

# Silanol: A Traceless Directing Group for Pd-Catalyzed o-Alkenylation of Phenols

Chunhui Huang, Buddhadeb Chattopadhyay, and Vladimir Gevorgyan\*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States

Supporting Information

**ABSTRACT:** A silanol-directed, Pd(II)-catalyzed C—H alkenylation of phenols is reported. This work features silanol, as a novel traceless directing group, and a directed o-C—H alkenylation of phenols. This new method allows for efficient synthesis of diverse alkenylated phenols, including an estrone derivative.

rtho-Alkenyl phenols are important building blocks for Osynthetic organic chemistry. Traditionally, these synthons can be assembled via a combined Claisen rearrangement of O-allylphenols to C-allylphenols followed by a transition metalcatalyzed double bond isomerization process (eq 1).2 This method is not general, as the Claisen rearrangement may produce a mixture of ortho- and para-allylphenols. Besides, the stereoselectivity of the isomerization step is ambiguous. Another common route to ortho-alkenyl phenols involves consecutive ortho-halogenation/Mizoroki-Heck cross-coupling reaction<sup>3</sup> with alkenes (eq 2). The requisite of extra *ortho*-prefunctionalization step and concomitant overbromination byproducts significantly limits the wide application of this approach.<sup>4</sup> More directly, orhto-alkenylation reaction of phenols with terminal alkynes can be promoted by a Lewis acid, such as SnCl<sub>4</sub>.<sup>5</sup> An obvious drawback of this method is an employment of stoichiometric amounts<sup>6</sup> of a toxic tin reagent. Herein, we wish to report a silanol group-directed Pd-catalyzed *ortho* C—H alkenylation of phenols to produce diverse ortho-alkenyl derivatives in good to high yields (eq 3).

Transition metal-catalyzed directed C-H<sup>7</sup> alkenylaton<sup>8</sup> reactions have emerged as attractive alternative to the Mizoroki-Heck reaction. A directing group is usually introduced to control the regioselectivity as well as to enhance the

reactivity of the reaction. We were intrigued by the possibility to develop a method that would employ an easily removable directing group at the phenol, which would allow for a general synthesis of alkenylated phenols. 10,111 Recently, we reported a traceless/modifiable silicon-tethered directing group 12 (PyDipSi) for ortho-acyloxylation and halogenation of arenes. 13 Hence, we envisioned that employment of a temporary silicontethered directing group for phenols might be beneficial as it can efficiently be removed under mild conditions. In a recent report, Yu disclosed an elegant hydroxyl-directed ortho-C-H alkenylation of  $\beta$ -phenethylalcohols en route to alkenylaed arenes and/or benzopyrans (eq 4). 14,15 Inspired by the successful alcohol-directed C-H functionalization reactions 14,15 and efficient silicon-tethered directing group employment in C-H functionalizations, 13 we hypothesized that silanol may serve as an ideal easily removable directing group for C-H alkenylation of phenols.16

To test this hypothesis, silanol <sup>17</sup> **1a** (1 equiv) was treated with butyl acrylate (**2a**, 2 equiv) under the conditions employing amino acid-derived ligand developed by  $Yu^{14}$  (10 mol % Pd-(OAc)<sub>2</sub>, 20 mol % (+)menthyl(O<sub>2</sub>C)-Leu-OH (L1), 1 equiv Li<sub>2</sub>CO<sub>3</sub>, 4 equiv AgOAc, in C<sub>6</sub>F<sub>6</sub> at 100 °C). To our delight, the desired *ortho*-alkenylated product **3a** was formed in 52% NMR yield (Table 1, entry 1). Solvent optimization indicated PhCF<sub>3</sub> to be similarly efficient (entry 2), whereas employment of other solvents, such as toluene, dioxane, THF, *t*-AmylOH, and DMF gave poor yields. Finally, switching to DCE improved the yield of the reaction (78% NMR yield, entry 7).

