Electrochemistry and Reactivity of Cobaltadithiolene Complexes Having Sulfilimine Structures: Effect of Phosphorus Ligand Basicity and Cone Angle on the Electrochemical Behavior and on the Imido Migration to the Cp Ring

Mitsushiro Nomura, Chikako Takayama,[†] Toru Sugiyama, Yasuo Yokoyama, and Masatsugu Kajitani*

Department of Chemistry, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

Received August 25, 2003

Various types of cobaltadithiolene complexes having the sulfilimine structure CpCo[S(NTs)- $SC_2(COOMe)_2(PR_3)$ were newly synthesized. The lifetimes of the sulfilimine complexes are influenced by the basicities and by the cone angles of PR₃ ligands used. Some of the sulfilimine complexes rapidly eliminate PR_3 ligands by a one-electron reduction ($PR_3 = PPh_3$, $P(OPh)_3$, $P(p-C_6H_4Me)_3$, $P(p-C_6H_4Cl)_3$, PCy_3 , $P(p-C_6H_4OMe)_3$) to give the precursor of the sulfilimine complex, the imido-bridged cobaltadithiolene adduct $[CpCo{S_2C_2(COOMe)_2}(NTs)]$. On the other hand, the complexes of PBu₃ and P(OMe)₃ were stable during a one-electron reduction. The elimination of the imido group (NTs) by a second reduction was confirmed in all of the sulfilimine complexes. The investigation of the reactivity of the sulfilimine complexes showed that some of the sulfilimine complexes were the intermediates in the imido migration to the Cp ring $(PR_3 = PPh_3, P(OPh)_3, P(p-C_6H_4Me)_3, P(p-C_6H_4Cl)_3)$. The basicities (or nucleophilicities) of PR₃ were important parameters for the imido migration. Sulfilimine complexes containing strongly nucleophilic PR₃ ligands (PR₃ = P(p-C₆H₄OMe)₃, PBu₃, P(OMe)₃) did not undergo migration of the imido group. In the formation of the disubstituted Cp complex $[{C_5H_3(NTs)(PR_3)}Co{S_2C_2(COOMe)_2}]$, the basicity (or nucleophilicity) of PR₃ ligands is also an important parameter ($PR_3 = PPh_3$, $P(p-C_6H_4Me)_3$).

Introduction

The metalladithiolene ring,¹ which consists of one metal, two sulfur atoms, and two unsaturated carbon atoms, exhibits both aromaticity and unsaturation. Electrophilic and radical substitution reactions² due to the aromaticity of the metalladithiolene ring have been reported. This metal chelate ring has six delocalized π electrons and has $\pi - \pi^*$ transitions in the visible and near-IR regions.3

The metalladithiolene ring shows unsaturation when the metal in the ring is coordinatively unsaturated. Thus, addition reactions often occur between the metal and the sulfur bond. We have reported the addition reactions of cyclopentadienyl (Cp) metalladithiolene complexes $[CpM(S_2C_2Z_2)]$ (M = Co, Rh).^{4–7} The reactions of the Cp metalladithiolene complexes with diazo compounds (R¹R²CN₂) and tetracyanoethylene oxide (TC-NEO) yield alkylidene-bridged metalladithiolene adducts.⁴ The corresponding alkene-⁵ and norbornenebridged⁶ adducts can be obtained by reactions with alkyne and quadricyclane, respectively. Furthermore, imido-bridged adducts are formed by reaction with (Ntosylimino)phenyliodinane (PhI=NTs) or sulfonyl azides.7 Recently, o-carboranedithiolato complexes have been

^{*} To whom correspondence should be addressed. E-mail: kajitam@sophia.ac.jp. [†] Current address: Department of Chemistry, University of British

