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The iridium-catalyzed asymmetric hydrogenation of N-phenyl-B-dehydroamino acid derivatives was
examined using monodentate phosphoramidite ligands. The highest yields and enantioselectivities were
obtained using a mixed ligand approach with PipPhos L1 and achiral triphenylphosphine (full conversion,
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1. Introduction

Enantiomerically pure B-amino acids and their derivatives not
only exhibit broad biological activity but are also building blocks
for the synthesis of B-peptides, p-lactam antibiotics, and other chi-
ral pharmaceuticals.! Peptides containing p-amino acids show high
stability toward enzymatic hydrolysis and are considered valuable
as promising pharmaceutical products. In addition, B-peptides
show interesting three-dimensional structures,? and have played
an important role in advancing the understanding of enzyme
mechanisms, protein conformations, and properties related to
molecular recognition. As a result, the asymmetric synthesis of
B-amino acids has attracted significant attention.?

One of the most promising methodologies, also regarding an
industrial application, is the asymmetric hydrogenation of the
appropriate B-dehydroamino acid precursors catalyzed by homo-
geneous Rh or Ru complexes containing chiral phosphine ligands.*
Whereas the asymmetric hydrogenation of acylated o- and pB-
dehydroamino acids is a standard method with many industrial
applications,® the hydrogenation of unprotected p-dehydroamino
acids was developed much later. In recent years, several successful
metal catalysts for the highly enantioselective asymmetric hydro-
genation of B-enamino acid derivatives have been reported.®® A
study from the Merck/Solvias groups,® using deuterium labeling
showed that the hydrogenation of unprotected B-dehydroamino
acid derivatives proceeds through the imine tautomer.

We have developed the use of monodentate phosphoramidite
ligands for the asymmetric hydrogenation of acylated o~ and B-
dehydroamino acids with excellent enantioselectivities.'®!! More
recently, we have reported that use of iridium complexes with
phosphoramidite ligands leads to excellent results in the hydroge-
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nation of acylated o-dehydroamino acid derivatives'? and of C=N
compounds (N-aryl imines, quinolines, and quinoxalines).!

N-Aryl B-amino acid derivatives are key structural elements of
many natural products and drug intermediates.'* One method to
prepare such compounds is to perform the asymmetric hydrogena-
tion of N-aryl B-enamino esters. Only a few examples of this reac-
tion have been reported in the literature.”!> Therefore, we decided
to examine the possibility of using Ir/phosphoramidite catalysts for
the enantioselective hydrogenation of N-arylated B-enamino
esters.

2. Results and discussion

Initial hydrogenation experiments were performed using
5 mol % of iridium precursor and 10 mol % of (S)-PipPhos L1 ligand,
at 5 bar of hydrogen pressure and room temperature, in dichloro-
methane (Table 1, entries 1, 2, and 8). In general rather low enanti-
oselectivities and conversions were obtained initially. The highest
ee was obtained in the hydrogenation of p-methyl N-phenyl ena-
mino ester 2, however, with low conversion (13% conversion,
36% ee, entry 2). Only 8% ee was obtained in the hydrogenation
of B-phenyl substituted enamino ester 3 (46% conversion, entry 8).

Since reactions with Ir/PipPhos L1 at 5 bar of hydrogen pressure
gave modest conversions and ee’s, the following experiments were
performed at 25 bar of pressure. Various solvents as well as addi-
tives were screened in the asymmetric hydrogenation of p-methyl
N-phenyl enamino ester 2 and B-phenyl N-phenyl enamino ester 3.
Although in solvents, such as toluene, iso-propanol and THF, the
yield was often higher, the enantioselectivity was generally lower.
The addition of I, led to a reduction in the enantioselectivity. The
reaction in DCM led to the highest enantioselectivity.

Over the last decade, both Reetz et al.>!® and ourselves!”"!8 have
shown that the use of mixtures of chiral monodentate ligands can
improve both the enantioselectivity and the reactivity in asymmetric
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Table 1

Asymmetric hydrogenation of N-phenyl f-enamino esters using [Ir(COD),]BArF/(S)-PipPhos L1?

: NH O

5 mol% [Ir(COD),]|BArF
10 mol% (S)-PipPhos

2
R’ X O/R

(S)-PipPhos L1

: NH O

Y o

R2
Hy, rt, CH,Cly, 16h R o

1a-3a

1a, R' = Me, R2= Me
2a, R" = Me, RZ = Et
3a, R' = Ph, R? =Et

Entry Prod. Solvent P (bar) Conv.” (%) ee (%)
1 1a DCM 5 21 20
2 2a DCM 5 13 36
3 DCM 25 45 25
4 Toluene 25 73 16
5 IPA 25 98 5
6 THF 99 2
74 THF 25 100 3
8 3a DCM 5 46 8
9 DCM 25 34 20
10 Toluene 25 47 17
11 IPA 25 48 9
12 THF 25 73 20
134 THF 25 43 0

¢ Reaction conditions: 100 pumol enamino ester, 5 pmol [Ir(COD),|BArF, 10 pmol (S)-PipPhos, 2.55 mL of solvent, CH,Cl,, 5 or 25 bar H,, 16 h.

