Contents lists available at SciVerse ScienceDirect

Journal of Organometallic Chemistry

Synthesis and structures of the triple-decker type complexes $CpCo(\mu-1,3-C_3B_2Me_5)MX_2L$ (M = Rh and Ir; X = Cl and Br; L = Me₂SO and PPh₃)

Alexander S. Romanov^{a,b}, Dmitry V. Muratov^a, Mikhail Yu. Antipin^{a,b}, Walter Siebert^c, Alexander R. Kudinov^{a,*}

^a Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation ^b Department of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701, USA ^c Anorganisch-Chemisches Institut der Universität Heidelberg, 69120 Heidelberg, Germany

ARTICLE INFO

Article history: Received 29 February 2012 Received in revised form 29 May 2012 Accepted 6 June 2012

Keywords: Boron Cobalt Heterocycles Rhodium Iridium Triple-decker complexes

1. Introduction

The (pentamethylcyclopentadienyl)halide complexes $[Cp^*MX_2]_2$ (M = Rh, Ir; X = Cl, Br, I) are widely used as synthons of the Cp*M fragment [1]. Since Maitlis et al. opened up the rich chemistry of these dimers and monomeric derivatives Cp^*MX_2L , their catalytic properties were extensively studied for different processes: homogeneous hydrogenation [2], oxidation of primary and secondary alcohols [3], asymmetric transfer hydrogenation of aromatic ketones [4], N-alkylation of carbamates and amides [5], intermolecular hydroarylation of alkynes [6], arylation of imines *via* C–H bond functionalization [7], Rh-catalized indole synthesis [8], Grignard-type arylation of aldehydes *via* a Rh-catalyzed C–H activation [9], oxidative carbonylation of benzamides for phthalimide synthesis *via* C–H activation [10].

Analogous halide complexes [(1,2,3,4,7-pentamethylindenyl) $MX_2]_2$ [11], $[(9-SMe_2-7,8-C_2B_9H_{10})MX_2]_2$ [12], $[CpCo(\mu-1,3-C_3B_2Me_5)MX_2]_2$ [13] were synthesized in our laboratory and proved to be synthetically useful. For instance, the metallacarborane halides $[(9-SMe_2-7,8-C_2B_9H_{10})MX_2]_2$ react with PPh₃

E-mail address: arkudinov@ineos.ac.ru (A.R. Kudinov).

ABSTRACT

The dimeric triple-decker type halides $[CpCo(\mu-1,3-C_3B_2Me_5)MX_2]_2$ (M = Rh, X = Cl, **1**; M = Ir, X = Cl, **2**; M = Rh, X = Br, **3**; M = Ir, X = Br, **4**) react with Me₂SO and PPh₃ giving adducts $CpCo(\mu-1,3-C_3B_2Me_5)M(L)$ X₂ (**5**–**12**). The Me₂SO ligand is S-bonded to the metal atom in the solid state, while in acetone it is O-bonded. Structures of **5**–**12** were confirmed by X-ray diffraction.

© 2012 Elsevier B.V. All rights reserved.

and CO giving mononuclear compounds $(9-SMe_2-7,8-C_2B_9H_{10})M(L)$ X₂ (L = PPh₃, CO) [14]. Herein, we describe similar reactions of the triple-decker type halides [CpCo(μ -1,3-C₃B₂Me₅)MX₂]₂ (M = Rh and Ir) with dimethylsulfoxide and triphenylphosphine. The structures of the adducts obtained are also discussed.

2. Results and discussion

2.1. Synthesis

Compounds $[CpCo(\mu-1,3-C_3B_2Me_5)MX_2]_2$ (M = Rh, X = Cl, 1; M = Ir, X = Cl, 2; M = Rh, X = Br, 3; M = Ir, X = Br, 4) [13] are insoluble in low coordinating solvents such as CH₂Cl₂ and acetone, but soluble in strongly coordinating MeCN and Me₂SO. We found that the reaction of halides 1–4 with 2-electron donor ligands Me₂SO and PPh₃ leads to the formation of the monomeric complexes 5–12 in high yields (Scheme 1).

