Chem. Pharm. Bull. 36(7)2430—2446(1988)

Studies on the Chemical Constituents of Lilium henryi BAKER

HIROKO SHIMOMURA,^a YUTAKA SASHIDA,*,^a YOSHIHIRO MIMAKI,^a and YOICHI IITAKA^b

Tokyo College of Pharmacy, a 1432–1, Horinouchi, Hachioji, Tokyo 192–03, Japan and Faculty of Pharmaceutical Sciences, The University of Tokyo, b 7–3–1, Hongo, Bunkyo-ku, Tokyo 113, Japan

(Received November 27, 1987)

New bitter phenolic glycosides and a steroid glucoside have been isolated from the fresh bulbs of *Lilium henryi*. On the basis of spectroscopic data, chemical evidence and X-ray crystallographic analysis, their structures have been elucidated as (2S)-1-O-p-methoxycinnamoyl-3-O- β -D-glucopyranosylglycerol (methylregaloside A), (2S)-1-O-caffeoyl-3-O- β -D-glucopyranosylglycerol (regaloside C), 3-O-feruloyl-6'-O-(4-O- β -D-glucopyranosylferuloyl)sucrose, and (25R)-3 β ,26-dihydroxy-5 α -cholestane-6,22-dione 3-O- β -D-glucopyranoside. Several known components have also been isolated and identified.

Keywords—*Lilium henryi*; Liliaceae; glycerol glucoside; phenylpropanoid glycoside; methylregaloside A; regaloside C; phenylpropanoid sucrose ester; steroid glucoside; bitter principle; X-ray analysis

Bulbs of plants in the genus *Lilium* (Liliaceae) have been reputed in traditional Chinese medicine to be effective as a sedative, an antitussive, an anti-inflammatory or a nutrient.¹⁾ They have also been used in folk medicine for the treatment of burns or swelling in Europe.²⁾ Our recent extensive survey of the chemical constituents of lily bulbs revealed the occurrence of a variety of phenolic compounds, *i.e.*, phenylpropanoid sucrose esters,³⁾ phenolic glycerides⁴⁾ and phenolic glycerol glucosides,⁵⁾ and an antitumor alkaloid, jatropham, and its glucoside.⁶⁾ Lilies are prone to be attacked by a considerable number of pests and diseases, and the worst disorders to which lilies are vulnerable are a number of virus diseases. However, *Lilium henryi* (Japanese name: kikanoko-yuri) is noted for its strong resistance to virus disease, and the bulbs are significantly bitter to the taste, as are those of *Lilium speciosum* var. *rubrum*³⁾ and *Lilium regale*.⁵⁾ In this paper, we wish to present details of the isolation and structural determination of new bitter phenolic glycosides and a steroid glucoside, in addition to some known compounds, from *Lilium henryi*.

Commercially available fresh bulbs of *Lilium henryi* were extracted with hot methanol, and the extract was treated as described in the experimental section to afford compounds 1—12.

Compounds 1—4 were isolated from the chloroform-soluble portion and obtained as amorphous powders. The proton nuclear magnetic resonance (¹H-NMR) spectra and electron impact mass spectra (EI-MS) revealed that 1—4 were phenolic diglycerides. The structures were identified as 1,2-O-diferuloylglycerol (1), a mixture of 1-O-feruloyl-2-O-p-coumaroylglycerol (2a) and 1-O-p-coumaroyl-2-O-feruloylglycerol (2b), 1,3-O-diferuloylglycerol (3), and 1-O-feruloyl-3-O-p-coumaroylglycerol (4), respectively. Compounds 1 and 2 were obtained as racemates which lack specific rotation and a Cotton effect in the circular dichroism (CD) spectra. To clarify the C-2 configuration of 4, partial hydrolysis was performed. Compound 4 was treated with ca. 1.4% sodium methoxide at room temperature for 30 min to afford two hydrolysis products (4a and 4b). Neither showed specific rotation, and 4 was

No. 7 2431

$$R^1$$
 R^2 R^2 R^3 R^2 R^3 R^4 R^2 R^4 R^4

deduced to be a racemate.8)

Compounds 5—7 were identified as 3,6'-O-diferuloylsucrose (5), 4-O-acetyl-3,6'-O-diferuloylsucrose (6) and 4'-O-acetyl-3,6'-O-diferuloylsucrose (7) from their spectroscopic properties and by direct comparison with authentic samples isolated previously.³⁾

Chart 1

Compound 8 is a white amorphous powder. The ¹H-NMR and carbon-13 nuclear magnetic resonance (¹³C-NMR) spectra of 8 showed signals due to sucrose and two feruloyl

Chart 2

TABLE I. ¹³C-NMR Spectral Data for 5, 8, 8b, and 8c^{a)}

Carbon No.	5	8	8b	8c
Sucrose moiety				
1	65.7	65.8	65.8	
2	104.8	104.9	104.9	
3	79.5	79.7	79.9	
4	74.0	74.1	$73.5^{b)}$	
5	84.7	84.9	84.6	÷
6	63.3	63.5	62.8^{c}	
1'	92.7	92.9	93.3	
2′	73.1	73.3	$73.4^{b)}$	
3′	75.2	75.3	75.3^{d}	
4′	71.7	71.8	71.9	
5′	72.2	72.3	75.1^{d}	
6′	65.0	65.3	$62.3^{c)}$	
Feruloyl moieties				
1" 1""	126.0 125.9	129.1 126.5	126.6	130.4
2′′ 2′′′	111.9 111.2	112.2 111.7	112.2	112.4
3′′ 3′′′	148.9 148.8	$148.9^{b,e}$	148.8	150.8
4′′ 4′′′	151.5	$151.1^{b,e}$	151.0	149.9
5'' 5'''	116.6	117.0 116.8	116.7	117.4^{b}
6'' 6'''	123.8	122.9	e)	123.4
7'' 7'''	146.3 145.7	146.3 145.1	146.2	145.9
8′′ 8′′′	114.9 114.4	115.9 115.0	115.2	117.0^{b}
9′′ 9′′′	167.7 166.9	167.5 166.9	166.9	169.2
OMe	55.9	56.0	55.9	56.8
COOMe				52.1
Glucose moiety				
1′′′′		101.8		102.2
2′′′′		74.8		74.6
3′′′′		$78.5^{c)}$		$78.1^{c)}$
4′′′′		71.2		71.1
5''''		$79.0^{c)}$		77.6^{c}
6''''		62.4		62.4

a) Spectra of 5, 8 and 8b were measured in C_5D_5N , and that of 8c in CD_3OD . The spectrum of 5 was measured with a JEOL FX-100 (25.1 MHz), and others with a Bruker AM-400 (100.6 MHz). b-d) Assignments may be interchangeable in each column. e) Signals were unclear due to overlapping with solvent signals.

groups. In addition, the presence of one more glucose in the molecule was demonstrated by the appearance of an anomeric proton signal (δ 5.60, d, J=7.3 Hz) in the 1 H-NMR spectrum and also by characteristic 13 C-NMR signals (δ 101.8, 79.0, 78.5, 74.8, 71.2, 62.4). The undecaacetate (**8a**) of **8** was prepared with acetic anhydride and pyridine, and its 1 H-NMR spectrum confirmed the presence of ten aliphatic acetoxyl groups and an aromatic acetoxyl group. Mild treatment of **8** with 10% ammonia solution in methanol—water (2:1) for 30 min furnished a partial hydrolysis product, monoferuloylsucrose (**8b**), together with methyl ferulate and glucosyl methyl ferulate (**8c**). In the 1 H-NMR spectrum of **8b**, the signal due to sucrose H-3 was remarkably shifted downfield by 1.33 ppm compared with that of sucrose, 3 0 and **8b** was assigned to be 3-O-feruloylsucrose. The above results demonstrated that one more glucose was linked to the p-hydroxyl function of the feruloyl moiety, which was attached to the C-6' hydroxyl of the sucrose moiety. Accordingly, **8** was deduced to be 3-O-feruloyl-6'-O-(4-O- β -D-glucopyranosylferuloyl)sucrose.

Compound 9, $C_{18}H_{24}O_{10}$ ([M⁺] m/z 400, EI-MS), $[\alpha]_D - 17.0^\circ$ (methanol), was concluded to be regaloside A from its physical and spectroscopic data.⁵⁾ Furthermore, the melting

No. 7

point of 9 hexaacetate (9a) was not depressed by admixture with authentic regaloside A hexaacetate.

Compound 10 was obtained as a colorless crystalline powder recrystallized from ethyl ether-methanol, mp 146.0—148.0 °C, $[\alpha]_D$ –13.0° (methanol). The infrared (IR) spectrum of 10 suggested the presence of hydroxyl group(s) (3550 and 3300 cm⁻¹), a carbonyl group of an α,β -unsaturated ester (1705 cm⁻¹), an alkene conjugated with an aromatic ring (1630 cm⁻¹) and an aromatic ring (1600 and 1510 cm⁻¹). The ¹H-NMR spectrum showed trans olefinic protons as AB-type signals at δ 7.68 and 6.41, J = 16.0 Hz, p-disubstituted aromatic protons as AA'BB' signals at δ 7.56 and 6.96, $J=8.8\,\mathrm{Hz}$ and glycerol glucoside signals at 4.32-3.20integrated for eleven protons. The configuration of the anomeric center in the glucose moiety was assigned as the β -form from its coupling constant (J = 7.8 Hz) in the ¹H-NMR spectrum. The EI-MS of 10 indicated a molecular ion peak at m/z 414, which exceeded that of regaloside A by 14 mass units, and a prominent fragment ion peak at m/z 161, assignable to a p-methoxycinnamoyl residue. The pentaacetate, prepared by acetylation with acetic anhydride and pyridine, showed five acetoxyl signals due to alcoholic acetoxyl groups in the ¹H-NMR spectrum. No phenolic acetoxyl group was observed. On treatment with 3% sodium methoxide, 10 liberated methyl p-methoxycinnamate (10b) and glycerol glucoside. Glycerol glucoside was converted to the corresponding hexaacetate which was assigned to be (2R)-1-Oβ-D-glucopyranosylglycerol hexaacetate, that is, lilioside C hexaacetate.^{5,9)} From the argument presented above, 10 was concluded to be (2S)-1-O-p-methoxycinnamoyl-3-O- β -Dglucopyranosylglycerol, named methylregaloside A. The ¹³C-NMR spectrum of 10 was in good agreement with the proposed structure.

