

Available online at www.sciencedirect.com



Tetrahedron Letters 46 (2005) 4577-4579

Tetrahedron Letters

## Stille carbonylation of N-protected bromomethylindoles

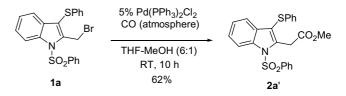
Arasambattu K. Mohanakrishnan\* and Neelamegam Ramesh

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India Received 9 March 2005; revised 28 April 2005; accepted 4 May 2005

Abstract—A variety of *N*-protected indolylmethylbromides are carbonylated using 5 mol % Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> under Stille conditions in the presence of an alcohol to afford the corresponding methyl/ethyl esters.

© 2005 Elsevier Ltd. All rights reserved.

Indole and its myriad of derivatives are important fragments of a large number of natural products of both marine and terrestrial origin, and hence continue to capture the attention of synthetic organic chemists. Recently, Gribble has extensively reviewed<sup>1</sup> the various developments involved in the synthesis of indoles.


In general, most substituted indoles are prepared through lithiation protocols.<sup>2</sup> The fact that N-protected methylindole can be easily allyl brominated using NBS led to the syntheses of a variety of substituted indoles. In particular, the synthetic elaboration of bromomethylindoles has been thoroughly exploited in order to prepare different types of indole-based natural products.<sup>3–5</sup> The bromomethylindoles can be smoothly displaced by a variety of nucleophiles such as CN, OH, (EtO)<sub>3</sub>P, PPh<sub>3</sub>, SPh, NR<sub>2</sub>, N<sub>3</sub>, etc.<sup>6</sup> They can also be easily displaced by stabilized carbanions derived from diethylmalonate, ethyl acetoacetate, phenylacetonitrile, etc.<sup>7</sup> Srinivasan and co-workers have reported PdCl<sub>2</sub>mediated arylation of bromomethylindoles.<sup>8</sup> Bromomethylindoles have also been used to synthesize  $\beta$  and  $\gamma$ -carboline derivatives.<sup>9</sup>

In an ongoing project, we required several 2-indolylmethyl esters as starting materials. To our surprise, there were only a few reports which described the synthesis of indolylmethyl acetates.<sup>10</sup> All these methods involved multi-step procedures and gave only low yields. Since numerous bromomethylindoles were easily available, we decided to investigate the carbonylation of bromomethylindoles under Stille conditions<sup>11</sup> using a Pd catalyst.

As a model study, bromo compound 1a was carbonylated using 5% Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> as a catalyst under CO atmosphere at room temperature.

Workup followed by column chromatographic purification afforded methyl ester 2a' in 62% yield (Scheme 1). The carbonylation reaction was then tested with a variety of bromomethylindoles, 1a-1 and the results are presented in Table 1.

The bromo compound **1a** was also converted into the corresponding ethyl ester (entry 2) without any appreciable change in yield. During the carbonylation of bromomethylindole **1b** (entry 3), both bromides underwent simultaneous carbonylation to afford bisester **2b**. The bis(dibromomethyl)indole **1l** afforded the corresponding bisester **2l** (entry 13) in a reasonable yield. The carbonylations of bromomethylindoles **1f**-**h** containing a vinyl ester moiety led to the respective products in diminished yields (entries 7–9). The relatively unexplored bromomethylindoles **1i** and **1j** were also carbonylated to afford the corresponding esters **2i** and **2j** in 77% and 52% yields, respectively.



Scheme 1.

*Keywords*: Bromomethylindoles; Stille carbonylation; Pd catalyst; Indolylmethyl esters.

<sup>\*</sup>Corresponding author. Tel.: +91 44 24451108; fax: +91 44 22352494; e-mail: mohan\_67@hotmail.com

<sup>0040-4039/\$ -</sup> see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.05.010