Adducts **5–12** are deep-colored solids, stable in air for long periods of time. All complexes were characterized by elemental analysis, NMR and IR spectroscopy. The IR spectra of solid complexes **5–8** indicate that the Me₂SO ligand is S-bonded to the metal atom (ν (S=O) 1019 cm⁻¹); it was further supported by X-ray diffraction (*vide infra*). However, in acetone solution only the

^{*} Corresponding author. Tel.: +7 499 135 9367.

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2012.06.003

Scheme 1. Synthesis of the adducts.

stretching vibration of S=O group at 902 cm⁻¹ is observed suggesting that the Me₂SO ligand becomes O-bonded to the metal atom [15]. Similar tautomeric behavior was previously reported for $[Cp^*M(Me_2SO)_3](PF_6)_2$ complexes [16].

The signals of the Me groups of $C_3B_2Me_5$ ligand in ¹H NMR spectra of complexes **5–12** are down-field shifted in comparison with the triple-decker complexes $CpCo(\mu-1,3-C_3B_2Me_5)MC_5R_5$ (M(ring) = RuCp, RuCp*, $Co(C_4Me_4)$) [17]. All signals of Me groups in ¹H NMR spectrum of the chloride $CpCo(\mu-1,3-C_3B_2Me_5)$ RhCl₂PPh₃ (**9**) appear as singlets whereas for the related bromide **11** doublets are observed for 4,5-CMe and 1,3-BMe groups. In the ³¹P {¹H} NMR spectra the doublets are observed for both these complexes.

2.2. X-ray diffraction studies

Structures of the complexes **5–12** were confirmed by X-ray diffraction (the representative structures for **5** and **9** are shown in Figs. 1 and 2). Selected structural parameters for these compounds are given in Table S1 and S2 (see Supporting Information). Crystals of compounds **5–8**¹ are isomorphous. In addition, adducts **9/10** and **11/12** are isomorphous pairwise. The Cp and C₃B₂Me₅ ring ligands are almost parallel (the dihedral angles $0.0-2.6^{\circ}$), and the metal atoms are placed nearly over the centroids of the rings. The mutual orientation of the rings in compounds **9–12** is staggered, while for complexes **5–8** it is nearly eclipsed for independent molecule A, and staggered for independent molecule B. All Me groups of the C₃B₂Me₅ ligand are displaced from the C₃B₂ ring plane in the direction towards the Co atom with deviation about 0.02(1)-0.21(1) Å for all complexes. The C₃B₂ ring in complexes **5–12** is almost planar with a small folding along the B···B line (*ca* 1.4°).

The M centers (M = Rh and Ir) in complexes **5–12** possess pseudo-octahedral (three-legged piano stool) geometry where the [CpCo(μ -1,3-C₃B₂Me₅)] group occupies three positions and three ligands (Br/Cl and Me₂SO/PPh₃) complete the pseudo-octahedral coordination. In complexes **5–8** the Me₂SO ligand is S-bonded and M–S bond length lies within the range of 2.313(1)–2.319(1) and 2.284(1)–2.290(2) Å for Rh and Ir complexes, respectively. The M–P bonds in complexes **9–12** are almost equidistant (2.311(1)–2.330(1) Å). The M–Cl and M–Br bond lengths do not deviate significantly in complexes **5–12** and lie within the ranges of 2.387(1)–2.408(1) and 2.497(1)–2.534(1) Å, respectively. These data are comparable with those for the analogous compounds Cp*MCl₂PR₃ (M = Rh and Ir, R = Ph, C₆F₅, OEt and other) [18].

Fig. 1. Molecular structure of independent molecule A for compound 5. Ellipsoids are shown at the 50% level.

Noteworthy, for complexes **5–12** the angles X1–M–X2, X1–M–P(S), and X2–M–P(S) (M = Rh and Ir; X = Cl and Br) reflect the pseudo-octahedral coordination geometry around the metal center. The angles increase in the order X(2)–M–P(S) < X(1)–M–P(S) < X1–M–X2 irrespectively to the value of M–P or M–S bond length. Such angles order can be explained by the repulsion of negatively charged halogen atoms.