Compound 11 was obtained as a pale-yellow amorphous powder, $[\alpha]_D - 11.3^\circ$ (methanol), with the molecular formula $C_{18}H_{24}O_{11}$. The ¹H-NMR spectrum was similar to that of regaloside A except for the aromatic region. The ultraviolet (UV) spectrum of 11 (methanol) showed λ_{max} at 243 (shoulder (sh)), 300 (sh) and 328 nm. Bathochromic and hyperchromic shifts of the UV maximum at 328 nm (log ε 4.15) to 376 nm (log ε 4.23) upon addition of sodium methoxide reagent as well as a dark green coloration on adding ferric chloride reagent indicated that two free vicinal phenolic hydroxyl groups were present in the molecule. On acetylation with acetic anhydride and pyridine, 11 afforded a heptaacetate (11a). The ¹H-NMR spectrum of 11a revealed the existence of five aliphatic and two aromatic acetoxyl groups. The alkaline hydrolysis of 11 with 3% sodium methoxide in methanol yielded methyl caffeate, and glycerol glucoside, the same hydrolysis products as those of regaloside A, whose subsequent acetylation by treatment with acetic anhydride in pyridine afforded a hexaacetate, identical with lilioside C hexaacetate. Thus, 11 was determined to be (2S)-1-O-caffeoyl-3-O- β -D-glucopyranosylglycerol, designated as regaloside C. The assigned structure was well

TABLE II.	¹³ C-NMR	Spectral Data	for 9	. 10 and	11a)
-----------	---------------------	---------------	-------	----------	------

Carbon No.	9	10	11
Glycerol moiety			
1	66.7	66.8	66.7
2	69.7	69.8	69.8
3	72.0	72.0	72.0
Phenylpropanoid moiety			
1'	127.2	128.4	127.8
2′	131.2	131.0	115.0
3′	116.9	115.5	146.8
4'	161.3	163.3	149.6
5′	116.9	115.5	116.6
6′	131.2	131.0	123.0
7′	146.8	146.4	147.2
8′	115.0	116.0	115.3
9'	169.2	169.0	169.2
OMe		55.9	
Glucose moiety			
1"	104.7	104.8	104.7
2′′	75.1	75.2	75.1
3′′	78.0^{b}	78.1 ^{b)}	78.0
4′′	71.6	71.7	71.6
5′′	77.9^{b}	$78.0^{b)}$	78.0
6''	62.7	62.8	62.8

a) Spectra were measured in CD_3OD with a Bruker AM-400 (100.6 MHz). b) Assignments may be interchangeable in each column.

Chart 4

supported by the ¹³C-NMR spectrum.

Compound 12 was obtained as colorless plates, recrystallized from isopropyl ethermethanol, mp 217.5—219.5 °C. The molecular formula, $C_{33}H_{54}O_9$ was derived from the EI-MS (m/z 576, M^+-H_2O) and elemental analysis. The glucosidic nature of 12 was easily deduced from the ¹H-NMR [δ 5.03, 1H, d, J=7.7 Hz (anomeric proton); δ 4.62—3.90, total six protons] and the ¹³C-NMR (δ 102.2, 78.6 × 2, 75.4, 71.9, 63.1) spectra. Furthermore, the ¹³C-NMR spectrum showed 27 carbons, excluding the glucose carbons. Acetylation of 12 with acetic anhydride in pyridine gave the pentaacetate (12a), colorless needles recrystallized from n-hexane–ethyl ether, mp 137.5—140.5 °C. The above observations suggested that 12 is a

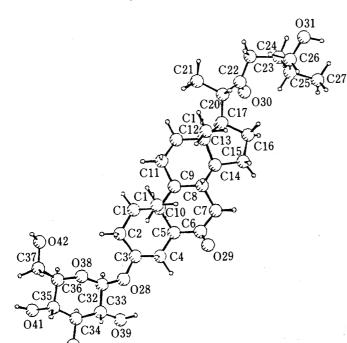


Fig. 1. Molecular Structure Drawn by the PLUTO^{a)} Program

a) Motherwell, W. D. S. (1972). PLUTO. A program for drawing crystal and molecular structures. Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England.

TABLE III. ¹³C-NMR Spectral Data for 12 and 12b^{a)}

Carbon No.	12	12b	Carbon No.	12	12b
1	39.6 ^{b)}	39.6 ^d)	18	13.1	13.2
2	27.1	$31.3^{e)}$	19	16.7	16.7
3	76.8	70.0	20	49.4	49.4
4	29.5	31.8^{e}	21	12.3	12.3
5	52.5	52.5	22	214.0	213.8
6	209.7	210.1	23	36.8	37.1
7	46.7	46.8	24	27.8 ^{c)}	27.8^{f}
8	37.8	37.9	25	36.2	36.2
9	53.8	53.9	26	67.4	67.4
10	40.9	41.0	27	17.3	17.2
11	21.7	21.7	1'	102.2	
12	$27.7^{c)}$	27.7^{f})	2′	75.4	
13	43.2	43.2	3′	78.6	
14	56.5	57.0	4′	71.9	
15	24.3	24.3	5′	78.6	
16	$39.9^{b)}$	39.9^{d}	6′	63.1	
17	56.1	56.1			

a) The measurements were made on a Bruker AM-400 (100.6 MHz) in C_5D_5N . b-f) Assignments may be reversed.

Table IV. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Temperature Factors

No.	Atom	х	у	z	$B_{\rm eq}$ (Å ²)
1	C1	534 (5)	1085 (1)	1460 (5)	3.6 (0.1)
2	C2	366 (5)	1442 (1)	1264 (5)	3.5 (0.1)
3	C3	826 (4)	1547 (1)	-550(5)	2.9 (0.1)
4	C4	10 (4)	1384 (1)	-1970 (5)	3.3 (0.1)
5	C5	214 (4)	1028 (1)	-1771 (5)	2.7 (0.0)
6	C6	-450(5)	835 (1)	-3206(5)	3.4 (0.1)
7	C 7	-23(4)	494 (1)	-3209(5)	3.2 (0.1)
8	C8	-287(4)	341 (1)	-1416 (5)	2.7 (0.0)
9	C9	269 (4)	541 (1)	110 (5)	2.7 (0.0)
. 10	C10	-227(4)	892 (1)	42 (5)	2.9 (0.1)
11	C11	-5(5)	378 (1)	1874 (5)	3.9 (0.1)
12	C12	547 (5)	35 (1)	1932 (5)	3.8 (0.1)
13	C13	-4(4)	-164(1)	409 (5)	2.8 (0.1)
14	C14	351 (4)	14 (1)	-1292(5)	2.8 (0.0)
15	. C15	92 (5)	-227(1)	-2741 (5)	3.8 (0.1)
16	C16	509 (6)	-547(1)	-1917 (6)	4.4 (0.1)
17	C17	766 (4)	-483(1)	76 (5)	3.2 (0.1)
18	C18	-1561 (4)	-223(1)	596 (7)	4.1 (0.1)
19	C19	-1799(4)	915 (1)	300 (7)	4.3 (0.1)
20	C20	402 (4)	-773(1)	1179 (5)	3.4 (0.1)
21	C21	546 (6)	-722(1)	3171 (6)	4.6 (0.1)
22	C22	1338 (5)	-1052(1)	714 (6)	4.1 (0.1)
23	C23	833 (7)	-1381(1)	1169 (7)	5.9 (0.1)
24	C24	754 (6)	-1589 (1)	-495(10)	7.3 (0.1)
25	C25	-387(5)	-1490(1)	-1743 (8)	5.3 (0.1)
26	C26	-1816 (5)	-1584(1)	-1234 (8)	5.0 (0.1)
27	C27	-89(7)	-1620(2)	-3606(10)	8.6 (0.1)
28	O28	661 (3)	1881 (1)	-822 (3)	3.1 (0.0)
29	O29	-1286 (4)	942 (1)	-4219 (4)	5.1 (0.1)
30	O30	2446 (3)	-1011(1)	62 (5)	5.0 (0.1)
31	O31	-1964 (4)	-1916(1)	-1096 (5)	5.8 (0.1)
32	C32	1518 (4)	2072 (1)	184 (5)	2.9 (0.1)
33	C33	1900 (4)	2365 (1)	-864 (5)	3.1 (0.1)
34	C34	2693 (4)	2594 (1)	271 (5)	3.0 (0.1)
35	C35	1945 (4)	2662 (1)	1982 (5)	3.2 (0.1)
36	C36	1511 (4)	2356 (1)	2870 (5)	3.0 (0.1)
37	C37	586 (5)	2406 (1)	4438 (5)	3.9 (0.1)
38	O38	740 (3)	2165 (1)	1676 (3)	3.0 (0.0)
39	O39	2734 (3)	2274 (1)	-2294 (4)	4.4 (0.0)
40	O40	2894 (3)	2883 (1)	-668 (4)	3.9 (0.0)
41	O41	2895 (3)	2829 (1)	3064 (4)	4.2 (0.0)
42	O42	610 (3)	2121 (1)	5442 (4)	4.6 (0.0)
43	HCl	19 (5)	101 (1)	273 (6)	5.0 (1.0)
44	H'C1	164 (4)	103 (1)	137 (6)	5.0 (1.0)
45	HC2	-70 (5)	151 (1)	145 (6)	6.0 (1.0)
46	H'C2	97 (5)	157 (1)	226 (6)	6.0 (1.0)
47 49	HC3	191 (4)	148 (1)	-74 (5)	4.0 (1.0)
48	HC4	35 (4)	147 (1)	-326 (5)	4.0 (1.0)
49 50	H′C4	- 106 (5)	145 (1)	-184 (6)	6.0 (1.0)
50 51	HC5	132 (4)	98 (1)	-186 (6)	4.0 (1.0)
51 52	HC7	-58 (4)	37 (1)	-422 (5)	4.0 (1.0)
52 53	H′C7	108 (4)	48 (1)	-351 (6)	5.0 (1.0)
53 54	HC8	- 140 (4)	32 (1)	-124 (6)	4.0 (1.0)
54 55	HC9 HC11	140 (4) 40 (5)	55 (1) 52 (1)	0 (5)	3.0 (1.0)
	11011	4 0 (<i>3)</i> .	52 (1)	293 (6)	6.0 (1.0)