Next, the removal of the silanol directing group was examined. Expectedly, desilylation of **3a** with TBAF proceeded uneventfully, producing the unprotected phenol **4a** in 84% yield (eq 5) or in 66% yield over two steps. It deserves mentioning that better efficiency was achieved by carrying out two steps, C—H alkenylation/desilylation, in *semi-one-pot* fashion <sup>18</sup> (Table 2, entry 1).

Received: May 28, 2011 Published: July 18, 2011

Table 1. Solvent Screening for Silanol-Directed Alkenylation<sup>a</sup>

| entry | solvent (0.1 M)   | conversion,% <sup>b</sup> | yield, % <sup>c</sup> |
|-------|-------------------|---------------------------|-----------------------|
| 1     | $C_6F_6$          | 77                        | 52                    |
| 2     | PhCF <sub>3</sub> | 79                        | 50                    |
| 3     | PhMe              | 43                        | 24                    |
| 4     | dioxane           | 18                        | <3                    |
| 5     | THF               | 4                         | <3                    |
| 6     | t-AmylOH          | 26                        | <3                    |
| 7     | DCE               | 90                        | 78                    |
| 8     | DMF               | 55                        | 0                     |

 $^a$  1a/2a = 1: 2, L1 = (+)menthyl(O<sub>2</sub>C)-Leu-OH.  $^b$  Consumption of starting material 1a measured by GC/MS.  $^c$  <sup>1</sup>H NMR yield.

After developing the semi-one-pot procedure for the Pdcatalyzed silanol-directed C-H alkenylation/deprotection sequence, the scope of this new method was investigated. Table 2 summarizes olefinations of various phenol-derived silanols with butyl acrylate (2a) to produce the corresponding 2-hydroxy butyl cinnamates 4. It was found that diverse alkyl-, methoxy-, trifluoromethoxy-, chloro-, and fluoro-substituents (entries 1-5, 8-11) were tolerated well under these reaction conditions. Moreover, 5-indanol and tetrahydro-2-naphthol reacted smoothly to afford the olefinated phenols in good to excellent yields (entries 6 and 7). Notably, meta-substituted substrates (entries 2-4) reacted regioselectively at the sterically less hindered C-H site. In general, electron-rich phenols gave better yields of the olefinated products compared to their electrondeficient counterparts. Remarkably, in contrast to most of the reported C-H alkenylation reactions, 19 this Pd(II)-catalyzed olefination reaction is monoselective. Most likely, the bulky tertbutyl groups at the silanol moiety prevent orientation of the silanol directing group toward the less hindered C-H site, thus, effectively stopping the reaction at the monoalkenylation stage.

Next, we turned our attention to the scope of olefins. It was found that a wide range of electron-deficient alkenes could be successfully employed in this transformation (Table 3). Thus, vinylsulfonate **2b** and vinylsulfone **2c** readily reacted with silanol **1e** to give the olefinated products in very good yields (entries 1, 2). Acrolein (**2d**) and alkyl vinyl ketones **2e** and **2f** are also capable reactants in this olefination reaction (entries 3–5). Moreover, styrene and its derivatives, smoothly reacted with **1e** to give (*E*)-2-styrylphenols **4q**—**4t** in reasonable yields (entries 6–9). 1,1-Disubstituted acrylate **2k** reacted with **1e** to give expected product **4u**, <sup>20</sup> along with its isomer **4v** in 45% and 39% NMR yields, respectively. <sup>9b</sup>

Furthermore, the reaction of 1e with diethyl maleate (2l) under the standard reaction conditions produced alkenylated product 5, which upon desilylation/cyclization, led to the formation of lactone 6 in 58% yield (eq 6).<sup>20</sup> It should be mentioned that this example represents the first synthesis of a