Interestingly, the halogen atoms X (X = Cl or Br) in complexes **5–12** are always oriented in *trans*-position to the C6 and C8 atoms of the C₃B₂ ring, while ligand L (L = Me₂SO or PPh₃) is oriented in *cis*-position to B2 atom and *trans*-position to C7–B1 bond. This type of coordination causes the elongation of M–B1 bond in comparison with M–B2 by 0.030(2)–0.090(2) Å and shortening of M–C6 and M–C8 bonds in comparison with M–C7 by 0.010(2)–0.040(2) Å for all complexes. One may conclude that in adducts **5–12** Me₂SO and

Fig. 2. Molecular structure of compound 9. Ellipsoids are shown at the 50% level.

 $^{^{1}}$ The unit cells of Me₂SO-adducts **5–8** contain two independent molecules; averaged values will be used in further discussion.

PPh₃ possess moderate structural *trans*-effect *vs.* halide anions in accordance with general tendency [19].

3. Conclusion

The reactions of the halide complexes **1–4** with 2-electron donor ligands Me₂SO and PPh₃ allowed to prepare the tripledecker type adducts CpCo(μ -1,3-C₃B₂Me₅)MX₂L (L = Me₂SO and PPh₃). The IR spectroscopy revealed the tautomeric behavior for dimethylsulfoxide ligand (S or O coordination) in adducts **5–8**. The X-ray diffraction study of adducts **5–12** showed that the Me₂SO and PPh₃ ligands possess moderate structural *trans*-effect, whereas halogen atoms show weak *trans*-effect in the presence of [CpCo(μ -1,3-C₃B₂Me₅)] sandwich unit.

4. Experimental

4.1. General

All reactions were carried out under argon in anhydrous solvents which were purified and dried using standard procedures. The isolation of products was conducted in air. Starting materials were prepared as described in the literature: $CpCo(1,3-C_3B_2Me_5H)$ [20], $[(cod)RhCl]_2$ [21], $[(cod)IrCl]_2$ [22], $[CpCo(\mu-1,3-C_3B_2Me_5)MBr_2]_2$ [13], and $[CpCo(\mu-1,3-C_3B_2Me_5)MCl_2]_2$ analogously to the former bromide complexes. The ¹H, ¹¹B{¹H}, and ³¹P{¹H} NMR spectra were recorded with a Bruker AMX 400 spectrometer operating at 400.13, 128.38, and 161.98 MHz, respectively. The IR spectra of the compounds were measured by Infralum FT-801 (Lumex) FTIR spectrometer over the range 400–4000 cm⁻¹.

4.2. Synthesis of

4.2.1. $CpCo(\mu - 1, 3 - C_3B_2Me_5)MX_2(Me_2SO)$

(5) M = Rh; X = Cl. The Me₂SO/CH₂Cl₂ mixture (20 ml; 1/20) was added to the solid complex **1** (0.060 g, 0.07 mmol) and stirred for 24 h. The green solution was slowly evaporated to form a black crystalline precipitate. The product was washed with 3 ml of cooled CH₂Cl₂ (0 °C) from excess of Me₂SO and dried in vacuum. Yield 0.064 g (91%). Black solid. C₁₅H₂₆B₂Cl₂CoORhS (508.80): calcd. C 35.41, H 5.15, B 4.25; found C 35.30, H 5.10, B 4.13. ¹H NMR (CD₂Cl₂): δ = 4.88 (s, 5H, CoCp), 2.93 (s, 6H, Me₂SO), 2.32 (s, 6H, 4,5-Me), 1.53 (s, 6H, 1,3-BMe), 1.51 (s, 3H, 2-Me). ¹¹B{¹H} NMR (CD₂Cl₂): δ = 22.29 (bs). IR (v, solid sample, KBr, cm⁻¹): 1019 (SO). IR (v, acetone solution, KBr, cm⁻¹): 902 (SO).