		Table I	V. (continued)		
No.	Atom	X	у	z	$B_{\rm eq} (\mathring{\rm A}^2)$
56	H'C11	-115 (5)	37 (1)	207 (6)	6.0 (1.0)
57	HC12	30 (4)	-8(1)	317 (6)	5.0 (1.0)
58	H'C12	169 (4)	4 (1)	184 (6)	5.0 (1.0)
59	HC14	149 (4)	4 (1)	-132(6)	4.0 (1.0)
60	HC15	-98(5)	-23(1)	-316(6)	6.0 (1.0)
61	H'C15	73 (6)	-18(1)	-390(8)	9.0 (2.0)
62	HC16	-32(5)	-72(1)	-207(6)	6.0 (1.0)
63	H'C16	142 (6)	-64(1)	-253(8)	9.0 (2.0)
64	HC17	189 (4)	-45(1)	31 (6)	5.0 (1.0)
65	HC18	-212(4)	-1(1)	62 (6)	4.0 (1.0)
66	H'C18	-193(5)	-37(1)	-47(7)	8.0 (1.0)
67	H''C18	-178(5)	-35(1)	179 (7)	7.0 (1.0)
68	HC19	-216(4)	116 (1)	22 (6)	5.0 (1.0)
69	H'C19	-235(5)	78 (1)	-70(7)	7.0 (1.0)
70	H''C19	-211(5)	82 (1)	155 (7)	7.0 (1.0)
71	HC20	-69(5)	-84(1)	92 (6)	6.0 (1.0)
72	HC21	-8(5)	-53(1)	361 (7)	7.0 (1.0)
73	H'C21	26 (5)	-93(1)	389 (7)	7.0 (1.0)
74	H''C21	162 (5)	-66(1)	348 (7)	8.0 (1.0)
75	HC23	145 (6)	-150(1)	213 (9)	11.0 (2.0)
76	H'C23	-25(5)	-137(1)	168 (6)	6.0 (1.0)
77	HC24	63 (6)	-184 (1)	-15(8)	11.0 (2.0)
78	H'C24	177 (7)	-156(1)	–119 (9)	13.0 (2.0)
79	HC25	-44(5)	-123(1)	-185(6)	6.0 (1.0)
80	HC26	-255(5)	-150(1)	-216(7)	7.0 (1.0)
81	H'C26	-205(5)	-148(1)	10 (7)	7.0 (1.0)
82	HC27	2 (5)	-188(1)	-354(7)	7.0 (1.0)
83	H'C27	-95(5)	-156(1)	-450(7)	8.0 (1.0)
84	H′′C27	85 (6)	-151(1)	-411 (8)	11.0 (2.0)
85	HO31	-199 (6)	-201(1)	-224(8)	10.0 (2.0)
86	HC32	248 (4)	194 (1)	55 (6)	5.0 (1.0)
87	HC33	97 (5)	248 (1)	-131 (6)	5.0 (1.0)
88	HC34	370 (4)	249 (1)	55 (5)	4.0 (1.0)
89	HC35	102 (4)	280 (1)	171 (6)	5.0 (1.0)
90	HC36	242 (4)	223 (1)	332 (6)	4.0 (1.0)
91	HC37	-45(5)	247 (1)	397 (7)	7.0 (1.0)
92	H'C37	96 (5)	261 (1)	517 (7)	6.0 (1.0)
93	HO39	224 (7)	212 (1)	-297(9)	11.0 (2.0)
94	HO40	384 (5)	294 (1)	-63(7)	8.0 (2.0)
95	HO41	246 (6)	291 (1)	407 (8)	9.0 (2.0)
96	HO42	–18 (6)	212 (1)	619 (8)	10.0 (2.0)

steroid glucoside. When 12 was submitted to acid hydrolysis with 2.5 N sulfuric acid, it was hydrolyzed to yield a mixture of two inseparable steroids, one of which seemed to be an artifact produced under acidic conditions. On the other hand, the enzymatic hydrolysis of 12 with β -glucosidase yielded D-glucose and a steroid genin (12b), $C_{27}H_{44}O_4$, colorless needles recrystallized from ethyl ether-methanol, mp 157.5—160.0 °C. The IR spectrum of 12b showed absorption bands of hydroxyl (3380 cm⁻¹) and carbonyl (1705 cm⁻¹) groups. The occurrence of the carbonyl functions was also revealed by the UV (λ_{max} 283 nm, ϵ 213) and

TABLE V. Temperature Factors

			$U(ij)$'s are multiplied by 10^3						
No.	Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}		
1	C1	72 (3)	43 (2)	23 (2)	-5 (2)·	-1 (2)	0 (2)		
2	C2	62 (3)	41 (2)	29 (2)	-4(2)	6 (2)	-4(2)		
3	C3	42 (2)	39 (2)	29 (2)	-2(2)	2 (2)	0 (2)		
4	C4	52 (2)	42 (2)	31 (2)	-3(2)	-4(2)	1 (2)		
5	C5	38 (2)	42 (2)	24 (2)	-1(2)	-1(2)	-1(2)		
6	C6	53 (2)	49 (2)	27 (2)	-6(2)	-4(2)	2 (2)		
7	C7	51 (2)	45 (2)	25 (2)	-3(2)	-1(2)	0 (2)		
8	C8	36 (2)	40 (2)	25 (2)	-3(2)	0 (2)	0 (2)		
9	C9 -	40 (2)	41 (2)	23 (2)	-1(2)	1 (2)	-1(1)		
10	C10	41 (2)	41 (2)	28 (2)	-1(2)	6 (2)	1 (2)		
. 11	C11	80 (3)	42 (2)	27 (2)	-2(2)	7 (2)	0 (2)		
12	C12	75 (3)	43 (2)	27 (2)	-2(2)	-3(2)	2 (2)		
13	C13	36 (2)	42 (2)	30 (2)	1 (2)	1 (2)	1 (2)		
14	C14	40 (2)	41 (2)	26 (2)	1 (2)	1 (2)	-1(2)		
15	C15	69 (3)	45 (2)	32 (2)	2 (2)	-8(2)	-6(2)		
16	C16	82 (3)	48 (2)	36 (2)	10 (3)	-8(3)	-6(2)		
17	C17	43 (2)	41 (2)	37 (2)	3 (2)	-2(2)	-1(2)		
18	C18	37 (2)	57 (3)	63 (3)	2 (2)	12 (2)	10 (2)		
19	C19	43 (2)	49 (2)	69 (3)	2 (2)	19 (3)	-1(2)		
20	C20	45 (2)	44 (2)	42 (2)	-1(2)	-5(2)	1 (2)		
21	C21	77 (3)	56 (3)	40 (2)	0 (3)	-2(3)	6 (2)		
22	C22	63 (3)	47 (2)	45 (2)	4 (2)	-22(2)	-2(2)		
23	C23	113 (5)	48 (3)	64 (3)	7 (3)	-20(4)	8 (3)		
24	C24	80 (4)	55 (3)	141 (6)	8 (3)	-31(5)	-4(4)		
25	C25	65 (3)	43 (2)	94 (4)	-2(2)	-24(3)	2 (3)		
26	C26	63 (3)	50 (3)	76 (4)	11 (2)	-3(3)	0 (3)		
27	C27	97 (5)	128 (6)	101 (5)	-24(5)	32 (5)	-18(5)		
28	O28	49 (2)	37 (1)	34 (1)	-5(1)	-6(1)	1 (1)		
29	O29	88 (2)	56 (2)	50 (2)	2 (2)	-35(2)	1 (2)		
30	O30	55 (2)	63 (2)	73 (2)	11 (2)	-5(2)	-6(2)		
31	O31	103 (3)	68 (2)	51 (2)	-10(2)	-7(2)	8 (2)		
32	C32	37 (2)	45 (2)	29 (2)	-3(2)	4 (2)	0 (2)		
33	C33	37 (2)	49 (2)	32 (2)	-4(2)	3 (2)	6 (2)		
34	C34	37 (2)	39 (2)	39 (2)	-4(2)	-3(2)	8 (2)		
35	C35	38 (2)	42 (2)	41 (2)	-4(2)	-5(2)	-2(2)		
36	C36	41 (2)	45 (2)	29 (2)	-4(2)	-1(2)	-2(2)		
37	C37	57 (3)	55 (2)	36 (2)	-1 (2)	7 (2)	-4(2)		
38	O38	42 (1)	46 (1)	27 (1)	-7(1)	6 (1)	-2(1)		
39	O39	55 (2)	78 (2)	34 (2)	-14(2)	13 (2)	-4(2)		
40	O40	44 (2)	48 (2)	55 (2)	-9(1)	-5(2)	18 (1)		
41	O41	51 (2)	61 (2)	49 (2)	-14(2)	-3(2)	-13(2)		
42	O42	66 (2)	72 (2)	36 (2)	-11(2)	5 (2)	6 (2)		

¹³C-NMR (δ 213.8 and 210.1) spectra. The ¹H-NMR spectrum (CDCl₃) showed signals due to tertiary methyl groups at δ 0.69 (18-CH₃) and 0.76 (19-CH₃), two secondary methyl groups at δ 1.10 (21-CH₃) and 0.91 (27-CH₃), a hydroxymethyl group at δ 3.43, and a hydroxymethine group at δ 3.58. These results suggested that **12b** has a cholestane skeleton with two hydroxyl and two carbonyl groups. Treatment of **12b** with acetic anhydride in pyridine gave a diacetate (**12c**). The ¹H-NMR spectrum showed two new acetoxyl signals at δ 2.06 and 2.03, while the methylene and methine signals were shifted to δ 3.93, 3.88 and 4.67, respectively. The methylene and methine signals were assignable to C-26 protons and the 3α -proton. In the ¹³C-NMR spectrum of **12b**, the signal attributable to the C-3 position was

TABLE V. (continued)

	$U(ij)$'s are multiplied by 10^2						
No.	Atom	U_{11}	No.	Atom	U_{11}		
43	HC1	7 (1)	70	H′′C19	9 (2)		
44	H′C1	7 (1)	71	HC20	8 (2)		
45	HC2	7 (1)	72	HC21	8 (2)		
46	H′C2	8 (2)	73	H'C21	9 (2)		
47	HC3	4 (1)	74	H′′C21	10 (2)		
48	HC4	5 (1)	75	HC23	14 (3)		
49	H′C4	7 (1)	76	H′C23	8 (2)		
50	HC5	5 (1)	77	HC24	14 (2)		
51	HC7	5 (1)	78	H'C24	16 (3)		
52	H′C7	6 (1)	79	HC25	8 (2)		
53	HC8	5 (1)	80	HC26	9 (2)		
54	HC9	4(1)	. 81	H′C26	9 (2)		
55	HC11	8 (2)	82	HC27	9 (2)		
56	H′C11	8 (2)	83	H′C27	10 (2)		
57	HC12	6 (1)	84	H′′C27	14 (2)		
58	H′C12	6(1)	85	HO31	13 (2)		
59	HC14	6(1)	86	HC32	6 (1)		
60	HC15	7 (1)	87	HC33	7 (1)		
61	H'C15	11 (2)	88	HC34	5 (1)		
62	HC16	7 (2)	89	HC35	6 (1)		
63	H′C16	11 (2)	90	HC36	6(1)		
64	HC17	6 (1)	91	HC37	9 (2)		
65	HC18	6(1)	92	H'C37	8 (2)		
66	H′C18	10 (2)	93	HO39	14 (2)		
67	H′′C18	9 (2)	94	HO40	11 (2)		
68	HC19	7(1)	95	HO41	11 (2)		
69	H′C19	9 (2)	96	HO42	13 (2)		