Table 2. Phenol Scope for Silanol-Directed Alkenylation

| entry | substrate                     |    | product                               |    | yield,<br>%ª    |
|-------|-------------------------------|----|---------------------------------------|----|-----------------|
| 1     | O, 'Bu<br>Si-'Bu<br>OH        | 1a | OH<br>CO <sub>2</sub> <sup>n</sup> Bu | 4a | 72              |
| 2     | Me O Si-†Bu<br>OH             | 1b | Me OH CO <sub>2</sub> "Bu             | 4b | 94              |
| 3     | MeO /Bu<br>Si-'Bu<br>OH       | 1c | MeO OH CO2"Bu                         | 4c | 97              |
| 4     | CI O /Bu<br>O Si-/Bu<br>OH    | 1d | CI_OH<br>CO <sub>2</sub> "Bu          | 4d | $53^b$          |
| 5     | Me O Si-¹Bu<br>OH             | 1e | Me OH CO <sub>2</sub> "Bu             | 4e | 97              |
| 6     | O Si-'Bu<br>OH                | 1f | OH CO <sub>2</sub> <sup>n</sup> Bu    | 4f | $88^b$          |
| 7     | O. Si-'Bu<br>OH               | 1g | OH<br>CO <sub>2</sub> "Bu             | 4g | 97              |
| 8     | O. Si-'Bu<br>OH               | 1h | MeO CO <sub>2</sub> <sup>n</sup> Bu   | 4h | 81              |
| 9     | O Si-Bu<br>OH                 | 1i | 'Bu CO <sub>2</sub> "Bu               | 4i | 89              |
| 10    | O, /Bu<br>Si-'Bu<br>OH        | 1j | P CO <sub>2</sub> "Bu                 | 4j | $58^b$          |
| 11    | F <sub>3</sub> CO O Si-'Bu OH | 1k | F <sub>3</sub> CO CO <sub>2</sub> "Bu | 4k | 52 <sup>b</sup> |

 $^a$  Isolated yield.  $^b$  The yield was measured by  $^1$ H NMR analysis using  ${
m CH_2Br_2}$  as internal standard.

benzofuranone from a simple phenol featuring a C-H activation strategy.

Finally, an application of this novel alkenylation methodology on the olefination of a more complex substrate estrone was tested. Thus, the corresponding silanol 7 underwent a smooth alkenylation/desilylation reaction sequence to produce the olefinated estrone 8 as a single regioisomer in 89% yield (eq 7).<sup>21</sup> This example showcases the viability of employment of this

Table 3. Alkene Scope for Silanol-Directed Alkenylation

| entry | substrate                              |    | product                                     |                  | yield,<br>%ª              |
|-------|----------------------------------------|----|---------------------------------------------|------------------|---------------------------|
| 1     | O OPh                                  | 2b | Me OH O OPh                                 | 41               | 96                        |
| 2     | O Et                                   | 2c | Me OH O Et                                  | 4m               | $87^b$                    |
| 3     | СНО                                    | 2d | Me OH OH                                    | 4n               | $70^b$                    |
| 4     | Me                                     | 2e | Me OH Me                                    | 40               | $67^b$                    |
| 5     |                                        | 2f | Me OH                                       | 4p               | 69 <sup>b</sup>           |
| 6     | Ph                                     | 2g | Me OH                                       | 4q               | 64 <sup>c,d</sup>         |
| 7     | F                                      | 2h | Me OH                                       | 4r               | 79                        |
| 8     | <b>∕</b> C <sub>6</sub> F <sub>5</sub> | 2i | Me OH $C_6F_5$                              | 4s               | 83                        |
| 9     | NO <sub>2</sub>                        | 2j | Me OH NO <sub>2</sub>                       | 4t               | 66                        |
| 10    | Me<br>CO <sub>2</sub> "Bu              | 2k | Me OH Me + Me + Me 4u, 45% <sup>d</sup> 4v, | 39% <sup>d</sup> | H<br>`CO <sub>2</sub> ″Bu |

<sup>a</sup> Isolated yield. <sup>b</sup> Alkene 2 (4 equiv), Boc-Val-OH (20 mol %) as the ligand, 110 °C. <sup>c</sup> Styrene (4 equiv), 120 °C. <sup>d</sup> <sup>1</sup>H NMR yield.

method for a late-stage modification of complex phenol-containing bioactive molecules toward a diversity-oriented drug discovery.<sup>22</sup>

In summary, we have shown that the di-tert-butylsilanol can serve as a new and efficient directing group for the palladium-catalyzed ortho-alkenylation of phenols. Employment of this directing group is very convenient as it can easily be removed under mild conditions. A synthetic usefulness of this novel

alkenylation method was further demonstrated in the efficient synthesis of benzofuranone and alkenylated estrone derivative.