(6) M = Ir; X = Cl. Complex **6** was prepared similarly to **5** from complex **2** (0.045 g, 0.04 mmol). Yield 0.046 g (90%). Black solid. C₁₅H₂₆B₂Cl₂CoIrOS (598.11): calcd. C 30.12, H 4.38, B 3.61; found C 29.73, H 4.36, B 3.45. ¹H NMR (CD₂Cl₂): δ = 4.88 (s, 5H, CoCp), 3.11 (s, 6H, Me₂SO), 2.45 (s, 6H, 4,5-Me), 1.56 (s, 6H, 1,3-BMe), 1.53 (s, 3H, 2-Me). ¹¹B{¹H} NMR (CD₂Cl₂): δ = 16.09 (bs). IR (v, solid sample, KBr, cm⁻¹): 1018 (SO). IR (v, acetone solution, KBr, cm⁻¹): 902 (SO).

(7) M = Rh; X = Br. Complex 7 was prepared similarly to 5 from complex 3 (0.062 g, 0.06 mmol). Yield 0.067 g (94%). Black solid. C₁₅H₂₆B₂Br₂CoORhS (597.70): calcd. C 30.14, H 4.38, B 3.62; found C 30.20, H 4.45, B 3.58. ¹H NMR (CD₂Cl₂): δ = 4.87 (s, 5H, CoCp), 3.07 (s, 6H, Me₂SO), 2.42 (s, 6H, 4,5-Me), 1.60 (s, 6H, 1,3-BMe), 1.57 (s, 3H, 2-Me). ¹¹B{¹H} NMR (CD₂Cl₂): δ = 22.22 (bs). IR (v, solid sample, KBr, cm⁻¹): 1026 (SO). IR (v, acetone solution, KBr, cm⁻¹): 902 (SO).

(8) M = Ir; X = Br. Complex 8 was prepared similarly to 5 from complex 4 (0.06 g, 0.05 mmol). Yield 0.063 g (93%). Black solid. C₁₅H₂₆B₂Br₂CoIrOS (687.01): calcd. C 26.22, H 3.81, B 3.15; found C 26.35, H 3.97, B 3.12. ¹H NMR (CD₂Cl₂): δ = 4.88 (s, 5H, CoCp), 3.32 (s, 6H, Me₂SO), 2.53 (s, 6H, 4,5-Me), 1.63 (s, 6H, 1,3-BMe), 1.53 (s, 3H,

2-Me). ¹¹B{¹H} NMR (CD₂Cl₂): δ = 16.05 (bs). IR (v, solid sample, KBr, cm⁻¹): 1027 (SO). IR (v, acetone solution, KBr, cm⁻¹): 902 (SO).

4.2.2. CpCo(μ-1,3-C₃B₂Me₅)MX₂PPh₃

(9) M = Rh; X = Cl. The CH₂Cl₂ (2 ml) was added to a mixture of complex **1** (0.043 g, 0.05 mmol) and PPh₃ (0.026 g, 0.1 mmol). The reaction mixture was stirred for 12 h and then filtered. The product was precipitated by addition of Et₂O (20 ml), centrifuged, washed with Et₂O and dried in vacuo. Yield 0.057 g (83%). Dark-green solid. C₃₁H₃₅B₂Cl₂CoRhP (692.96): calcd. C 53.73, H 5.09, B 3.12; found C 53.90, H 5.22, B 3.04. ¹H NMR (CD₂Cl₂): δ = 7.62–7.68 (m, 6H, PPh₃), 7.37–7.47 (m, 6H, PPh₃), 7.05–7.20 (m, 3H, PPh₃), 4.68 (s, 5H, CpCo), 2.35 (s, 6H, 4,5-Me), 1.09 (s, 6H, 1,3-BMe), 0.58 (s, 3H, 2-Me). ¹¹B{¹H} NMR (CD₂Cl₂): δ = 21.27 (s). ³¹P{¹H} NMR (CD₂Cl₂): δ = 29.84 (d, ¹J_{RhP} = 161,0 Hz).