Temperature factor T is in the form of

 $T = \exp(-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)).$

remarkably shifted to upper field by 6.8 ppm, whereas the signals due to C-2 and C-4 were shifted to lower field as compared with those of 12. Therefore, the glucose moiety was linked to the C-3 hydroxyl position on the genin, not the C-26 hydroxyl position. From the fragment ion peaks at m/z 345 and 126 in the EI-MS, it is deduced that one carbonyl group is located at C-22.¹⁰⁾ Reduction of 12b with sodium borohydride gave two reduced compounds, triol (12d) and tetraol (12e) steroids. The signal assignable to 19-CH₃ of 12d was shifted downfield by ca. 0.3 ppm compared with that of 12b in the ¹H-NMR spectrum (CD₃OD). Therefore, a 1,3diaxial relationship between 19-CH₃ and the new hydroxyl group in 12d is expected. In addition, considering the ¹³C-NMR spectral data of 12b, another carbonyl group was concluded to be located at the C-6 position. The above spectral data and chemical properties of 12b were essentially identical with those of a steroid sapogenin (13) isolated from the aerial parts of Fritillaria thunbergii. 10a) However, from differences in melting point (12b, 157.5— $160.0 \,^{\circ}\text{C}$: 13, $135 - 138 \,^{\circ}\text{C}$) and specific rotation (12b, -16.3° ; 13, -34.0°), 12b was assumed to be a C-25 epimer of 13; the literature does not mention the C-25 absolute configuration. The CD spectrum of 12b exhibited a negative Cotton effect at 292 nm ($[\theta] = -6048$), and that of 12d (C-22 keto-steroid) a weak, negative Cotton effect at 290 nm ($[\theta] = -174$). The application of the octant rule indicated that 12b had a usual steroid skeleton. In addition, the results of the X-ray crystallographic analysis of 12 bearing D-glucose as a sugar moiety gave unequivocal evidence for the C-25 configuration shown in Fig. 1. Thus, the structure of 12 was

TABLE VI. Bond Lengths (Å)

		I ABLE VI. B	ond Lengths (A) 	
Atom 1	Atom 2	Length (STD)	Atom 1	Atom 2	Length (STD)
C1 -	C2	1.526 (5)	C1 -	HC1	1.07 (5)
C1 -	C10	1.551 (5)	C1 -	H'Cl	1.11 (4)
C2 -	C3	1.527 (5)	C2 -	HC2	1.09 (5)
C3 -	C4	1.516 (5)	C2 -	H′C2	1.10 (5)
C3 –	O28	1.436 (4)	C3 -	HC3	1.10 (4)
C4 -	C5	1.524 (5)	C4 -	HC4	1.10 (4)
C5 –	C6	1.517 (5)	C4 -	H'C4	1.08 (4)
C5 -	C10	1.565 (5)	C5 –	HC5	1.10 (4)
C6 -	C 7	1.501 (6)	C7 -	HC7	1.09 (4)
C6 –	O29	1.215 (5)	C7	H′C7	1.11 (4)
C7 –	C8	1.541 (5)	C8 -	HC8	1.10 (4)
C8 –	C9	1.543 (5)	C9 -	HC9	1.11 (4)
C8 –	C14	1.520 (5)	C11 -	HC11	1.07 (5)
C9 -	C10	1.560 (5)	C11 -	H′C11	1.13 (5)
C9 –	C11	1.541 (5)	C12 -	HC12	1.08 (4)
C10 -	C19	1.552 (6)	C12 -	H′C12	1.12 (4)
C11 -	C12	1.548 (6)	C14 -	HC14	1.12 (4)
C12 -	C13	1.537 (5)	C15 -	HC15	1.10 (5)
C13 –	C14	1.544 (5)	C15 -	H'C15	1.11 (6)
C13 -	C17	1.567 (5)	C16 -	HC16	1.10 (5)
C13 -	C18	1.548 (6)	C16 -	H′C16	1.09 (6)
C14 -	C15	1.527 (5)	C17 -	HC17	1.12 (4)
C15 -	C16	1.549 (6)	C17 -	HC17	1.07 (4)
C16 -	C17	1.571 (6)	C18 -	H'C18	1.08 (5)
C17 -	C20	1.530 (6)	C18 -	H′′C18	1.09 (5)
C20 -	C21	1.548 (6)	C19 -	HC19	1.08 (4)
C20 -	C22	1.537 (6)	C19 -	H′C19	1.10 (5)
C22 -	C23	1.517 (7)	C19 -	H′′C19	1.09 (5)
C22 -	O30	1.205 (6)	C20 -	HC20	1.12 (5)
C23 -	C24	1.550 (9)	C21 -	HC21	1.08 (5)
C24 -	C25	1.528 (9)	C21 -	H'C21	1.09 (5)
C25 -	C26	1.503 (7)	C21 -	H′′C21	1.11 (5)
C25 -	C27	1.558 (9)	C23 -	HC23	1.08 (6)
C26 –	O31	1.416 (6)	C23 –	H′C23	1.13 (5)
O28 -	C32	1.396 (5)	C24 -	HC24	1.09 (6)
C32 -	C33	1.521 (5)	C24 -	H′C24	1.14 (7)
C32 -	O38	1.428 (5)	C25 -	HC25	1.09 (4)
C33 -	C34	1.516 (5)	C26 -	HC26	1.07 (5)
C33 –	O39	1.418 (5)	C26 -	H′C26	1.13 (5)
C34 -	C35	1.529 (6)	C27 -	HC27	1.10 (5)
C34 -	O40	1.433 (5)	C27 -	H'C27	1.11 (5)
C35 -	C36	1.522 (6)	C27 -	H''C27	1.09 (6)
C35 –	O41	1.431 (5)	O31 -	HO31	0.96 (6)
C36 -	C37	1.518 (6)	C32 -	HC32	1.12 (4)
C36 –	O38	1.435 (5)	C33 -	HC33	1.09 (4)
C37 -	O42	1.428 (5)	C34 -	HC34	1.10 (4)
		(-)	C35 -	HC35	1.11 (4)
			C36 –	HC36	1.09 (4)
		•	C37 –	HC37	1.10 (5)
			C37 –	H'C37	1.10 (4)
•			O39 -	HO39	0.96 (6)
			O40 -	HO40	0.95 (5)
			O41 -	HO41	0.95 (6)
			O42 -	HO42	0.96 (6)
					0.70 (0)

STD: The standard deviation.

TABLE VII. Bond Angles (°)

Atom 1		Atom 2	2 A	Atom 3	Angle (STD)	Atom 1 Atom 2 Atom 3 Angle (STD)
		~.			110 5 (0)	
C2	_	C1	_	C10	113.7 (3)	C16 - C15 - C14 104.0 (3)
C3	_	C2	-	C1	110.2 (3)	C17 - C16 - C15 106.7 (4)
C4	-	C3	-	C2	111.5 (3)	C20 - C17 - C13 119.2 (3)
C4	-	C3	_	O28	106.5 (3)	C20 - C17 - C16 111.3 (3)
C2		C3		O28	112.6 (3)	C13 - C17 - C16 103.3 (3)
C5	_	C4	-	C3	108.0 (3)	C21 - C20 - C17 114.4 (3)
C6	_	C5	-	C4	113.8 (3)	C21 - C20 - C22 106.4 (3)
C6	-	C5	_	C10	109.1 (3)	C17 - C20 - C22 110.5 (3)
C4	-	C5	-	C10	114.6 (3)	C23 - C22 - C20 117.3 (4)
C 7	-	C6	-	C5	113.6 (3)	C23 - C22 - O30 121.3 (4)
C 7	-	C6	-	O29	123.0 (4)	C20 - C22 - O30 121.3 (4)
C5	-	C6		O29	123.3 (4)	C24 - C23 - C22 110.3 (5)
C8	-	C 7	-	C6	110.8 (3)	C25 - C24 - C23 113.3 (5)
C9	-	C8		C 7	112.7 (3)	C26 - C25 - C24 116.2 (5)
C9	-	C8.		C14	108.0 (3)	C26 - C25 - C27 108.5 (5)
C 7	_	C8	_	C14	111.7 (3)	C24 - C25 - C27 109.9 (5)
C10	_	C9	_	C8	112.8 (3)	O31 - C26 - C25 112.2 (4)
C10	-	C9		C11	113.5 (3)	C32 - O28 - C3 115.0 (3)
C8	_	C9	_	C11	111.0 (3)	C33 - C32 - O28 109.1 (3)
C19	_	C10	-	Cl	110.6 (3)	C33 - C32 - O38 109.2 (3)
C19	_	C10	_	C5	111.2 (3)	O28 - C32 - O38 106.4 (3)
C19	-	C10	_	C9	111.4 (3)	C34 - C33 - C32 110.1 (3)
C 1	_	C10		C5	107.2 (3)	C34 - C33 - O39 108.8 (3)
C 1	-	C10	_	C9	109.2 (3)	C32 - C33 - O39 109.2 (3)
C5	-	C10		C9	107.1 (3)	C35 - C34 - C33 111.6 (3)
C12	_	C11		C9	112.6 (3)	C35 - C34 - O40 109.6 (3)
C13	_	C12		C11	111.7 (3)	C33 - C34 - O40 109.2 (3)
C14	_	C13		C12	107.2 (3)	C36 - C35 - C34 110.8 (3)
C14	_	C13		C17	100.0 (3)	C36 - C35 - O41 110.0 (3)
C14	_	C13	_	C18	112.1 (3)	C34 - C35 - O41 106.3 (3)
C12	_	C13		C17	115.4 (3)	C37 - C36 - C35 113.7 (3)
C12	_	C13	_	C18	111.3 (3)	C37 - C36 - O38 105.6 (3)
C17	_	C13	_	C18	110.4 (3)	C35 - C36 - O38 109.9 (3)
C15	_	C14	_	C8	119.5 (3)	O42 - C37 - C36 107.5 (3)
C15	_	C14		C13	104.7 (3)	C32 - O38 - C36 112.7 (3)
C8	-	C14		C13	113.8 (3)	

assigned as (25R)- 3β ,26-dihydroxy- 5α -cholestane-6,22-dione 3-O- β -D-glucopyranoside, and the C-25 configuration of the compound from *Fritillaria thunbergii* seems to be S.

Compounds 8, 10—12 are new natural compounds, and 5—12 have a bitter taste. It is considered that 5, 9 and 11, which were obtained in good yields, make the main contribution to the bitter taste of the bulbs of *Lilium henryi*. The occurrence of the hydroxycinnamic acid conjugates with sucrose, such as 5—8, is limited to several groups of higher plants. The conjugates have been found to occur in Polygonaceae, Polygonaceae and Brassicaceae plants, and most predominantly in Liliaceae. Polygonaceae, 26-Hydroxycholesterol or a derivative carrying an oxygen function at C-22 is considered to be a precursor in the biosynthesis of C_{27} steroidal alkaloids, which are widely distributed in Liliaceae and Solanaceae plants two types of compounds, one derived from a 25R precursor, and the other from 25S. In this investigation, we could not detect a steroidal alkaloid in the bulbs, but the isolation of 12 whose 25-geminal-dimethyl was stereospecifically oxidized is of interest from the viewpoint of chemotaxonomy. Further chemical examination of other lilies is under way, and in parallel with this, various biological tests of the compounds isolated in this research are in progress.

