

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 3509-3511

Palladium(II)-catalyzed ring expansion of a 1-alkenyl cyclopentanol

Antonio García Martínez,^{a,*} Enrique Teso Vilar,^b Amelia García Fraile,^b Santiago de la Moya Cerero^{a,*} and Beatriz Lora Maroto^b

^aDepartamento de Química Orgánica I, Facultad de Química, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ^bDepartamento de Química Orgánica y Biología, Facultad de Ciencias, Universidad Nacional de Eudación a Distancia, Senda del Rey 9, 28040 Madrid, Spain

> Received 25 February 2005; revised 9 March 2005; accepted 14 March 2005 Available online 1 April 2005

Abstract—7,7-Dimethyl-2-methylenenorbornan-1-ol, a strained bicyclic 1-alkenyl cyclopentanol, undergoes Wagner–Meerwein rearrangement to fenchone under treatment with a catalytic amount of $PdCl_2(PPh_3)_2$ in refluxing *N*-methylpyrrolidin-2-one. The described reaction constitutes the first example of the palladium(II)-catalyzed ring expansion of 1-alkenyl cyclopentanols to the corresponding cyclohexanones.

© 2005 Elsevier Ltd. All rights reserved.

Ring-expansion reactions have a great interest in synthetic organic chemistry since they provide efficient tactics for the preparation of biologically active natural products and drugs.¹ In this sense, the palladium(II)promoted ring-expansion reaction of 1-alkenyl or 1-alkynyl cyclobutanols to cyclopentanones is a wellknown process, which has been successfully used for the construction of several interesting natural products with frameworks based on five-membered rings.² The reaction takes place by an initial required formation of an alkene or alkyne π -complex before migration of a (generally secondary) carbon (Scheme 1).

Related 1-alkenyl or 1-alkynyl cyclobutanol expansions can be also realized using palladium(0) catalysts. In

Scheme 1. Palladium(II)-promoted ring expansion of 1-alkenyl or 1-akynyl cyclobutanols.

0040-4039/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.03.068

these cases the reaction is generally initiated by a carbopalladation, using a Heck-type reaction with aryl halides,³ or generating a π -allylpalladium intermediate by different ways (including also Heck-type reactions).⁴

All this palladium-based ring-expansion methodology can also be applied to other strained rings, such as the three-membered ones.⁵ Thus, 1-alkenyl and 1-alkynyl cyclopropanols have been expanded to the corresponding cyclobutanones by treatment with palladium(II)^{5b,c} or palladium(0)^{5a,d} catalysts. Unfortunately, the related expansion of less strained five-membered rings are unusual, with the exceptions of the Nagao's palladium(0)-catalyzed ring expansion of 1-(1-methoxyallenyl)cyclopentanols, via π -allylpalladium intermediates,^{6a} and a more complex palladium(0)/phosphine-catalyzed ring expansion of 1-acryloylcyclopentanols of the same author.^{6b}

Our approach to find a palladium(II)-catalyzed ring-expansion reaction of 1-alkenyl cyclopentanols is performed by the use of 7,7-dimethyl-2-methylenenorbornan-1-ol (1a) or 3,3-dimethyl-2-methylenenorbornan-1-ol (1b) as the starting 1-alkenyl cyclopentanols (Fig. 1), since such strained 1-alkenyl cyclopentanols have been demonstrated to exhibit a great tendency for undergoing cationic Wagner–Meerwein rearrangement to the corresponding cyclohexanones (2-norbornanones) under

Keywords: Palladium catalysis; Ring expansion; Bicycles; Cyclopentanols.

^{*} Corresponding authors. Tel.: +34 913945090; fax: +34 913944103; e-mail: santmoya@quim.ucm.es

Figure 1. Selected starting strained 1-alkenyl cyclopentanols.

stoichiometric treatment with adequate electrophiles.⁷ Additionally, both starting 1-alkenyl cyclopentanols **1a** and **1b** can be easily obtained from fenchone and camphor, respectively.⁷

We have found that 1-alkenyl cyclopentanol **1a** is able to undergo Wagner–Meerwein rearrangement to fenchone (**2a**) after treatment with a catalytic amount of PdCl₂(PPh₃)₂ in refluxing *N*-methylpyrrolidin-2-one (NMP) (Scheme 2), whereas analogue **1b** remains unalterated after the same palladium(II) treatment.⁸

The rearrangement shown in Scheme 2 constitutes the first example of a palladium(II)-catalyzed ring-expansion reaction of a 1-alkenyl cyclopentanol to the corresponding cyclohexanone (see catalytic cycle in Scheme 3). The unreactivity of **1b** can be attributed to the difficulty of such substrate to coordinate the palladium(II) catalyst and to form the corresponding initial required π -complex. This difficulty is due to the high steric

Scheme 2. Palladium(II)-catalyzed ring-expansion reaction of 1-alkenyl cyclopentanol 1a.

Scheme 3. Catalytic cycle.

hindrance existing around the carbon–carbon double bond of **1b** exerted by the C(3)-gem-dimethyl group (cf. **1a** and **1b** in Fig. 1), as well as the also high steric volume of the palladium-species bearing phosphine ligands.