(10) M = Ir; X = Cl. Complex 10 was prepared similarly to 9 from complex 2 (0.062 g, 0.06 mmol) and PPh₃ (0.032 g, 0.12 mmol). Yield 0.085 g (91%). Dark-brown solid. $C_{31}H_{35}B_2Cl_2CoIrP$ (782.27): calcd. C 47.60, H 4.51, B 2.76; found C 47.51, H 4.45, B 2.86. ¹H NMR (CD₂Cl₂): δ = 7.56–7.63 (m, 6H, PPh₃), 7.47–7.39 (m, 9H, PPh₃), 4.70 (s, 5H, Cp), 2.54 (s, 6H, 4,5-Me), 1.14 (s, 6H, 1,3-BMe), 0.85 (s, 3H, 2-Me). ¹¹B{¹H} NMR (CD₂Cl₂): δ = 15.81 (s). ³¹P{¹H} NMR (CD₂Cl₂): δ = 0.41 (s).

(11) M = Rh; X = Br. Complex 11 was prepared similarly to **9** from complex **3** (0.062 g, 0.06 mmol) and PPh₃ (0.032 g, 0.06 mmol). Yield 0.086 g (92%). Dark-green solid. C₃₁H₃₅B₂Br₂CoRhP (781.86): calcd. C 47.62, H 4.51, B 2.77; found C 47.71, H 4.65, B 2.86. ¹H NMR (CDCl₃): δ = 7.58–7.68 (m, 6H, PPh₃), 7.37–7.43 (m, 6H, PPh₃), 7.05–7.15 (m, 3H, PPh₃), 4.61 (s, 5H, CpCo), 2.47 (d, 6H, ³J_{RhH} = 0.64 Hz, 4,5-Me), 1.20 (d, 6H, ³J_{RhH} = 0.32 Hz, 1,3-BMe), 0.58 (c, 3H, 2-Me). ¹¹B{¹H} NMR (CDCl₃): δ = 21.16 (s). ³¹P{¹H} NMR (CDCl₃): δ = 35.04 (d, ¹J_{RhP} = 121.6 Hz).

(12) M = Ir; X = Br. Complex 12 was prepared similarly to 9 from complex 4 (0.061 g, 0.05 mmol) and PPh₃ (0.026 g, 0.1 mmol). Yield 0.075 g (86%). Dark-brown solid. C₃₁H₃₅B₂Br₂CoIrP (871.17): calcd. C 42.74, H 4.05, B 2.48; found C 42.27, H 3.91, B 2.75. ¹H NMR (CDCl₃): δ = 7.60–7.70 (m, 6H, PPh₃), 7.47–7.39 (m, 9H, PPh₃), 7.14–7.04 (m, 3H, PPh₃), 4.65 (s, 5H, Cp), 2.65 (s, 6H, 4,5-Me), 1.24 (s, 6H, 1,3-BMe), 0.94 (s, 3H, 2-Me). ¹¹B{¹H} NMR (CDCl₃): δ = 16.34 (s). ³¹P{¹H} NMR (CDCl₃): δ = -1.03 (s).

4.3. X-ray crystallography of 5–12

The crystals suitable for X-ray study were obtained by slow evaporation of CH₂Cl₂ from Me₂SO/CH₂Cl₂ solutions (1/20) of complexes **5**–**8**, slow evaporation of acetone/ CH_2Cl_2 solutions (1/1) of complexes **9–12** in NMR tube. The principal crystallographic data and refinement parameters are listed in Tables 1 and 2. X-ray diffraction experiment was carried out with a Bruker Apex II CCD area detector, using graphite monochromated Mo K_{α} radiation $(\lambda = 0.71073 \text{ Å})$ at 100 K. Absorption correction was applied semiempirically using APEX2 program [23]. The structures were solved by direct methods and refined by the full-matrix leastsquares against F^2 in an anisotropic (for non-hydrogen atoms) approximation. The compounds 5-8 crystallize with two independent molecules in the unit cell which are differ from each other by orientation of the cyclic ligands. The compounds 9–12 crystallize with one CH₂Cl₂ solvate molecule. All hydrogen atom positions were refined in isotropic approximation in "riding" model with the $U_{iso}(H)$ parameters equal to 1.2 $U_{eq}(C_i)$, for methyl groups equal to 1.5 $U_{eq}(C_{ii})$, where $U(C_i)$ and $U(C_{ii})$ are respectively the equivalent thermal parameters of the carbon atoms to which the corresponding H atoms are bonded. All calculations were performed using the SHELXTL software [24].