Experimental

All melting points were determined on a Yazawa micro melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-4 or a JASCO DIP-360 automatic polarimeter. UV spectra were measured on a Hitachi 557 spectrometer, and CD spectra on a JASCO J-500C spectropolarimeter. IR spectra were recorded with a Hitachi 260-30 or a Perkin-Elmer 1710 FT-IR instrument. MS were obtained on a Hitachi M-80 machine. 1 H-NMR spectra were taken with a Varian EM-390 (90 MHz) or a Bruker AM-400 (400 MHz), and 13 C-NMR spectra with a JEOL FX-100 (25.1 MHz) or a Bruker AM-400 (100.6 MHz) spectrometer respectively. Chemical shifts are expressed in δ (ppm) values with tetramethylsilane as an internal standard, and the abbreviations used are as follows: s, singlet; d, doublet; dd, doublet of doublets; m, multiplet; br, broad. Column chromatographies were carried out on Fuji Davison silica gel BW-300 (200—400 mesh, Fuji Davison Co., Ltd.) and on Sephadex LH-20 (25—100 μ m, Pharmacia Fine Chemicals Co., Ltd.). Thin-layer chromatography (TLC) was performed on precoated Kieselgel 60 F₂₅₄ (0.25 mm thick, Merck), and spots were detected by UV irradiation of the plates at 254 nm and by spraying 10% H₂SO₄ followed by heating.

Isolation—The dormant fresh bulbs of *Lilium henryi* Baker (7.2 kg) purchased from Sakata-shubyo Co., Ltd., Kanagawa prefecture, Japan, were cut into pieces and extracted with hot MeOH (60 l), and the extract was concentrated under reduced pressure. The crude residue, a dark viscous syrup, was suspended in H₂O, and extracted with CHCl₃ and then with *n*-BuOH. Each fraction was concentrated to a small volume under reduced pressure and subjected to column chromatography on silica gel with various solvent systems and on Sephadex LH-20 with CHCl₃ or MeOH as the eluent to provide compounds 1—12. Purification of the compounds was carried out by preparative TLC. Compounds 1—4 were obtained from the CHCl₃-soluble portion and 5—12 from the *n*-BuOH-soluble portion.

1,2-O-Diferuloylglycerol (1)—A white amrophous powder (14.6 mg), $[\alpha]_D^{23} \pm 0^\circ$ (c = 0.29, CHCl₃). The CD spectrum measured in EtOH showed no Cotton effect.

A Mixture of 1-*O*-Feruloyl-2-*O*-*p*-coumaroylglycerol (2a) and 1-*O*-*p*-Coumaroyl-2-*O*-feruloylglycerol (2b)—A pale-yellow amorphous powder (84.0 mg), $[\alpha]_D^{2.5} \pm 0^\circ$ (c = 0.49, acetone). The CD spectrum measured in EtOH showed no Cotton effect.

1,3-O-Diferuloylglycerol (3)—A white amorphous powder (117 mg).

1-O-Feruloyl-3-O-p-coumaroylglycerol (4)—A pale-yellow amorphous powder (521 mg), $[\alpha]_D^{25} \pm 0^\circ$ (c = 0.54, acetone).

Mild Methanolysis of 4——A MeOH–acetone (3:1) solution (4 ml) of 4 (150 mg) was treated with 3% NaOMe in MeOH (3.5 ml), and the mixture was left standing at room temperature for 30 min. The reaction mixture, after being diluted with MeOH, was passed through a cation exchange resin (Amberlite IR-120B) and the eluate was concentrated to give a residue, which was subjected to silica gel column chromatography (solvent CHCl₃–MeOH (19:1)), yielding methyl ferulate, methyl *p*-coumarate, 1-*O*-feruloylglycerol (4a) (15.2 mg) and 1-*O*-*p*-coumaroylglycerol (4b) (13.2 mg). Methyl ferulate and methyl *p*-coumarate were identified by TLC (solvent CHCl₃–EtOAc (5:1), methyl ferulate; Rf 0.71, methyl *p*-coumarate; Rf 0.63). 1-*O*-Feruloylglycerol (4a); a pale-yellow viscous syrup, TLC; Rf 0.55 (solvent CHCl₃–MeOH (8:1), $[\alpha]_D^{26} \pm 0^\circ$ (c=0.48, MeOH). ¹H-NMR (CD₃OD) δ : 7.63 (1H, d, J=16.0 Hz, H-7'), 7.19—6.73 (3H, H-2', -5', -6'), 6.36 (1H, d, J=16.0 Hz, H-8'), 4.19 (2H, m, H-1), 3.85 (3H, s, OMe), 3.77 (1H, m, H-2), 3.57 (2H, d, J=5.5 Hz, H-3). 1-*O*-*p*-Coumaroylglycerol (4b); a white amorphous powder, TLC; Rf 0.50 (solvent CHCl₃–MeOH (8:1), $[\alpha]_D^{29} \pm 0^\circ$ (c=0.95, MeOH). ¹H-NMR (CD₃OD) δ : 7.65 (1H, d, J=16.0 Hz, H-7'), 7.45 (2H, d, J=9.0 Hz, H-2', -6'), 6.81 (2H, d, J=9.0 Hz, H-3', -5'), 6.35 (1H, d, J=16.0 Hz, H-8'), 4.22 (2H, m, H-1), 3.83 (1H, m, H-2), 3.59 (2H, d, J=5.5 Hz, H-3).

3,6'-O-DiferuloyIsucrose (5)—A white amorphous powder (1.04 g).

4-O-Acetyl-3,6'-O-diferuloylsucrose (6)—A white amorphous powder (140 mg).

4'-O-Acetyl-3,6'-O-diferuloylsucrose (7)—A white amorphous powder (234 mg).

3-*O*-Feruloyl-6'-*O*-(4-*O*-β-D-glucopyranosylferuloyl)sucrose (8)—A white amorphous powder (71.0 mg), $[\alpha]_D^{29}$ – 68.0° (c = 1.60, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm ($\log \varepsilon$): 234 (4.35), 300 sh (4.49), 322 (4.56). EI-MS m/z (%): 338 (3.8), 302 (2.8), 236 (2.3), 194 (100), 177 (78), 150 (54), 135 (25). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3415 (OH), 2926 (CH), 1703 (C=O), 1631 (C=C), 1600, 1514 (aromatic ring), 1261, 1164, 1072, 812. ¹H-NMR (C₅D₅N-CD₃OD (4:1)) δ: 8.01, 7.87 (each 1H, d, J = 15.9 Hz, H-7'', -7'''), 7.48—7.06 (6H, H-2'', -2''', -5'', -5''', -6'', -6''', 6.82, 6.63 (each 1H, d, J = 15.9 Hz, H-8'', -8'''), 6.32 (1H, d, J = 7.9 Hz, H-3), 6.09 (1H, d, J = 3.7 Hz, H-1'), 5.60 (1H, d, J = 7.3 Hz, H-1''''), 5.25 (1H, dd, J = 7.9, 7.9, H-4), 5.20 (1H, dd, J = 11.7, 1.4 Hz, H-6'a), 4.96 (1H, ddd, J = 9.6, 6.7, 1.4 Hz, H-5'), 4.79 (1H, dd, J = 11.7, 6.7 Hz, H-6'b), 4.66 (1H, m, H-5), 4.57—4.01 (11H, H-1, -6, -3', -2''''-6''''), 4.05 (1H, dd, J = 9.6, 3.7 Hz, H-2'), 3.98 (1H, dd, J = 9.6, 9.6 Hz, H-4'), 3.87, 3.79 (each 3H, s, OMe × 2). ¹³C-NMR spectrum: Table I.

Acetylation of 8—A solution of 8 (15.4 mg) in Ac_2O -pyridine was allowed to stand at room temperature overnight. After addition of H_2O , the solution was extracted twice with CHCl₃. The organic layer was evaporated to dryness and the crude product was chromatographed on silica gel (solvent CHCl₃-EtOAc (5:1)) to give a white amorphous powder, 19.0 mg (8a). EI-MS m/z (%): 273 (11), 220 (16), 205 (58), 167 (33), 149 (100). IR v_{max}^{KBr} cm⁻¹: 2962 (CH), 1756 (C=O), 1638 (C=O), 1601, 1511 (aromatic ring), 1422, 1371, 1229, 1162, 1038, 906. ¹H-NMR (CDCl₃) δ: 7.72, 7.60 (each 1H, d, J=15.9 Hz, H-7", -7""), 7.29—7.03 (6H, H-2", -2"", -5", -5"", -6", -6"), 6.49, 6.41 (each

1H, d, J=15.9 Hz, H-8", -8""), 5.71 (1H, d, J=3.6 Hz, H-1"), 5.60 (1H, d, J=6.1 Hz, H-3), 5.48 (1H, dd, J=6.1, 6.1 Hz, H-4), 5.46 (1H, dd, J=9.7, 9.7 Hz, H-3"), 5.31—4.99 (4H, H-1""—4""), 5.08 (1H, dd, J=9.7, 9.7 Hz, H-4"), 4.95 (1H, dd, J=9.7, 3.6 Hz, H-2"), 4.44—4.14 (10H, H-1, -5, -6, -5", -6", -6""), 3.90, 3.86 (each 3H, s, OMe \times 2), 3.81 (1H, m, H-5""), 2.32 (3H, s, arom. OAc), 2.12, 2.11, 2.10, 2.08 \times 3, 2.04 \times 2, 1.97, 1.88 (each 3H, s, OAc \times 10).