| Entry | Bromo compounds <sup>12</sup>                                     | Esters <sup>13</sup>                                                                 | Yield (%),<br>mp (°C) | Entry | Bromo compounds <sup>12</sup>                       | Esters <sup>13</sup>                                | Yield (%),<br>mp (°C) |
|-------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|-------|-----------------------------------------------------|-----------------------------------------------------|-----------------------|
| 1     | SPh<br>Br<br>SO <sub>2</sub> Ph<br>1a                             | N<br>SO <sub>2</sub> Ph<br>2a'                                                       | 62 (114–116)          | 8     | CO <sub>2</sub> Et<br>N<br>SO <sub>2</sub> Ph       | CO <sub>2</sub> Et<br>N<br>SO <sub>2</sub> Ph<br>2g | 45 (142)              |
| 2     | SPh<br>Br<br>SO <sub>2</sub> Ph<br>1a                             | SPh<br>CO <sub>2</sub> Et<br>SO <sub>2</sub> Ph<br>2a"                               | 61 (90)               | 9     | CO <sub>2</sub> Me<br>N<br>SO <sub>2</sub> Ph<br>1h | CO <sub>2</sub> Me<br>N<br>SO <sub>2</sub> Ph<br>2h | 45 (150)              |
| 3     | Br<br>N<br>SO <sub>2</sub> Ph<br>1b                               | $\begin{array}{c} \begin{array}{c} CO_2 Me \\ \hline N \\ SO_2 Ph \\ 2b \end{array}$ | 58 (122–124)          | 10    | Br<br>N<br>SO <sub>2</sub> Ph                       | CO <sub>2</sub> Me<br>N<br>SO <sub>2</sub> Ph<br>2i | 77 (88)               |
| 4     | Me<br>N<br>SO <sub>2</sub> Ph<br>1c                               | Me<br>CO <sub>2</sub> Me<br>SO <sub>2</sub> Ph<br>2c                                 | 58 (120–122)          | 11    | Br COPh<br>1J                                       | MeO <sub>2</sub> C COPh<br>2j                       | 52 (88–90)            |
| 5     | $ \begin{array}{c} & CN \\ & Br \\ & SO_2Ph \\ & 1d \end{array} $ | $\begin{array}{c} CN\\ N\\ SO_2Ph\\ 2d \end{array}$                                  | 47 (96)               | 12    | Br<br>N Me<br>SO <sub>2</sub> Ph<br>1k              | N Me<br>SO <sub>2</sub> Ph<br>2k                    | 58 (70)               |
| 6     | MeO<br>N<br>SO <sub>2</sub> Ph<br>1e                              | MeO<br>CO <sub>2</sub> Et<br>CO <sub>2</sub> Me<br>N<br>SO <sub>2</sub> Ph<br>2e     | 50 (118)              | 13    | Br<br>N<br>SO <sub>2</sub> Ph<br>11                 | N<br>SO <sub>2</sub> Ph<br>2I                       | 58 (138)              |
| 7     | N<br>SO <sub>2</sub> Ph<br>1f                                     | CO <sub>2</sub> Me<br>N<br>SO <sub>2</sub> Ph<br>2f                                  | 42 (150)              |       |                                                     |                                                     |                       |

Table 1. Preparation of indolylmethyl esters via Stille carbonylation

In summary, we have synthesized several indolylmethyl esters involving hitherto unexplored Stille carbonylation of the corresponding *N*-protected bromomethylindoles. The synthetic utility of these esters will be explored in due course.

## Acknowledgements

We thank UGC, New Delhi (F.12-140/2001 SR-1), for the financial support. Financial support to the Department by DST-FIST is also acknowledged.

## **References and notes**

- Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045– 1075.
- (a) Sundberg, R. J.; Russell, H. F. J. Org. Chem. 1973, 38, 3324–3330; (b) Katritzky, A. R.; Akutagawa, K. Tetrahedron Lett. 1985, 26, 5935–5938; (c) Katritzky, A. R.; Akutagawa, K. J. Am. Chem. Soc. 1986, 108, 6808–6809; (d) Inagaki, S.; Nishigava, Y.; Sugiura, T.; Ishihara, H. J. Chem. Soc., Perkin Trans. 1 1990, 179–180; (e) Inagaki, S.; Naruse, Y.; Ito, Y. J. Org. Chem. 1991, 56, 2256–2258; (f)

Hartung, C. G.; Fecher, A.; Chapell, B.; Snieckus, V. Org. Lett. 2003, 11, 1899–1902.

- (a) Gribble, G. W.; Allen, R. W.; Lehoullier, C. S.; Eaton, J.; Easton, N. R.; Slayton, R. I.; Sibi, M. P. J. Org. Chem. **1981**, 46, 1025–1026; (b) Gribble, G. W.; Saulnier, M. G.; Sibi, M. P.; Obaza-Nutaitis, J. A. J. Org. Chem. **1984**, 49, 4518–4523.
- Sha, C.-K.; Yang, J. F. Tetrahedron 1992, 48, 10645– 10654.
- Mohanakrishnan, A. K.; Srinivasan, P. C. J. Org. Chem. 1995, 60, 1939–1946.
- (a) Nagarathnam, D.; Vedachalam, M.; Srinivasan, P. C. Synthesis 1983, 156–157; (b) Macor, J. E.; Newman, M. E.; Ryan, K. Tetrahedron Lett. 1989, 30, 2509–2512; (c) Nagarathnam, D. Synthesis 1992, 743–745; (d) Nagarathnam, D.; Johnson, M. E. Tetrahedron Lett. 1993, 34, 3215–3218; (e) Nagarathnam, D. Synthesis 1992, 743–745; (f) Nagarathnam, D. J. Heterocycl. Chem. 1992, 29, 953– 958.
- Nagarathnam, D.; Srinivasan, P. C. Synthesis 1982, 926– 927.
- Rajeswaran, W. G.; Srinivasan, P. C. Synthesis 1992, 835– 836.
- (a) Mohanakrishnan, A. K.; Srinivasan, P. C. *Tetrahedron Lett.* **1996**, *37*, 2659–2662; (b) Mohanakrishnan, A. K.; Srinivasan, P. C. *Synth. Commun.* **1995**, *25*, 2415–2424.