Table 1

Summary of crystallographic data and structure refinement for complexes **5–8**.

	5	6	7	8	
Empirical formula	C15H26B2Cl2CoORhS	C ₁₅ H ₂₆ B ₂ Cl ₂ ColrOS	C15H26B2Br2CoORhS	C15H26B2Br2CoIrOS	
Molecular weight	508.78	598.07	597.70	686.99	
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	
Space group	$Pca2_1$	Pca2 ₁	Pca2 ₁	$Pca2_1$	
Crystal colour, habit	pyramid/black	pyramid/black	pyramid/black	pyramid/black	
Crystal size (mm)	$0.25\times0.19\times0.11$	$0.19\times0.17\times0.08$	$0.45\times0.40\times0.30$	$0.32\times0.20\times0.16$	
a (Å)	28.2721(17)	28.3157(8)	28.5751(12)	28.5980(9)	
b (Å)	9.4959(6)	9.5197(3)	9.7398(4)	9.7591(3)	
c (Å)	14.3224(8)	14.3176(4)	14.3874(6)	14.3633(4)	
α (°)	90	90	90	90	
β (°)	90	90	90	90	
γ (°)	90	90	90	90	
$V(Å^3)$	3845.1(4)	3859.4(2)	4004.2(3)	4008.7(2)	
Z	8	8	8	8	
D_{calc} (g cm ⁻³)	1.758	2.059	1.983	2.277	
$2\theta_{\max}(\circ)$	28.50	28.00	27.00	28.00	
Abs. coeff., μ (Mo- $K\alpha$) (cm ⁻¹)	2.106	8.132	5.747	11.550	
Absorption correction	Sadabs				
$T_{\rm max}/T_{\rm min}$	0.8014/0.6210	0.5623/0.3072	0.2775/0.1819	0.2594/0.1194	
Number of collected reflections	44040	127333	39980	112191	
Number of independent reflections	9749	9313	8629	4920	
Number of observed reflections $(I > 2\sigma(I))$	7646	8778	8387	4857	
R _{int}	0.0942	0.0498	0.0247	0.0513	
Number of parameters	430	429	429	430	
R_1 (on F for observed reflexions) ^a	0.0405	0.0159	0.0168	0.0175	
wR_2 (on F^2 for all reflexions) ^b	0.0766	0.0358	0.0404	0.0415	
Weighting scheme	$w^{-1} = \sigma^2(F_{\alpha}^2) + (aP)^2 + bP$, where $P = 1/3(F_{\alpha}^2 + 2F_{\alpha}^2)$				
A	0.02	0.01	0.009	0.014	
В	0.0	1.5	0.44	15.99	
F(000)	2048	2304	2336	2592	
Goodness-of-fit	1.003	1.034	1.006	1.002	
$\Delta ho_{ m max}/\Delta ho_{ m max}$ (e Å ⁻³)	0.705/-0.986	1.442/-1.083	1.528/-0.462	3.810/-1.122	

Table 2

Summary of crystallographic data and structure refinement for complexes 9–12.