Mild Hydrolysis of 8——Compound 8 (40 mg) in 10% NH₃ in MeOH-H₂O (2:1) was kept at room temperature for 30 min. The reaction solution was evaporated to dryness under reduced pressure and the crude product was chromatographed on silica gel using CHCl₃-MeOH-H₂O (3:1:0.1) to provide methyl ferulate (3.0 mg), 3-Oferuloylsucrose (8b) (4.1 mg), and glucosyl methyl ferulate (8c) (5.4 mg). 3-O-Feruloylsucrose (8b); a white amorphous powder. UV $\nu_{\text{max}}^{\text{MeOH}}$ nm (log ε): 238 (4.12), 302 (4.15), 328 (4.30), UV $\lambda_{\text{max}}^{\text{MeOH}+\text{NaOMe}}$ nm: 302 sh, 312, 383. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3415 (OH), 2927 (CH), 1704 (C=O), 1631 (C=C), 1599, 1516 (aromatic ring), 1429, 1383, 1263, 1161, 1128, 1051. ¹H-NMR (C_5D_5 N- CD_3 OD (4:1)) δ : 7.99 (1H, d, J=15.9 Hz, H-7′′), 7.32 (1H, d, J=1.8 Hz, H-2′′), 7.24 (1H, dd, J=8.1, 1.8 Hz, H-6''), 7.06 (1H, dd, <math>J=8.1 Hz, H-5''), 6.62 (1H, d, <math>J=15.9 Hz, H-8''), 6.27 (1H, d, <math>J=7.8 Hz, H-3), $6.03 \text{ (1H, d, } J = 3.7 \text{ Hz, H-1'}), 5.17 \text{ (1H, dd, } J = 7.8, 7.8 \text{ Hz, H-4}), 4.68 \text{ (1H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ Hz, H-5'}), 4.53 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ (2H, ddd, } J = 9.5, 3.1, 2.5 \text{ (2$ $\mathtt{ddd}, J = 7.8, 5.3, 4.7 \, \mathtt{Hz}, \mathtt{H-5}), 4.49 \, (\mathtt{1H}, \mathtt{dd}, J = 9.5, 9.5 \, \mathtt{Hz}, \mathtt{H-3'}), 4.44 \, (\mathtt{1H}, \mathtt{dd}, J = 11.8, 2.5 \, \mathtt{Hz}, \mathtt{H-6'a}), 4.35 \, (\mathtt{1H}, \mathtt{dd}, \mathtt{H-10'a}), 4.44 \, (\mathtt{1H}, \mathtt{1H}, \mathtt{1H},$ $J = 12.3, 5.3 \text{ Hz}, \text{ H-6a}, 4.30 \text{ (1H, dd, } J = 12.3, 4.7 \text{ Hz}, \text{ H-6b}), 4.25 \text{ (1H, dd, } J = 11.8, 3.1 \text{ Hz}, \text{ H-6'b}), 4.21 \text{ (1H, d, } J = 12.8, 3.1 \text{ Hz}), 4.21 \text{ (1H, d, } J = 12.8, 3.1 \text{ Hz}), 4.21 \text{ (1H, d, } J = 12.8, 3.1 \text{ Hz}), 4.21 \text{ (1H, d, } J = 12.8, 3.1 \text{ Hz}), 4.21 \text{ (1H, d, } J = 12.8, 3.1 \text{ Hz}), 4.21 \text{ (1H, d, } J = 12.8, 3.1 \text{ Hz}), 4.21 \text{ (1H, d, } J = 12.8, 3.1 \text{ Hz}), 4.21 \text{$ 12.1 Hz, H-1a), 4.15 (1H, d, J = 12.1 Hz, H-1b), 4.12 (1H, dd, J = 9.5, 9.5 Hz, H-4'), 4.01 (1H, dd, J = 9.5, 3.7 Hz, H-12), 4.15 (1H, dd, J = 9.5, 3.7 Hz, H-12), 4.15 (1H, dd, J = 9.5, 3.7 Hz, H-12), 4.15 (1H, dd, J = 9.5, 3.7 Hz, H-12), 4.15 (1H, dd, J = 9.5, 3.7 Hz, H-12), 4.15 (1H, dd, J = 9.5, 3.7 Hz, H-12), 4.15 (1H, dd, J = 9.5, 4.15 (1H, dd, J = 9.5), 4.15 (1H, dd, J = 9.5, 4.15 (1H, dd, J = 9.5), 4.15 2'), 3.84 (3H, s, OMe). ¹³C-NMR spectrum: Table I. Glucosyl methyl ferulate (8c); a white amorphous powder. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 233 (4.29), 293 (4.40), 318 (4.40). EI-MS m/z (%): 371 (M⁺+H), 209 (38), 208 (100), 177 (48), 145 (13). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3456, 3320 (OH), 1713 (C=O), 1638 (C=C), 1602, 1580, 1513 (aromatic ring), 1434, 1351, 1311, 1265, 1196, 1170, 1137, 1093, 1025. ¹H-NMR (CD₃OD) δ : 7.63 (1H, d, J = 16.0 Hz, H-7'''), 7.22 (1H, d, $J = 1.3 \text{ Hz}, \text{ H-2}^{\prime\prime\prime}), 7.16 \text{ (2H, H-5}^{\prime\prime\prime}, -6^{\prime\prime\prime}, \text{ overlapping)}, 6.42 \text{ (1H, d, } \\ J = 16.0 \text{ Hz}, \text{ H-8}^{\prime\prime\prime}), 4.96 \text{ (1H, d, } \\ J = 7.4 \text{ Hz}, \text{ H-2}^{\prime\prime\prime}), 4.96 \text{ (1H, d, } \\ J = 7.4 \text{ Hz}, \text{ H-2}^{\prime\prime\prime}), 7.16 \text{ (2H, H-5}^{\prime\prime\prime}, -6^{\prime\prime\prime}, -6^{\prime\prime\prime$ 1''''), 3.91 (3H, s, OMe), 3.88 (1H, dd, J=12.0, 2.0 Hz, H-6''''a), 3.78 (3H, s, COOMe), 3.71 (1H, dd, J=12.0, 5.1 Hz, H-6'''b), 3.54 (1H, dd, J=8.9, 7.4 Hz, H-2'''), 3.49 (1H, dd, J=8.9, 8.9 Hz, H-3'''), 3.42 (2H, H-4'''', -5''', overlapping). ¹³C-NMR spectrum: Table I.

(2S)-1-*O-p*-Coumaroyl-3-*O-β*-D-glucopyranosylglycerol (Regaloside A) (9)—A pale-yellow amorphous powder (35.5 g), $[\alpha]_D^{25} - 17.0^\circ$ (c = 1.00, MeOH).

Acetylation of 9—Upon acetylation of 9 (100 mg) with Ac₂O-pyridine, 130 mg of the peracetate (9a) was obtained as colorless needles (EtOH), mp 138.0—141.0 °C, undepressed by admixture with authentic regaloside A hexaacetate.

(2S)-1-*O-p*-Methoxycinnamoyl-3-*O-β*-D-glucopyranosylglycerol (Methylregaloside A) (10) — A colorless crysalline powder (84.0 mg) (Et₂O-MeOH), mp 146.0—148.0 °C, $[\alpha]_D^{22}-13.0^\circ$ (c=0.20, MeOH). UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 224 (4.12), 300 sh (4.38), 308 (4.40). EI-MS m/z (%): 414 (M+, 0.4), 263 (1.6), 252 (1), 235 (1.5), 205 (1.8), 178 (7), 163 (17), 161 (23), 145 (22), 121 (19), 103 (100). IR ν_{\max}^{KBr} cm⁻¹: 3550, 3300 (OH), 2950, 2900 (CH), 1705 (C=O), 1630 (C=C), 1600, 1510 (aromatic ring), 1320, 1250, 1180, 1160, 1115, 1100, 1080, 1060, 1040, 1000, 980, 820. ¹H-NMR (CD₃OD) δ: 7.68 (1H, d, J=16.0 Hz, H-7'), 7.56 (2H, d, J=8.8 Hz, H-2', -6'), 6.96 (2H, d, J=8.8 Hz, H-3', -5'), 6.41 (1H, d, J=16.0 Hz, H-8'), 4.30 (1H, d, J=7.8 Hz, H-1''), 4.29 (1H, dd, J=11.5, 4.5 Hz, H-1a), 4.24 (1H, dd, J=11.5, 6.2 Hz, H-1b), 4.07 (1H, m, H-2), 3.96 (1H, dd, J=10.5, 5.2 Hz, H-3a), 3.87 (1H, dd, J=11.9, 1.2 Hz, H-6''a), 3.83 (3H, s, OMe), 3.71 (1H, dd, J=10.5, 4.7 Hz, H-3b), 3.67 (1H, br dd, J=11.9, 5.4 Hz, H-6''b), 3.39—3.26 (H-3''-5''), 3.22 (1H, dd, J=9.0, 7.8 Hz, H-2''). ¹³C-NMR spectrum: Table II.

Acetylation of 10—A pyridine solution of **10** (10.0 mg) was treated with Ac₂O and the mixture was left standing overnight. After addition of H₂O and solvent removal under reduced pressure, the crude product was subjected to column chromatography using *n*-hexane–acetone (2:1) to give a pure acetate (**10a**) (12.1 mg) as a white amorphous powder. EI-MS m/z (%): 624 (M⁺, 31), 331 (5), 322 (12), 278 (27), 277 (100), 178 (10), 170 (16), 161 (95), 145 (16). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3005 (CH), 1750, 1710 (C=O), 1625 (C=C), 1600, 1505 (aromatic ring), 1360, 1210, 1160, 1030. ¹H-NMR (CDCl₃) δ : 7.64 (1H, d, J=16.0 Hz, H-7′), 7.49 (2H, d, J=8.8 Hz, H-2′, -6′), 6.91 (2H, d, J=8.8 Hz, H-3′, -5′), 6.30 (1H, d, J=16.0 Hz, H-8′), 5.26 (1H, m, H-2), 5.21 (1H, dd, J=9.6, 9.6 Hz, H-3′′), 5.09 (1H, dd, J=9.6, 7.9 Hz, H-2′′), 4.56 (1H, d, J=7.9 Hz, H-1′′), 4.39 (1H. dd, J=12.0, 3.7 Hz, H-1a), 4.29 (1H, dd, J=12.0, 6.0 Hz, H-1b), 4.26 (1H, dd, J=12.3, 4.7 Hz, H-6′′a), 4.15 (1H, dd, J=12.3, 2.3 Hz, H-6′′b), 4.00 (1H, dd, J=10.9, 5.2 Hz, H-3a), 3.84 (3H, s, OMe), 3.75 (1H, dd, J=10.9, 5.5 Hz, H-3b), 3.71 (1H, ddd, J=9.6, 4.7, 2.3 Hz, H-5′′), 2.09 ×2, 2.06, 2.02, 2.01 (each 3H, s, OAc ×5).

Alkaline Methanolysis Followed by Acetylation of 10—Compound 10 (30.0 mg) was treated with 3% NaOMe-MeOH at room temperature for 2 h. The reaction solution was neutralized with a cation exchange resin (Amberlite IR-120B) and the solution was concentrated to give a residue, which was subjected to Sephadex LH-20 column chromatography with MeOH as the eluent, yielding methyl *p*-methoxycinnamate (10b) (7.8 mg) and glycerol glucoside. Compound 10b; colorless plates (*n*-hexane-acetone), mp 79.0—83.5 °C. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 2945 (CH), 1710 (C=O), 1630 (C=C), 1600, 1505 (aromatic ring), 1430, 1330, 1300, 1285, 1250, 1200, 1190, 1170, 1020, 1010, 980, 840, 820. ¹H-NMR (CDCl₃) δ : 7.65 (1H, d, J=16.0 Hz, H-7'), 7.48 (2H, d, J=8.7 Hz, H-2', -6'), 6.91 (2H, d, J=8.7 Hz, H-3', -5'), 6.31 (1H, d, J=16.0 Hz, H-8'), 3.84 (3H, s, arom. OMe), 3.79 (3H, s, COOMe). Glycerol glucoside was acetylated with Ac₂O-pyridine to give a crude acetate. Purification of the acetate was carried out by using silica gel column chromatography with *n*-hexane-acetone (3:1) and *n*-hexane-EtOAc (1:2) to afford a pure acetate

(12.6 mg), colorless needles (*n*-hexane–Et₂O), mp 110.5—111.5 °C, $[\alpha]_{c}^{23}$ – 7.9° (c = 0.56, CHCl₃). ¹H-NMR (CDCl₃) δ : 5.20 (1H, dd, J = 9.5, 9.5 Hz, H-3′′), 5.18 (1H, m, H-2), 5.08 (1H, dd, J = 9.5, 9.5 Hz, H-4′′), 4.98 (1H, dd, J = 9.5, 7.9 Hz, H-2′′), 4.53 (1H, d, J = 7.9 Hz, H-1′′), 4.30 (1H, dd, J = 12.0, 3.6 Hz, H-1a), 4.25 (1H, dd, J = 12.3, 4.8 Hz, H-6′′a), 4.14 (1H, dd, J = 12.3, 2.5 Hz, H-6′′b), 4.13 (1H, dd, J = 12.0, 6.2 Hz, H-1b), 3.95 (1H, dd, J = 11.0, 5.1 Hz, H-3a), 3.70 (1H, ddd, J = 9.5, 4.8, 2.5 Hz, H-5′′), 3.69 (1H, J = 11.0, 5.4 Hz, H-3b), 2.10, 2.07, 2.06 × 2, 2.03, 2.01 (each 3H, s, OAc × 6).

