⁶ After protection of the hydroxyl group of **10** as *tert*-butyldimethylsilyl ether, the resulting **11** was treated with DBU in CH₂Cl₂ and then Cs₂CO₃ in DMF to provide **1** in excellent yield.⁷ Thus, **1** could be obtained in 76% overall yield from **2**.

With the A-ring unit 1 in hand, we carried out the synthesis of $1,25-(OH)_2-VD_3$ by the Suzuki-Miyaura coupling reaction. Thus, the reaction of 1 with 3^4 in the presence of KOH and PdCl₂(dppf) (8 mol %) in aqueous THF furnished, after desilylation, $1,25-(OH)_2-VD_3$ in 82% yield (Scheme 4).

Among the analogues of $1,25-(OH)_2-VD_3$, those which lack the C,D-ring have recently attracted much interest as potentially therapeutic compounds.¹³ The present method for synthesizing $1,25-(OH)_2-VD_3$ using **1** is also very efficient for synthesizing such compounds as exemplified by the synthesis of Retiferol.^{13a} Thus, as also shown in Scheme 4, the coupling of **1** with **12**, which was prepared from the corresponding alkyne by hydroboration reaction,⁴ afforded, after desilylation, Retiferol in 78% overall yield.¹⁴

⁽⁹⁾ Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho, A. D.; Sereno, J. F.; Uskokovic, M. R. *J. Org. Chem.* **1986**, *51*, 3098 and references therein.

⁽¹⁰⁾ Vrielynck, S.; Vandewalle, M. *Tetrahedron Lett.* **1995**, *36*, 9023.
(11) Subburaj, K.; Okamoto, S.; Sato, F. J. Org. Chem. **2002**, *67*, 1024.

⁽¹²⁾ Review for synthetic reactions mediated by a Ti(O-*i*-Pr)₄/2 *i*-PrMgCl reagent: Sato, F.; Urabe, H.; Okamoto, S. *Chem. Rev.* **2000**, *100*, 2835. Sato, F.; Okamoto, S. *Adv. Synth. Catal.* **2001**, *343*, 759. Sato, F.; Urabe, H. In *Titanium and Zirconium in Organic Synthesis*; Marek, I., Ed.; Wiley-VCH: Weinheim, Germany, 2002; pp 319–354.

^{(13) (}a) Kutner, A.; Zhao, H.; Fitak, H.; Wilson, S. R. *Bioorg. Chem.* **1995**, 23, 22. (b) Wirz, B.; Iding, H.; Hilpert, H. *Tetrahedron: Asymmetry* **2000**, 11, 4171. (c) Hilpert, H.; Wirz, B. *Tetrahedron* **2001**, 57, 681. (d) U.S. Patent 5,969,190, 1998. (e) U.S. Patent 6,184,422, 1999.

As the synthesis of vitamin D_3 has also attracted much interest, we synthesized vitamin D_3 by a strategy similar to that mentioned above. Epoxide ring-opening reaction of **5** with allylmagnesium bromide in the presence of a catalytic amount of CuCN provided 1,7-enyne **13**, which in turn was converted to **14**, as shown in Scheme 5, according to a procedure similar to the synthesis of **1** from **2**. The Suzuki– Miyaura coupling reaction of **14** with **16**, prepared from **15**, provided vitamin D_3 in 74% yield after deprotection.

In summary, we have developed a new synthetic methodology for synthesizing VD_3 , 1,25-(OH)₂-VD₃, and their

^{*a*} Reaction conditions: (a) allylmagnesium chloride, cat. CuCN (77%). (b) (i) Ti(O-*i*-Pr)₄, 2*i*-PrMgCl, NBS; (ii) TBSCl, imidazole (59% for two steps). (c) (i) DBU, CH₂Cl₂; (ii) Cs₂CO₃, DMF (74% for two steps). (d) Pd(dppf)Cl₂ (8 mol %), KOH, THF-H₂O, 60 °C. (e) TBAF, THF (74% for two steps). (f) *t*-BuLi, then B(O-*i*-Pr)₃, aqueous NH₄Cl, pinacol, ethyl acetate (76%).

derivatives that involves, as a key reaction, the coupling of the A-ring and C,D-ring portions by Suzuki–Miyaura coupling. Especially noteworthy is the efficient synthesis of **1** that allows easy access to 1,25-(OH)₂-VD₃ and its *des*-C,D analogues. Thus, in addition to the Trost⁸ and Lythgoe– Roche⁹ methods, another practical entry to 1,25-(OH)₂-VD₃ and its derivatives has now been established.

Acknowledgment. T.H. thanks the Japan Society for the Promotion of Science for financial support.

Supporting Information Available: Experimental procedure and spectral data for compounds 1, 2, 7-11, 13-15, and the final products as shown in Schemes 4 and 5. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0274007

⁽¹⁴⁾ For the synthesis of *des*-C,D-VD₃ analogues by the Lythgoe–Roche method, see ref 13. Synthesis of *des*-C,D-VD₃ analogues by the Trost method was not reported.