Columbia, Vancouver, British Columbia, Canada V6T 1ZI

<sup>Columbia, Vancouver, British Columbia, Canada V6T 121.
(1) Reviews: (a) Schrauzer, G. N. Acc. Chem. Res. 1969, 2, 72. (b)
McCleverty, J. A. Prog. Inorg. Chem. 1969, 10, 49. (c) Burns, R. P.;
McAuliffe, C. A. Adv. Inorg. Chem. Radiochem. 1979, 22, 303. (d) Kisch,
H. Coord. Chem. Rev. 1993, 125, 155.
(2) (a) Kajitani, M.; Hagino, G.; Tamada, M.; Fujita, T.; Sakurada,
M.; Akiyama, T.; Sugimori, A. J. Am. Chem. Soc. 1996, 118, 489. (b)
Sugimori, A.; Tachiya, N.; Kajitani, M.; Akiyama, T. Organometallics
1996, 15, 5664. (c) Sugimori, A - Akiyama, T.; Kajitani, M.; Sugiyama,</sup>

Juge, J.S., Fachya, K., Rejkan, M., Hayama, T., Kajitani, M.; Sugiyama, T. Bull. Chem. Soc. Jpn. 1999, 72, 879.
 (3) Schrauzer, G. N.; Meyweg, V. P. J. Am. Chem. Soc. 1965, 87,

^{1483.}

^{(4) (}a) Kajitani, M.; Sakurada, M.; Dohki, K.; Suetsugu, T.; Akiyama, T.; Sugimori, A. J. Chem. Soc., Chen. Commun. **1990**, 19. (b) Sakurada, M.; Kajitani, M.; Dohki, K.; Akiyama, T.; Sugimori, A. J. Organomet. *Chem.* **1992**, *423*, 144. (c) Kajitani, M.; Kawakita, F.; Chikuma, E.; Sakurada, M.; Akiyama, T.; Sugimori, A. *Chem. Lett.* **1995**, 85. (d) Takayama, C.; Sakamoto, N.; Harada, T.; Kajitani, M.; Sugiyama, T.; Akiyama, T.; Sugimori, A. Organometallics 1996, 15, 5077. (e) Takayama, C.; Kajitani, M.; Sugiyama, T.; Sugimori, A. J. Organomet. Chem. 1998, 563, 161. (f) Takayama, C.; Kajitani, M.; Sugiyama, T.; Sugimori, A. Chem. Lett. 1998, 241.

<sup>A. Chem. Lett. 1998, 241.
(5) (a) Kajitani, M.; Suetsugu, T.; Wakabayashi, R.; Igarashi, A.;
Akiyama, T.; Sugimori, A. J. Organomet. Chem. 1985, 293, C15. (b)
Kajitani, M.; Hisamatsu, N.; Takehara, M.; Mori, Y.; Sugiyama, T.;
Akiyama, T.; Sugimori, A. Chem. Lett. 1994, 473. (c) Kajitani, M.;
Suetsugu, T.; Takagi, T.; Akiyama, T.; Sugimori, A.; Aoki, K.; Yamazaki, H. J. Organomet. Chem. 1995, 487, C8.
(6) (a) Kajitani, M.; Eguchi, Y.; Abe, R.; Akiyama, T.; Sugimori, A.
Chem. Lett. 1990, 359. (b) Kajitani, M.; Hatano, H.; Fujita, T.;
Okumachi, T.; Nagao, H.; Akiyama, T.; Sugimori, A. J. Organomet.</sup>

<sup>Chem. 1992, 430, C64.
(7) Nomura, M.; Yagisawa, T.; Takayama, C.; Sugiyama, T.; Yokoyama, Y.; Shimizu, K.; Sugimori, A.; Kajitani, M. J. Organomet. Chem.</sup> 2000, 611, 376.

developed, and various addition and isomerization reactions have been reported by Kang⁸ and by Herberhold et al.9

We have studied the reactivities of metalladithiolene adducts: the alkylidene-, alkene-, norbornene-, and imido-bridged adducts dissociate by thermal, photochemical, and electrochemical redox reactions, 4-7 and the corresponding original metalladithiolene complexes are regenerated. We have also developed a novel reaction between the metalladithiolene adducts with nucleophiles. For example, the reaction of the alkylidenebridged adduct with PR3 undergoes two types of structural changes¹⁰ (Scheme 1). One is the ring expansion of the five-membered metalladithiolene ring to form a six-membered ring by the nucleophilic attack of PR₃ at the metal. The other reaction is metal-carbon bond cleavage to form a sulfonium ylide structure. In addition, both complexes undergo redox-induced structural changes.11