In summary, the first palladium(II)-catalyzed ringexpansion reaction of a 1-alkenyl cyclopentanol has been described. Further investigations on the possible synthetic application of palladiated intermediate **4a** for the preparation of new enantiopure C(10)-substituted fenchones,⁹ as well as on the possible extension of such rearrangement to other related bicyclic alcohols, are in progress.

Acknowledgements

We thank the Ministry of *Ciencia y Tecnología* and the Ministry of *Educación y Ciencia* of Spain (BQU2001-1347-C02 and CTQ2004-07244-C02/BQU, respectively) for the financial support of this work.

References and notes

- 1. Hesse, M. *Ring Enlargement in Organic Chemistry*; VCH: New York, 1991.
- 2. (a) Some works on the palladium(II)-catalyzed ring expansion of cyclobutanols are: Boontanonda, P.; Grigg, R. J. Chem. Soc., Chem. Commun. 1977, 583; (b) Clark, G. R.; Thiensathit, S. Tetrahedron Lett. 1985, 26, 2503; (c) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J. Am. Chem. Soc. 1987, 109, 7908; (d) Demuth, M.; Pandey, B.; Wietfeld, B.; Said, H.; Viader, J. Helv. Chim. Acta 1988, 71, 1392; (e) de Almeida Barbosa, L.-C.; Mann, J. J. Chem. Soc., Perkin Trans. 1 1990, 177; (f) Mitchell, D.; Liebeskind, L. S. J. Am. Chem. Soc. 1990, 112, 291; (g) Nemoto, H.; Nagamochi, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1993, 2392; (h) Nemoto, H.; Nagamochi, M.; Ishibashi, H.; Fukumoto, K. J. Org. Chem. 1994, 59, 74; (i) Nemoto, H.; Shiraki, M.; Fukumoto, K. Synlett 1994, 599; (j) Nemoto, H.; Miyata, J.; Fukumoto, K. Tetrahedron 1996, 52, 10363; (k) Nemoto, H.; Miyata, J.; Yoshida, M.; Raku, N.; Fukumoto, K. J. Org. Chem. 1997, 62, 7850; (1) Nemoto, H.; Yoshida, M.; Fukumoto, K.; Ihara, M. Tetrahedron Lett. 1999, 40, 907; (m) Nemoto, H.; Miyata, J.; Ihara, M. Tetrahedron 1999, 40, 1933.
- For example, see: (a) Larock, R. C.; Reddy, Ch. K. Org. Lett. 2000, 2, 3325; (b) Larock, R. C.; Reddy, Ch. K. J. Org. Chem. 2002, 67, 2027; (c) Wei, L.-M.; Wei, L.-L.; Pan, W.-B.; Wu, M.-J. Tetrahedron Lett. 2003, 44, 595.
- (a) Nemoto, H.; Yoshida, M.; Fukumoto, K. J. Org. Chem. 1997, 62, 6450; (b) Yoshida, M.; Sugimoto, K.; Ihara, M. Tetrahedron Lett. 2000, 41, 5089; (c) Yoshida, M.; Sugimoto, K.; Ihara, M. Tetrahedron 2002, 58, 7839; (d) Yoshida, M.; Sugimoto, K.; Ihara, M. Org. Lett. 2004, 6, 1979; (e) Yoshida, M.; Komatsuzaki, Y.; Nemoto, H.; Ihara, M. Org. Biomol. Chem. 2004, 2, 3099.
- For example, see: (a) Aoki, S.; Fujimura, T.; Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1988, 110, 3296; (b) Park, S.-B.; Cha, J. K. Org. Lett. 2000, 2, 147; (c) Okumoto, H.; Jinnai, T.; Shimizu, H.; Harada, Y.; Mishima, H.; Suzuki, A. Synlett 2000, 629; (d) Trost, B. M.; Yasukata, T. J. Am. Chem. Soc. 2001, 123, 7162.
- 6. For example, see: (a) Nagao, Y.; Ueki, A.; Asano, K.; Tanaka, S.; Sano, S.; Shiro, M. Org. Lett. 2002, 4, 455, and

3511

related references cited therein; (b) Nagao, Y.; Tanaka, S.; Ueki, A.; Kumazawa, M.; Goto, S.; Ooi, T.; Sano, S.; Shiro, M. *Org. Lett.* **2004**, *6*, 2133.

- As a review, see: de la Moya Cerero, S.; García Martínez, A.; Teso Vilar, E.; García Fraile, A.; Lora Maroto, B. J. Org. Chem. 2003, 68, 1451.
- 8. A solution of **1a** or **1b** (0.100 mmol) and PdCl₂(PPh₃)₂ (0.005 mmol) in NMP (1.5 mL) was refluxed for 6 h under

argon atmosphere. After that, the reaction mixture was analyzed by GC/MS, showing the quantitative conversion of **1a** to **2a**, as well as the unreactivity of **1b**.

9. On the synthetic importance of enantiopure C(10)-substituted fenchones, see: García Martínez, A.; Teso Vilar, E.; García Fraile, A.; de la Moya Cerero, S.; Lora Maroto, B. *Tetrahedron: Asymmetry* **2001**, *12*, 3325, and references cited therein.