	$9 \cdot CH_2Cl_2$	$10 \cdot CH_2Cl_2$	$11 \cdot CH_2Cl_2$	$12 \cdot CH_2Cl_2$		
Empirical formula	C31H35B2Cl2CoPRh·CH2Cl2	C ₃₁ H ₃₅ B ₂ Cl ₂ CoIrP·CH ₂ Cl ₂	C ₃₁ H ₃₅ B ₂ Br ₂ CoPRh · CH ₂ Cl ₂	C ₃₁ H ₃₅ B ₂ Br ₂ CoIrP·CH ₂ Cl ₂		
Molecular weight	777.85	867.14	866.77	956.06		
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic		
Space group	P2 ₁ /c	$P2_1/c$	$P2_1/n$	$P2_1/n$		
Crystal colour, habit	plate/light brown	plate/light brown	plate/light brown	plate/light brown		
Crystal size (mm)	$0.59\times0.45\times0.18$	$0.58\times0.45\times0.32$	$0.33 \times 0.21 \times 0.09$	$0.41\times0.32\times0.14$		
a (Å)	12.8082(17)	12.8536(16)	9.7742(17)	9.779(2)		
b (Å)	12.8350(17)	12.8219(16)	17.788(3)	17.809(4)		
<i>c</i> (Å)	20.068(3)	20.091(3)	19.419(3)	19.360(4)		
α (°)	90	90	90	90		
β(°)	91.410(2)	92.108(2)	102.608(2)	102.774(3)		
γ (°)	90	90	90	90		
V (Å ³)	3298.1(8)	3309.0(8)	3294.8(9)	3288.3(13)		
Ζ	4	4	4	4		
D_{calc} (g cm ⁻³)	1.567	1.741	3294.8(9)	1.931		
$2\theta_{\max}$ (°)	28.00	28.00	30.50	27.10		
Abs. coeff., μ (Mo- $K\alpha$) (cm ⁻¹)	1.398	4.912	3.663	7.211		
Absorption correction	Sadabs					
$T_{\rm max}/T_{\rm min}$	0.7870/0.4926	0.2024/0.0830	0.734/0.377	0.431/0.156		
Number of collected reflections	43216	43241	50866	40390		
Number of independent reflections	7948	7967	9976	7169		
Number of observed reflections $(I > 2\sigma(I))$	7053	7089	8447	5805		
R _{int}	0.0285	0.0378	0.0387	0.0595		
Number of parameters	375	373	370	370		
R_1 (on F for observed reflexions) ^a	0.0230	0.0274	0.0228	0.0253		
wR ₂ (on F ² for all reflexions) ^b	0.0567	0.0727	0.0538	0.0566		
Weighting scheme	$w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$, where $P = 1/3(F_o^2 + 2F_c^2)$					
Α	0.023	0.043	0.023	0.018		
В	3.03	5.32	1.380	6.69		
F(000)	1576	1704	1720	1848		
Goodness-of-fit	1.000	0.957	1.025	0.966		
$\Delta \rho_{\rm max} / \Delta \rho_{\rm max}$ (e Å ⁻³)	0.489/-0.436	1.968/-0.969	0.521/-0.532	0.958/-0.638		

 $\label{eq:rescaled_rescale$

Appendix A. Supplementary material

Supplementary data related to this article can be found online at http://dx.doi.org/10.1016/j.jorganchem.2012.06.003.