(2S)-1-O-Caffeoyl-3-O-β-D-glucopyranosylglycerol (Regaloside C) (11)—A pale-yellow amorphous powder (1.05 g), $[\alpha]_D^{27} - 11.3^\circ$ (c = 0.62, MeOH). UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 243 sh (3.92), 300 sh (4.04), 328 (4.15). UV $\lambda_{\max}^{\text{MeOH}}$ nm: 263, 310, 376. EI-MS m/z (%): 416 (M + 2.5), 255 (7), 177 (9), 163 (63), 145 (100), 127 (32). IR ν_{\max}^{KBr} cm $^{-1}$: 3420 (OH), 2930 (CH), 1695 (C = O), 1630 (C = C), 1600, 1515 (aromatic ring), 1445, 1380, 1260, 1160, 1070, 1030, 810. ¹H-NMR (CD₃OD) δ: 7.58 (1H, d, J = 15.9 Hz, H-7′), 7.05 (1H, d, J = 2.0 Hz, H-2′), 6.95 (1H, dd, J = 8.2, 2.0 Hz, H-6′), 6.78 (1H, d, J = 8.2 Hz, H-5′), 6.29 (1H, d, J = 15.9, H-8′), 4.30 (1H, d, J = 7.7 Hz, H-1′′), 4.28 (1H, dd, J = 11.4, 4.5 Hz, H-1a), 4.23 (1H, dd, J = 11.4, 6.2 Hz, H-1b), 4.06 (1H, m, H-2), 3.96 (1H, dd, J = 10.5, 5.2 Hz, H-3a), 3.87 (1H, dd, J = 11.8, 1.4 Hz, H-6′′a), 3.71 (1H, dd, J = 10.5, 4.6 Hz, H-3b), 3.67 (1H, br dd, J = 11.8, 5.2 Hz, H-6′′b), 3.40—3.27 (H-3′′—5′′), 3.22 (1H, dd, J = 9.0, 7.7 Hz, H-2′′). ¹³C-NMR spectrum: Table II.

Acetylation of 11——Compound 11 (13.0 mg) was acetylated with Ac₂O-pyridine. The crude product was chromatographed over silica gel using *n*-hexane-acetone (2:1) to provide a pure acetate (11a) (16.0 mg) as a white amorphous powder. EI-MS m/z (%): 710 (M⁺, 0.4), 668 (2.4), 626 (6.8), 465 (2.1), 464 (2.9), 447 (1.1), 363 (20), 331 (78), 321 (20), 271 (18), 205 (21), 169 (100), 163 (31), 162 (32), 145 (41), 117 (18), 109 (51). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 2960 (CH), 1750 (C=O), 1635 (C=C), 1500 (aromatic ring), 1425, 1370, 1320, 1220, 1170, 1105, 1035, 900. ¹H-NMR (CDCl₃) δ: 7.62 (1H, d, J=16.0 Hz, H-7′), 7.41 (1H, dd, J=8.4, 2.0 Hz, H-6′), 7.37 (1H, d, J=2.0 Hz, H-2′), 7.23 (1H, d, J=8.4 Hz, H-5′), 6.37 (1H, d, J=16.0 Hz, H-8′), 5.25 (1H, m, H-2), 5.21 (1H, dd, J=9.5, 9.5 Hz, H-3′′), 5.08 (1H, dd, J=9.5, 9.5 Hz, H-4′′), 4.99 (1H, dd, J=9.5, 7.9 Hz, H-2′′), 4.55 (1H, d, J=7.9 Hz, H-1′′), 4.40 (1H, dd, J=12.1, 3.6 Hz, H-1a), 4.29 (1H, dd, J=10.9, 5.1 Hz, H-3a), 3.73 (1H, dd, J=10.9, 5.6 Hz, H-3b), 3.70 (1H, ddd, J=9.5, 4.7, 2.4 Hz, H-5′′), 2.31, 2.30 (each 3H, s, arom. OAc × 2), 2.09, 2.08, 2.06, 2.02, 2.00 (each 3H, s, OAc × 5).

Alkaline Methanolysis Followed by Acetylation of 11—Compound 11 (14.0 mg) was hydrolyzed with 3% NaOMe-MeOH, and the crude hydrolysate was chromatographed on silica gel using CHCl₃-MeOH (2:1) to give methyl caffeate and glycerol glucoside. Glycerol glucoside was acetylated with Ac₂O-pyridine to afford a hexaacetate (6.6 mg), which was identified as lilioside C hexaacetate.

(25*R*)-3*β*,26-Dihydroxy-5α-cholestane-6,22-dione 3-*O*-β-D-Glucopyranoside (12)—Colorless plates (530 mg) (isopropyl ether–MeOH), mp 217.5—219.5 °C, $[\alpha]_{25}^{25}$ –41.9° (c =0.85, EtOH). *Anal*. Calcd for C₃₃H₅₄O₉: C, 66.64; H, 9.15. Found: C, 66.46; H, 9.12. UV $\lambda_{\max}^{\text{MeOH}}$ nm (ε): 269 (129), 275 (132), 282 (197). CD (c =0.0034, MeOH) [θ]²⁰ (nm): –6653 (291) (negative maximum). EI-MS m/z (%): 576 (M + H₂O, 8), 571 (11), 461 (15), 433 (12), 416 (30), 415 (100), 398 (18), 397 (53), 392 (33), 317 (14), 299 (17), 283 (16), 271 (13), 253 (14). IR ν_{\max}^{KBr} cm -1: 3470, 3380 (OH), 2950, 2900, 2870, 2850 (CH), 1705 (C = O), 1445, 1385, 1365, 1355, 1340, 1250, 1110, 1100, 1075, 1060, 1030, 1015, 985, 975.

1H-NMR (C₅D₅N) δ: 5.03 (1H, d, J =7.7 Hz, H-1'), 4.59 (1H, dd, J =11.7, 2.1 Hz, H-6'a), 4.39 (1H, dd, J =11.7, 5.6 Hz, H-6'b), 4.27 (1H, dd, J = 8.7, 8.7 Hz, H-3'), 4.22 (1H, dd, J = 8.7, 8.7 Hz, H-4'), 4.03 (1H, dd, J = 8.7, 7.7 Hz, H-2'), 4.01—3.90 (2H, H-3, -5', overlapping), 3.75 (1H, dd, J = 10.5, 6.0 Hz, H-26a), 3.70 (1H, dd, J = 10.5, 6.0 Hz, H-26b), 2.72—2.50 (3H, H-20, -23), 2.37 (1H, br d, J = 12.6 Hz, H-5), 2.30 (1H, dd, J = 13.1, 4.5 Hz, H-7 equatorial), 1.96 (1H, dd, J = 13.1, 12.8 Hz, H-7 axial), 1.08 (3H, d, J = 6.9 Hz, H-21), 1.07 (3H, d, J = 6.7 Hz, H-27), 0.62 (3H, s, H-19), 0.56 (3H, s, H-18). ¹³C-NMR spectrum: Table III.

Acetylation of 12—Compound 12 (25.0 mg) was acetylated with Ac_2O -pyridine and the crude product was chromatographed on silica gel using *n*-hexane-acetone (2:1) to yield a pure acetate (12a) (29.0 mg), colorless needles (*n*-hexane-Et₂O), mp 137.5—140.5 °C. EI-MS m/z (%): 803 (M⁺ – H), 745 (1.5), 517 (1), 457 (90), 456 (27), 397 (100), 331 (22), 300 (20), 271 (13), 242 (26), 200 (20), 169 (56), 115 (100). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 2940 (CH), 1745, 1700 (C=O), 1360, 1225, 1030. ¹H-NMR (CDCl₃) δ: 5.18 (1H, dd, J=9.5, 9.5 Hz, H-3′), 5.08 (1H, dd, J=9.5, 9.5 Hz, H-4′), 4.96 (1H, dd, J=9.5, 8.0 Hz, H-2′), 4.61 (1H, d, J=8.0 Hz, H-1′), 4.25 (1H, dd, J=12.2, 4.7 Hz, H-6′a), 4.12 (1H, dd, J=12.2, 2.5 Hz, H-6′b), 3.93 (1H, dd, J=10.9, 6.0 Hz, H-26a), 3.88 (1H, dd, J=10.9, 6.4 Hz, H-26b), 3.66 (1H, dd, J=9.5, 4.7, 2.5 Hz, H-5′), 3.56 (1H, m, H-3), 2.56—2.35 (3H, H-20, -23), 2.31 (1H, dd, J=13.3, 4.3 Hz, H-7 equatorial), 2.14 (1H, brd, J=12.6 Hz, H-5), 2.08, 2.07, 2.06, 2.02, 2.00 (each 3H, s, OAc × 5), 1.10 (3H, d, J=6.9 Hz, H-21), 0.94 (3H, d, J=6.7 Hz, H-27), 0.74 (3H, s, H-19), 0.69 (3H, s, H-18).

Acid Hydrolysis of 12—Compound 12 (120 mg) was hydrolyzed with $2.5 \,\mathrm{N}$ H₂SO₄ in 50% EtOH on a boiling water bath for 2 h. The reaction mixture was diluted with H₂O and extracted with EtOAc. The EtOAc extract was washed with H₂O and concentrated to dryness under reduced pressure. The crude residue was purified by silica gel column chromatography using CHCl₃-acetone (4:1) to afford the hydrolysate (48.0 mg). The 1 H- and 13 C-NMR spectra measured in CDCl₃ indicated that the product was a mixture of two steroidal sapogenins. Efforts to separate the mixture were unsuccessful.