## ASSOCIATED CONTENT

**Supporting Information.** Detailed experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

## AUTHOR INFORMATION

Corresponding Author vlad@uic.edu

### ACKNOWLEDGMENT

We thank the National Institutes of Health (GM-64444) for financial support of this work.

#### REFERENCES

- (1) (a) Koehler, K.; Gordon, S.; Brandt, P.; Carlsson, B.; Backsbro-Saeidi, A.; Apelqvist, T.; Agback, P.; Grover, G. J.; Nelson, W.; Grynfarb, M.; Farnegardh, M.; Rehnmark, S.; Malm, J. J. Med. Chem. 2006, 49, 6635. (b) Gan, F. F.; Chua, Y. S.; Scarmagnani, S.; Palaniappan, P.; Franks, M.; Poobalasingam, T.; Bradshaw, T. D.; Westwell, A. D.; Hagen, T. Biochem. Biophys. Res. Commun. 2009, 387, 741.(c) Botyanszki, J.; Shi, D.-F.; Roberts, C. D.; Schmitz, F. U. U.S. Pat. Appl. Publ. US 20070032488. (d) Finkelstein, B. L.; Benner, E. A.; Hendrixson, M. C.; Kranis, K. T.; Rauh, J. J.; Sethuraman, M. R.; McCann, S. F. Biorg. Med. Chem. 2002, 10, 599.
- (2) For Claisen rearrangement of O-allylphenols to C-allylphenols, see: (a) Martín Castro, A. M. Chem. Rev. 2004, 104, 2939. For examples of C-allylphenols to C-vinylphenols, see: (b) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998.
- (3) (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. (b) Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320.
- (4) For an example on regioselective formation of halophenols, see: de Rege, F. M. G.; Buchwald, S. L. *Tetrahedron* **1995**, *51*, 4291.
- (5) (a) Yamaguchi, M.; Hayashi, A.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 1151. (b) Kobayashi, K.; Yamaguchi, M. Org. Lett. 2001, 3, 241.
- (6) The developed catalytic version of this process (see ref 5b) is limited to vinylation reaction only.
- (7) For general reviews on transition metal-catalyzed C—H activation of arenes, see: (a) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (c) Godula, K.; Sames, D. Science 2006, 312, 67. (d) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041. (e) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (f) Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35. (g) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (h) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (i) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (j) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (k) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540. (l) Satoh, T.; Miura, M. Synthesis 2010, 3395. (m) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
- (8) For reviews on transition metal-catalyzed C-H alkenylation of arenes, see: (a) Oestreich, M., Ed. *The Mizoroki-Heck Reaction*; John Wiley and Sons: Chicester, U.K., 2009. (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. *Chem. Rev.* **2007**, *107*, 5318. (c) Messaoudi, S.; Brion, J.-D.; Alami, M. *Eur. J. Org. Chem.* **2010**, 6495. (d) Seregin, I. V.; Gevorgyan, V. *Chem. Soc. Rev.* **2007**, *36*, 1173. (e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. *Angew. Chem., Int. Ed.* **2009**, *48*, 5094. (f) Colby, D. A.; Bergman, R. G.; Ellman, J. A. *Chem. Rev.*