Recently, we have continued the study of the imidobridged adduct [CpCo{S₂C₂(COOMe)₂}(NTs)] (1). Complex 1 reacts with PR₃ to form complexes having a sulfilimine structure, CpCo[S(NTs)SC₂(COOMe)₂](PR₃) $(PR_3 = PPh_3 (2a), P(OPh)_3 (2b)), by metal-nitrogen$ bond cleavage^{7,12} (Scheme 2). We have new investigated the effects of the basicities and the cone angles¹³ of PR₃ ligands on the electrochemical behavior of the sulfilimine complexes.

(9) (a) Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. J. Organomet. Chem. 2000, 604, 170. (b) Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. J. Chem. Soc., Dalton Trans. 2001, 1782. (c) Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Chem. Eur. J. 2002, 8, 388.

(10) Takayama, C.; Takeuchi, K.; Ohkoshi, S.; Janairo, G. C.; Sugiyama, T.; Kajitani, M.; Sugimori, A. Organometallics 1999, 18, 2843.

(11) (a) Takayama, C.; Kajitani, M.; Sugiyama, T.; Akiyama, T.; Shimizu, K.; Sugimori, A. *Organometallics* **1997**, *16*, 3498. (b) Takayama, C.; Takeuchi, K.; Ohkoshi, S.; Kajitani, M.; Sugimori, A. Organometallics 1999, 18, 4032.

(12) Nomura, M.; Takayama, C.; Janairo, G. C.; Sugiyama, T.; Yokoyama, Y.; Kajitani, M. Organometallics 2003, 22, 195.
 (13) (a) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956. (b) Tolman,

C. A. J. Am. Chem. Soc. 1970, 92, 2953. (c) Tolman, C. A. Chem. Rev. 1977, 77, 313. (c) Golovin, M. N.; Rahman, M. M.; Belmonte, J. E.; Giering, W. P. Organometallics 1985, 4, 1981. (d) Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1990, 9, 1758 and references therein.

We have found that the sulfilimine complexes 2a and 2b are intermediates in the novel imido migration reaction to the Cp $ring^{7,12}$ (Scheme 2). The migration of a monodentate ligand from the central transition metal to the Cp ring can be classified into four main categories: (1) base-induced migration from the metal to the Cp ring;^{14–17} (2) migration by ligand(metal)/H(Cp) exchange;¹⁸ (3) migratory insertion into the C-H bond of the Cp ring;¹⁹ (4) ligand migration to the Cp ring induced by a photoreaction.²⁰ Our work belongs in the third category. These four types of migrations may find use in the generation of functionally substituted Cp ligands. The effects of the basicities and the cone angles¹³ of phosphine and phosphite in the imido migration reaction shown in Scheme 2 have been examined.

Results and Discussion

1. Preparations and Spectroscopic Properties of the Sulfilimine Complexes. The imido-bridged adduct 1 was prepared from the cobaltadithiolene complex $[CpCo{S_2C_2(COOMe)_2}]$ (5) by reaction with tosyl azide.⁷ When complex **1** reacted with 2 equiv of PR_3 in dichloromethane at room temperature, the solution color rapidly changed from green to brown. The sulfilimine complexes CpCo[S(NTs)SC₂(COOMe)₂](PR₃) (2c-h) were

(16) (a) Nakazawa, H.; Sone, M.; Miyoshi, K. Organometallics 1989, 8, 1564. (b) Kubo, K.; Nakazawa, H.; Kawamura, K.; Mizuta, T.; Miyoshi, K. J. Am. Chem. Soc. 1998, 120, 6715. (c) Nakazawa, H.; Kawamura, K.; Kubo, K.; Miyoshi, K. Organometallics 1999, 18, 4518. (17) Pannell, K.; Castillo-Ramirez, J.; Cervantes-Lee, F. Organometallics 1992, 11, 3139.