Enzymatic Hydrolysis of 12—A mixture of 12 (100 mg) and β -glucosidase (Tokyo Kasei Co., Ltd.) in AcOH-NaOAc buffer (pH 5) was incubated at 37 °C for 24 h, then H₂O was added and the whole was extracted with EtOAc.

The EtOAc-soluble portion, after removal of the solvent under reduced pressure, was chromatographed on silica gel using CHCl₃-acetone (4:1) to yield a pure sapogenin (12b) (39.0 mg), colorless needles (Et₂O-MeOH), mp 157.5—160.0 °C. The H₂O-soluble phase was subjected to silica gel column chromatography using CHCl₃-MeOH (2:1) to yield a white amorphous powder (13.9 mg), $[\alpha]_D^{20} + 57.6^\circ$ (c = 0.28, H₂O). The Rf value on TLC (Rf = 0.46, n-BuOH-AcOH-H₂O (2:1:1)) was consistant with that of an authentic sample. Compound 12b; $[\alpha]_D^{22} - 16.3^\circ$ (c = 0.60, MeOH). UV $\lambda_{max}^{\text{MeOH}}$ nm (ϵ): 283 (213). CD (c = 0.0014, MeOH) $[\theta]^{20}$ (nm): -6048 (292) (negative maximum). EI-MS m/z (%): 414.3119 (M⁺ - H₂O, 8, Calcd for C₂₇H₄₂O₃: 414.3136), 345 (12), 317 (27), 299 (15), 281 (8), 177 (33), 126 (100), 115 (57), 97 (77), 69 (80). IR ν_{max}^{KBr} cm⁻¹: 3380 (OH), 2950, 2875 (CH), 1705 (C=O), 1440, 1380, 1360, 1050, 1015, 990, 960. ¹H-NMR (CD₃OD) δ : 3.50 (1H, br m, H-3), 3.39 (1H, dd, J = 10.7, 5.9 Hz, H-26a), 3.34 (1H, dd, J = 10.7, 6.2 Hz, H-26b), 2.65—2.45 (3H, H-20, -23), 2.37 (1H, br dd, J = 12.6, 2.4 Hz, H-5), 2.20 (1H, dd, J = 13.2, 4.9 Hz, H-7 equatorial), 2.10 (1H, ddd, J = 13.2, 13.2, 1.0 Hz, H-7 axial), 1.10 (3H, d, J = 6.9 Hz, H-21), 0.90 (3H, d, J = 6.7 Hz, H-27), 0.75 (3H, s, H-18 or H-19), 0.74 (3H, s, H-18 or H-19). ¹H-NMR (CDCl₃) δ : 3.58 (1H, m, H-3), 3.43 (2H, d, J = 5.8 Hz, H-26), 2.58—2.40 (3H, H-20, -23), 2.30 (1H, dd, J = 13.2, 4.5 Hz, H-7 equatorial), 2.22 (1H, br dd, J = 12.5, 2.6 Hz, H-5), 1.96 (1H, br dd, J = 13.2, 13.2 Hz, H-7 axial), 1.10 (3H, d, J = 6.9 Hz, H-21), 0.91 (3H, d, J = 6.7 Hz, H-27), 0.76 (3H, s, H-19), 0.69 (3H, s, H-18). ¹3C-NMR spectrum: Table III.

Acetylation of 12b—Compound 12b (15.0 mg) was acetylated with Ac₂O-pyridine to give the corresponding diacetate, which was purified by silica gel column chromatography with *n*-hexane–EtOAc (5:2) to yield a white amorphous powder (12c) (17.4 mg). EI-MS m/z (%): 516 (M⁺, 0.5), 457 (2.9), 456 (55), 387 (6), 327 (2.2), 299 (27), 177 (29), 126 (22), 115 (100). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 2950, 2870 (CH), 1735, 1705 (27), 1370, 1350, 1250, 1230, 1040, 1020, 1005, 985. ¹H-NMR (CDCl₃) δ: 4.67 (1H, m, H-3), 3.93 (1H, dd, J = 10.8, 6.0 Hz, H-26a), 3.88 (1H, dd, J = 10.8, 6.4 Hz, H-26b), 2.57—2.36 (3H, H-20, -23), 2.31 (1H, dd, J = 13.2, 4.5 Hz, H-7 equatorial), 2.27 (1H, br dd, J = 12.8, 2.8 Hz, H-5), 2.06, 2.03 (each 3H, s, OAc × 2), 1.10 (3H, d, J = 6.9 Hz, H-21), 0.94 (3H, d, J = 6.7 Hz, H-27), 0.77 (3H, s, H-19), 0.69 (3H, s, H-18).

Reduction of 12 by NaBH₄——A mixture of 12 (30.0 mg) dissolved in MeOH with NaBH₄ (10.0 mg) was allowed to stand at room temperature for 1 h. Purification of the EtOAc extract from the reaction mixture was carried out by silica gel column chromatography to give two products, 12d (9.5 mg) (triol steroid) and 12e (18.2 mg) (tetraol steroid). Compound 12d; a white amorphous powder. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 295 (141). CD (c = 0.0023, MeOH) [θ]²⁰ (nm): 174 (290). EI-MS m/z (%): 435 (M⁺ + H, 5), 417 (M⁺ – OH, 6), 416 (M⁺ – H₂O, 10), 347 (12), 318 (9), 302 (28), 301 (85), 283 (22), 213 (12), 144 (23), 126 (91), 114 (55), 97 (76), 95 (62), 81 (47), 69 (100). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3421 (OH), 2931 (CH), 1711 (C=O), 1458, 1385, 1262, 1040, 804. ¹H-NMR (CD₃OD) δ: 3.73 (1H, br, H-6), 3.55 (1H, m, H-3), 3.40 (1H, dd, J = 11.2, 5.9 Hz, H-26a), 3.34 (1H, dd, J = 11.2, 6.2 Hz, H-26b), 2.65—2.45 (3H, H-20, -23), 1.10 (3H, d, J = 6.9 Hz, H-21), 1.03 (3H, s, H-19), 0.90 (3H, d, J = 6.7 Hz, H-27), 0.76 (3H, s, H-18). Compound 12e; a white amorphous powder. EI-MS m/z (%): 419 (M⁺ – OH), 418 (M⁺ – H₂O), 401 (M⁺ + H – 2H₂O, 0.5), 400 (M⁺ – 2H₂O, 0.3), 349 (0.7), 331 (2), 319 (0.9), 318 (0.9), 313 (1.3), 302 (0.9), 229 (5), 117 (35), 99 (100), 81 (28). IR $\nu_{\text{max}}^{\text{KP}}$ cm⁻¹: 3387 (OH), 2933, 2865 (CH), 1458, 1381, 1261, 1040, 803. The ¹H-NMR spectrum measured in CD₃OD indicated that 12e was a mixture of two isomers.

X-Ray Analysis of 12—Crystals of 12 were grown in a mixed solution of isopropyl ether and MeOH as colorless plates. An X-ray specimen with approximate dimensions $0.4 \times 0.5 \times 0.2$ mm was cut from the crystal and mounted on a Philips PW 1100 diffractometer. The setting angles of twelve reflections ($\theta = 13^{\circ}$ —49°) and the intensity data were collected using Cu K_{α} radiation monochromated by a graphite plate. The crystal data: C₃₃H₅₄O₉, $M_{\rm r} = 594.8$. Orthorhombic, space group $P2_12_12_1$, Z = 4. Lattice constants; a = 9.771 (7), b = 42.29 (3), c = 7.664 (4) Å, U = 3167 ų. Crystal density (calculated, $D_{\rm calc}$) = 1.247 g/cm⁻³, μ for Cu $K_{\alpha} = 6.9$ cm⁻¹. Intensities of 3785 reflections were measured in the 2θ range of 6° through 156°, of which 3536 were taken as above the 2σ (1) level and used for the subsequent analysis. The crystal structure was determined by the direct method and refined by block-diagonal-matrix least-squares calculations. The final R value was 0.053 for 3536 reflections including 54 hydrogen atoms which were located on the difference electron density map and refined assuming isotropic thermal vibrations.

References and Notes

- 1) Jiang Su New Medical College ed., "Dictionary of Traditional Chinese Crude Drugs," Vol. 1, Shanghai Scientific Technologic Publishers, Shanghai, 1978, p. 856.
- 2) M. Shimizu, "Nippon No Yuri," Seibundo-Shinkosya, Tokyo, 1976, p. 46.
- 3) H. Shimomura, Y. Sashida, and Y. Mimaki, Phytochemistry, 25, 2897 (1986).
- 4) H. Shimomura, Y. Sashida, and Y. Mimaki, Phytochemistry, 26, 844 (1987).
- 5) H. Shimomura, Y. Sashida, Y. Mimaki, and N. Iida, Phytochemistry, 27, 451 (1988).
- 6) H. Shimomura, Y. Sashida, Y. Mimaki, and Y. Minegishi, *Phytochemistry*, 26, 582 (1987).
- 7) R. Cooper, H. E. Gottlieb, and D. Lavie, *Phytochemistry*, 17, 1673 (1978).
- The optically pure chiral phenolic monoglyceride, (2S)-1-O-p-coumaroylglycerol, which was obtained from regaloside A by enzymatic hydrolysis showed the specific rotation of $+12.4^{\circ}$ (methanol).
- 9) M. Kaneda, K. Mizutani, and K. Tanaka, Phytochemistry, 21, 891 (1982).

- 10) a) J. Kitajima, T. Komori, and T. Kawasaki, Yakugaku Zasshi, 102, 1009 (1982); b) K. Kaneko, K. Hirayama, H. Yokota, and H. Mitsuhashi, Abstracts of Papers, 14th Symposium on The Chemistry of Natural Products, Fukuoka, 1970, p. 358.
- 11) Y. Fukuyama, T. Sato, I. Miura, Y. Asakawa, and T. Takemoto, Phytochemistry, 22, 549 (1983).
- 12) M. Hamburger and K. Hostettmann, Phytochemistry, 24, 1793 (1985).
- 13) M. Linscheid, D. Wendisch, and D. Strack, Z. Naturforsh., 35c, 907 (1980).
- 14) a) D. Strack, G. Sachs, A. Römer, and R. Wiermann, Z. Naturforsh., 36c, 721 (1981); b) B. Meurer, D. Strack, and R. Wiermann, Planta Medica, 50, 376 (1984); c) K. Nakano, K. Murakami, Y. Takaishi, and T. Tomimatsu, Chem. Pharm. Bull., 34, 5005 (1986); d) Y. Shoyama, K. Hatano, I. Nishioka, and T. Yamagishi, Phytochemistry, 26, 2965 (1987).
- 15) a) K. Kaneko, S. Terada, N. Yoshida, and H. Mitsuhashi, *Phytochemistry*, 16, 791 (1977); b) K. Kaneko, M. W. Tanaka, and H. Mitsuhashi, *ibid.*, 16, 1247 (1977).
- 16) S. B. Mahato, A. N. Ganguly, and N. P. Sahu, Phytochemistry, 21. 959 (1982).