- 2010, 110, 624. (g) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (h) Satoh, T.; Miura, M. Chem.—Eur. J. 2010, 16, 11212.
- (9) For examples of removable directing group assisted C—H activation, see: (a) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502. (b) García-Rubia, A.; Urones, B.; Gómez Arrayás, R.; Carretero, J. C. Chem.—Eur. J. 2010, 16, 9676. (c) García-Rubia, A.; Fernández-Ibáñez, M. Á.; Gómez Arrayás, R.; Carretero, J. C. Chem.—Eur. J. 2011, 17, 3567. (d) Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222.
- (10) The employment of a phenoxyl group as a directing group for C—H activation is less common since it would generate a highly-strained, four-membered metallacycle, see: Vicente, J.; Abad, J.-A.; Förtsch, W.; Jones, P. G.; Fischer, A. K. Organometallics 2001, 20, 2704.
- (11) For o-arylation of phenols employing phosphorous-containing additives, see: (a) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112. (b) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669. (c) Oi, S.; Watanabe, S.-I.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44, 8665. For o-alkylation of phenols, see: (d) Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728. (e) Dorta, R.; Tongi, A. Chem. Commun. 2003, 760. (f) Carrión, M. C.; Cole-Hamilton, D. J. Chem. Commun. 2006, 4527. (g) Lewis, J. C.; Wu, J.; Bergman, R. G.; Ellman, J. A. Organometallics 2005, 24, 5737. For pioneering work regarding o-deuteration of phenols, see: (h) Lewis, L. N. Inorg. Chem. 1985, 24, 4433. For o-borylation of phenols employing a silicon-tethered directing group, see: (i) Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534.
- (12) For early work on employment of removable silyl-directing group in Heck reaction, see: (a) Itami, K.; Mitsudo, K.; Kamei, T.; Koike, T.; Nokami, T.; Yoshida, J.-i. *J. Am. Chem. Soc.* **2000**, *122*, 12013. For a review, see: (b) Itami, K.; Yoshida, J.-i. *Synlett* **2006**, 157.
- (13) (a) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. **2010**, 132, 8270. (b) Dudnik, A. S.; Chernyak, N.; Huang, C.; Gevorgyan, V. Angew. Chem., Int. Ed. **2010**, 49, 8729. (c) Huang, C.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Adv. Synth. Catal. **2011**, 353, 1285.
- (14) Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916.
- (15) For hydroxyl group as a directing group, see also: (a) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 7725. (b) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 1740. (c) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 12203. (d) Lu, Y.; Leow, D.; Wang, X.; Engle, K. M.; Yu, J.-Q. Chem. Sci. 2011, 2, 967.
- (16) To the best of our knowledge, there are no reports on employment of silanol as a directing group in C—H functionalization reactions.
- (17) Silanols 1 were prepared in a semi-one-pot reaction of phenols with di-t-butylchlorosilane, followed by bromination and hydrolysis. See Supporting Information for details. For published two-step procedure, see: Petit, M.; Chouraqui, G.; Aubert, C.; Malacria, M. Org. Lett. 2003, 5, 2037.
- (18) Upon completion of the first step, the mixture was filtered through a celite plug, concentrated and treated with TBAF solution in THF. See Supporting Information for details.
- (19) For rare examples on monoselective alkenylation, see: (a) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (b) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315. For not completely selective mono vs bisalkenylation, see: (c) García-Rubia, A.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2009, 48, 6511. (d) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 6169. (e) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9982. (f) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024. See also refs 9b and 9d.
  - (20) The stereochemistry was determined by NOE experiments.
- (21) (a) Edsall, A. B.; Mohanakrishnan, A. K.; Yang, D.; Fanwick, P. E.; Hamel, E.; Hanson, A. D.; Agoston, G. E.; Cushman, M. J. Med. Chem. 2004, 47, 5126. (b) Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 458. (c) Zhou, C.-Y.; Li, J.; Peddibhotla, S.; Romo, D. Org. Lett. 2010, 12, 2104.

(22) (a) Schreiber, S. L. Nature **2009**, 457, 153. (b) Galloway, W. R. J. D.; Spring, D. R. Nature **2011**, 470, 43.