P Conversion was determined by GC.
¢ Enantiomeric excess was determined by HPLC.
4 10 mol % L.

hydrogenation reactions. It is also possible to use mixed complexes
based on a monodentate chiral ligand and a non-chiral phosphorus
ligand. Therefore, we decided to examine the possibility of using a
mixture of phosphoramidites with achiral P-ligands or amines.
Reactions were performed using 5 mol % of [Irf(COD),|BArF and
(S)-PipPhos L1 as a ligand, at 25 bar of hydrogen pressure and room
temperature. When an achiral phosphine was used as a second
ligand, the ratio between PipPhos L1 and achiral ligand was 2/1.
This was to prevent the formation of [Rh(PPhs),(COD)] as this com-
plex is capable of very fast hydrogenation and leads to a racemic
product. In the reactions where an amine was used as the second
ligand, the ratio of ligands was PipPhos L1/amine = 1:1, as in the
case of Crabtree’s catalyst.!® The results of the hydrogenation of
substrates 2 and 3 are presented in Table 2.

The addition of amine ligands, (S,S)-2-phenyl-1-(1-phenyl-
ethyl)-propylamine or triethylamine (entries 2, 3, 7, and 8)
resulted in excellent conversions, but no enantioselectivity was
observed with either substrate; When achiral phosphines were
added in combination with (chiral) PipPhos, the highest ee was
achieved using triphenylphosphine in the hydrogenation of both
2 and 3 (up to 65% ee, entries 4 and 9). In the case of substrate 3,
the conversion was somewhat lower (54%, entry 9). Since the Pip-
Phos/PPh; mixture induced the highest enantioselectivity in the
hydrogenation of N-phenyl B-enamino esters, we decided to per-
form this reaction at a higher concentration (1 mmol scale, 4 mL
of solvent) and lower catalyst loading, on substrate 1. Various achi-
ral P-ligands were tested in combination with PipPhos L1. The re-
sults are shown in Table 3.

Reactions were performed at 25 bar of hydrogen pressure and
room temperature, using 1 mol % of [Ir(COD),|BArF, 2 mol % of Pip-
Phos L1 and 1 mol % of achiral ligand, in dichloromethane. The best
result was again obtained using triphenylphosphine in combina-

Table 2
Asymmetric hydrogenation of enamines using Ir catalysts with mixed ligands®

5 mol% [Ir(COD),]BArF ©\
mol% [Ir( )2]BAr! NH O

(S)-PipPhos
2 * 2
R MO/R M _R

achiral ligand R’ ()
25 bar Hy, rt, CH,Cl,, 16h

2,3 2a, 3a

2a,R"=Me, RZ=Et
3a, R"=Ph, R? = Et

Entry Prod. Achiral ligand Ir/L«/L Conv.” (%) ee‘ (%)
1 2a - 1/2/0 45 25
2 EtsN 111 100 0
3 Ph/\u/'\,,h 111 94 0
4 PPhs 121 100 65
5 (2-MeCgHy)sP 1211 48 16
6 3a - 1/2/0 34 20
7 Et;N 111 100 2
8 Ph/\H/LPh 11N 100 0
9 PPh; 1/2/1 54 45

10 (2-MeCgHy)sP 1211 15 5

¢ Reaction conditions: 100 pwmol substrate, 5 pumol [Ir(COD),]BArF, 10 umol (S)-
PipPhos L1, 2.55 mL of CH,Cl, rt, 25 bar Hy, 16 h.

b Conversion was determined by GC.

¢ Enantiomeric excess was determined by HPLC.

tion with PipPhos L1, providing full conversion and 70% ee (entry
1). With the use of tri-o-tolylphosphine L3 no conversion was
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Table 3
Achiral ligands screened in the asymmetric hydrogenation of 1*

1 mol% [Ir(COD),]BArF
2 mol% PipPhos
1 mol% Non-chiral ligand

A - 25barH, -
O GH,Cl, ft, 16h o
1 1a

Entry Achiral ligand Conv. (%) ee (%)
1 PPhs L2 100 70
2 (2-MeCgHa)sP L3 0 -
3 (3-MeCgHy);P 14 100 52
4 (2,4,6-MeCH,);P 14 5 -
5 (4-MeOCgH,)sP L5 100 63
6 (Naphth-1-yl)sP L6 29 2
7 (t-Bu)sP L7 6 nd
8 (MeO);P L8 100 47
9 PhsPO L9 42 40
10 (Me,N);PO L10 26 38

¢ Reaction conditions: 1 mmol 1, 0.01 mmol [Ir(COD),|BArF, 0.02 mmol (S)-Pip-
Phos L1, 0.01 mmol achiral ligand, 4 mL of DCM, rt, 25 bar H, 20 h.

b Conversion was determined by 'H NMR.