4579

- (a) Samizu, K.; Ogasawara, K. Synlett 1994, 499–500; (b) Chillin, A.; Rodighiero, P.; Guiotto, A. Synthesis 1998, 309–312; (c) Arcadi, A.; Cacchi, S.; Fabrizi, F.; Marinelli, F. Synlett 2000, 3, 394–396.
- Cowel, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4193– 4198.
- 12. The required bromocompounds **1a–I** were prepared via the allylic bromination of the corresponding methylindoles using NBS in the presence of a catalytic amount of benzoyl peroxide in CCl<sub>4</sub> under reflux.
- 13. All the esters gave satisfactory spectral and analytical data.

Typical experimental procedure for 2a': A two-necked flask containing bromo compound 1a (0.5 g, 1.09 mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (40 mg, 0.06 mmol), and K<sub>2</sub>CO<sub>3</sub> (0.16 g, 1.16 mmol) was evacuated. To this, dry THF (30 mL) and MeOH (5 mL) were added via syringe. The reaction mixture was then purged with dry carbon monoxide gas for 5 min, then stirred under a carbon monoxide atmosphere at room temperature for 10 h. The reaction mixture was diluted with water (50 mL) and extracted with ethyl acetate (2 × 20 mL). The combined extract was washed with water (10 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). Removal of the solvent followed by column chromatographic purification (silica gel, EtOAc–hexane 1:5) afforded 2a' as a colorless solid (0.42 g, 62%); mp 114–116 °C; IR (KBr)  $v_{max}$ : 1740, 1365, 1172 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.58

(s, 3H), 4.30 (s, 2H), 6.98–7.03 (m, 3H), 7.06–7.15 (m, 3H), 7.24 (t, J = 7.36 Hz, 1H), 7.37–7.40 (m, 3H), 7.50 (t, J = 6.3 Hz, 1H), 7.80 (t, J = 8.3 Hz, 2H), 7.98 (d, J = 8.3 Hz, 1H). MS (EI) *m*/*z* (%): 437 (M<sup>+</sup>, 28%), 378 (42), 237 (100). Elemental anal. calcd for C<sub>23</sub>H<sub>19</sub>NO<sub>4</sub>S<sub>2</sub>: C, 63.14; H, 4.38; N, 3.20; S, 14.66. Found: C, 63.08; H, 4.52; N, 3.17; S, 14.53.

Data for **2b**: mp 122–124 °C; IR (KBr) v<sub>max</sub>: 1739, 1712, 1384, 1195 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 3.71 (s, 3H), 3.93 (s, 3H), 4.74 (s, 2H), 7.30-7.33 (m, 2H), 7.45 (t, J = 7.9 Hz, 2H), 7.53–7.55 (t, J = 7.3 Hz, 1H), 7.89 (d, J = 7.4 Hz, 2H), 8.02–8.09 (m, 2H). <sup>13</sup>C NMR (75.5 Mz, CDCl<sub>3</sub>): δ 32.87, 51.62, 52.29, 113.42, 114.05, 122.15, 124.42, 125.35, 126.83, 129.37, 134.06, 138.43, 140.49, 164.84, 169.77. MS (EI) m/z (%): 388 (M+1, 40%), 329 (23). Elemental anal. calcd for C<sub>19</sub>H<sub>17</sub>NO<sub>6</sub>S: C, 58.91; H, 4.42; N, 3.62; S, 8.28. Found: C, 59.11; H, 4.57; N, 3.58; S, 8.32. Data for **2g**: mp 142 °C; IR (KBr)  $\nu_{max}$ : 1743, 1712, 1369, 1172 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.32 (t, J = 7.36 Hz, 3H), 3.72 (s, 3H), 4.23–4.28 (m, 4H), 6.52 (d, J = 16.1 Hz, 1H), 7.29-7.33 (m, 3H), 7.41-7.44 (m, 2H),7.53 (t, J = 7.8 Hz, 1H), 7.74 (d, J = 16.1 Hz, 1H), 7.77-7.79 (m, 1H), 7.83 (d, J = 7.3 Hz, 1H), 8.02 (d, J = 6.8 Hz, 1H). MS (EI) *m*/*z* (%): 427 (M<sup>+</sup>, 13%), 286 (77), 182 (36), 154 (95). Elemental anal. calcd for  $C_{22}H_{21}NO_6S$ : C, 61.81; H, 4.95; N, 3.28; S, 7.50. Found: C, 61.73; H, 5.02; N, 3.22; S. 7.58.