References

- [1] (a) P.M. Maitlis, Chem. Soc. Rev. 10 (1981) 1-48;
- (b) R. Poli, Chem. Rev. 4 (1991) 509-551.
- [2] (a) D.S. Gill, C. White, P.M. Maitlis, J. Chem. Soc. Dalton Trans. (1978) 617-628;
 (b) A.C. da Silva, H. Piotrowski, P. Mayer, K. Polborn, K. Severin, Eur. J. Inorg. Chem. (2001) 685-691.
- [3] K. Fujita, S. Furukawa, R. Yamaguchi, J. Organomet.Chem. 649 (2002) 289–292.
- [4] G. Liu, H. Gu, Y. Sun, J. Long, Y. Xu, H. Li, Adv. Synth. Catal. 353 (2011) 1317–1324.
- [5] K. Fujita, A. Komatsubara, R. Yamaguchi, Tetrahedron 65 (2009) 3624–3628.
- [6] D.J. Schipper, M. Hutchinson, K. Fagnou, J. Am. Chem. Soc. 132 (2010) 6910–6911.
- [7] A.S. Tsai, M.E. Tauchert, R.G. Bergman, J.A. Ellman, J. Am. Chem. Soc. 133 (2011) 1248–1250.
- [8] D.R. Stuart, M. Bertrand-Laperle, K.M.N. Burgess, K. Fagnou, J. Am. Chem. Soc. 130 (2008) 16474–16475.
- [9] L. Yang, C.A. Correia, C. Li, Adv. Synth. Catal. 353 (2011) 1269-1273.
- [10] Y. Du, T.K. Hyster, T. Rovis, Chem. Commun. 47 (2011) 12074–12076.
- [11] D.A. Loginov, M.M. Vinogradov, Z.A. Starikova, E.A. Petrovskaya, P. Zanello, F. Laschi, F. Rossi, A. Cinquantini, A.R. Kudinov, J. Organomet. Chem. 692 (2007) 5777-5787.

- [12] M. Corsini, S. Losi, E. Grigiotti, F. Rossi, P. Zanello, A.R. Kudinov, D.A. Loginov, M.M. Vinogradov, Z.A. Starikova, J. Solid State Electrochem. 11 (2007) 1643–1653.
- [13] D.V. Muratov, A.S. Romanov, P.V. Petrovskii, A.R. Kudinov, W. Siebert, Izv. Akad. Nauk, Ser. Khim. 56 (5) (2007) 1–3 [Russ. Chem. Bull. 2007, 5, 1049 (Engl. Transl.)].
- [14] A.R. Kudinov, D.S. Perekalin, P.V. Petrovskii, K.A. Lyssenko, G.V. Grintselev-Knyazev, Z.A. Starikova, J. Organomet. Chem. 657 (2002) 115–122.
- [15] (a) F.A. Cotton, R. Francis, W.D. Horrocks, J. Phys. Chem. 64 (1960) 1534–1536;
 (b) W.L.Reynolds, Progr. Inorg. Chem. 12(1970) 1–29;
- [16] M.J.H. Russell, C. White, A. Yates, P.M. Maitlis, J. Chem. Soc. Dalton Trans. (1978) 849-857.
- [17] W. Siebert, A.R. Kudinov, P. Zanello, M.Yu. Antipin, V.V. Scherban, A.S. Romanov, D.V. Muratov, Z.A. Starikova, M. Corsini, Organometallics 28 (2009) 2705–2715.
- [18] (a) A.M. FitzGerald, M. Nieuwenhuyzen, G.C. Saunders, J. Organomet. Chem. 584 (1999) 206–212;
 (b) B. Paz-Michel, M. Cervantes-Vazquez, M.A. Paz-Sandoval, Inorg. Chim. Acta 361 (2008) 3094–3102;
 (c) M.M. Geregin, M. Husin, D.M. Partz, T.B. Mandra, A.C. Milliamurd, M. S. Markar, M. S. Markar, A. S. Markar, M. S. Markar, A. S. Markar, A.

(c) M.V. Campian, J.L. Harris, N. Jasim, R.N. Perutz, T.B. Marder, A.C. Whitwood, Organometallics 25 (2006) 5093–5104.

- [19] B.J. Coe, S.J. Glenwright, Coord. Chem. Rev. 203 (2000) 5-80.
- [20] G. Knörzer, W. Siebert, Z. Naturforsch. 45b (1990) 15–18.
- [21] G. Giordano, R.H. Crabtree, Inorg. Synth. 19 (1979) 218–220.
 [22] R.H. Crabtree, J.M. Quirk, H. Felkin, T. Filleben-Khan, Synth. React. Inorg. Met.
- Org. Chem. 12 (1982) 407–413. [23] Bruker, APEX2 Software Package, Bruker AXS Inc, 5465, East Cheryl Parkway, Madison, WI 5317, 2005.
- [24] G.M. Sheldrick, SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS Inc., Madison, WI, USA, 1998.