¢ Enantiomeric excess was determined by HPLC.

obtained, while the use of other phosphines with a substituent at
the ortho-position also led to low conversions (L4 and L6, entries
4 and 6). Use of the bulky phosphine L7 led to low conversion
(6%, entry 7). Full conversions and ee’s up to 63% were achieved
using phosphines with substituents at the meta- or para-positions
(entries 3 and 5). These results suggest that o-substituted achiral
phosphines as well as the bulky phosphine L7 are perhaps too
sterically demanding for coordination to the iridium together with
the PipPhos L1 ligand. When trimethylphosphite L8 was used with
PipPhos L1, full conversion was accomplished (47% ee), whereas
with addition of triphenylphosphine oxide L9 only up to 42%
conversion and 40% ee was achieved; the addition of HMPA only
led to a slight improvement (entries 8-10).

In addition to the achiral ligand screening, we examined the use
of four different phosphoramidite ligands in combination with tri-
phenylphosphine L2 in the hydrogenation of 1. The reactions were
performed using 1 mol % of iridium precursor, 2 mol % of phospho-
ramidite ligand, and 1 mol % of triphenylphosphine, at 25 bar of
hydrogen pressure and room temperature, in dichloromethane.
The results are presented in Table 4. Unfortunately, all the ligands
employed induced low conversions. The highest enantioselectivity
accompanied by very low conversion was obtained using phosphor-
amidite L13 in combination with triphenylphosphine (entry 4, 8%
conversion, 46% ee).

3. Conclusion

In conclusion, we have examined various in situ prepared irid-
ium catalysts in the hydrogenation of B-dehydroamino acid deriv-
atives. The highest enantioselectivity was obtained in a mixed
ligand approach using a mixture of the chiral phosphoramidite li-
gand PipPhos L1 and achiral triphenylphosphine L2 (full conver-
sion, 70% ee).

4. Experimental
4.1. General remarks
All solvents were reagent grade and were dried and distilled, if

necessary, following standard procedures. Reagents were pur-
chased from Aldrich, Acros, Merck, or Fluka and used as received.

Table 4
Screening of phosphoramidite ligands in the asymmetric hydrogenation of 1*

1 mol% [Ir(COD),]BArF
2 mol% L*
1 mol% PPh3

_—
M _~ 25barHy, 16h
Y CH,Cly, rt,

L12 L13
Ph Ph
OO O\ >—- OO 0 >~mu
PN “p—N
(o] >mm\ O/
(S,R,R)-L14 (S,5,5)-L15
Entry Ligand PPh; Conv.® (%) ee (%)
1 L12 — 19 6
2 L12 + 7 nd
3 L13 — 4 nd
4 L13 + 8 46
5 L14 - 11 10
6 L14 + 11 0
7 L15 — 20 3
8 L15 + 20 6

2 Reaction conditions: 1 mmol 1, 0.01 mmol [Ir(COD),]BArF, 0.02 mmol L*,
0.01 mmol PPhs, 4 mL of DCM, rt, 25 bar Hy, 16 h.

b Conversion was determined by 'H NMR.

¢ Enantiomeric excess was determined by HPLC.

[Ir(COD),|BArF was obtained from Umicore and used as such.
NMR spectra were obtained on Varian Gemini-200 and Varian
AMX400 spectrometers. GC analysis was carried out on HP6890
using a flame ionization detector, while HPLC analysis was per-
formed on Shimadzu LC-10ADVP HPLC equipped with a Shimadzu
SPD-M10AVP diode array detector. The enantiomeric excess was
determined by HPLC with chiral columns (Chiralcel OD and AS-
H), in comparison with racemic products. Racemic products were
prepared by the Pd/C catalyzed hydrogenation of enamino-esters.
High resolution mass spectra were recorded on an AEI-MS-902
mass spectrometer.

Reactions were performed in a stainless steal autoclave contain-
ing seven glass vessels (8 mL volume). These vessels were closed
with septum caps. Magnetic stir bars were placed inside of each
vessel and the needles were placed through the septa in order to
enable entrance of hydrogen. Vessels were filled under air and then
flushed with nitrogen before hydrogen pressure was applied.

Ligands L1,2° L12,'° L13,2' L14,%° and L15%° were prepared
according to literature procedures.
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