(18) (a) Baya, M.; Crochet, P.; Esteruelas, M. A.; Oñate, E. Organometallics 2001, 20, 240. (b) Ortmann, D. A.; Weberndörfer, B.; Schöneboom, J.; Werner, H. *Organometallics* **1999**, *18*, 952. (c) Ort-mann, D. A.; Weberndörfer, B.; Ilg, K.; Laubender, M.; Werner, H. Organometallics 2002, 21, 2369. (d) Herber, U.; Bleuel, E.; Gevert, O.; Laubender, M.; Werner, H. Organometallics 1998, 17, 10. (e) Hofmann, W.; Buchner, W.; Werner, H. Angew. Chem., Int. Ed. Engl. 1977, 16, (19) (a) Bleuel, E.; Laubender, M.; Weberndörfer, B.; Werner, H.

Angew. Chem., Int. Ed. 1999, 38, 156. (b) Hubbard, J. L.; McVicar, W. K. J. Am. Chem. Soc. 1986, 108, 6422

 (20) (a) Blaha, J. P.; Wrighton, M. S. J. Am. Chem. Soc. 1985, 107, 2694. (b) Carpenter, N. E.; Khan, M. A.; Nicholas, K. M. Organometallics 1999, 18, 1569.

^{(8) (}a) Kim, D.-H.; Ko, J.; Park, K.; Cho, S.; Kang, S. O. Organometallics 1999, 18, 2738. (b) Bae, J.-Y.; Park, Y.-I.; Ko, J.; Park, K.-I.; Cho, S.; Kang, S. O. *Inorg. Chim. Acta* **1999**, *289*, 141. (c) Bae, J.-Y.; Lee, Y.-J.; Kim, S.-J.; Ko, J.; Cho, S.; Kang, S. O. *Organometallics* **2000**, 19, 1514. (d) Won, J.-H.; Lim, H.-G.; Kim, B. Y.; Lee, J.-D.; Lee, C.; Lee, Y.-J.; Cho, S.; Ko, J.; Kang, S. O. Organometallics 2002, 21, 5703.

^{(14) (}a) Liebeskind, L. S.; Welker, M. E. Organometallics 1983, 2, 194. (b) Heah, P. H.; Gladysz, J. A. J. Am. Chem. Soc. 1984, 106, 7636. (c) Abbott, S.; Baird, G. J.; Davies, S. G.; Dordor-Hedgecock, I. M.; (c) Abbott, S.; Baird, G. J.; Davies, S. G.; Dordor-Hedgecock, I. M.; Maberly, T. R.; Walker, J. C.; Warner, P. J. Organomet. Chem. 1985, 289, C13. (d) Heah, P. C.; Patton, A. T.; Gladysz, J. A. J. Am. Chem. Soc. 1986, 108, 1185. (e) Akita, M.; Kondoh, A. J. Organomet. Chem. 1986, 299, 369. (f) Melletti, M. C.; Fenske, R. F. Organometallics 1989, 8, 420. (g) Liu, L.-K.; Chang, K.-Y.; Wen, Y.-S. J. Chem. Soc., Dalton Trans. 1998, 741. (h) Berryhill, S. R.; Sharenow, B. J. Organomet. Cham. 1981, 224. 1422 (i) Thum. C. Pice W. Craisenan D.; Mclickh Irans. 1998, 741. (h) Berrynii, S. R.; Sharenow, B. J. Organomet. Chem. 1981, 221, 143. (i) Thum, G.; Ries, W.; Greissinger, D.; Malisch,
W. J. Organomet. Chem. 1983, 252, C67. (j) Berryhill, S. R.; Clevenger,
G. L.; Burdurlu, F. Y. Organometallics 1985, 4, 1509. (k) Pannell, K.
H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. Organometallics 1986, 301, 329. (m) Pannell, K. H.; Vicenti, S. P.; Scott, R. C., II.
1986, 301, 329. (m) Pannell, K. H.; Vicenti, S. P.; Scott, R. C., II.
Organometallics 1987, 6, 1553. (n) Crocco, C. L.; Voung, C. S.; Lee, K. Organometallics 1987, 6, 1593. (n) Crocco, G. L.; Young, C. S.; Lee, K. E.; Gladysz, J. A. Organometallics 1988, 7, 2158. (o) Pannell, K. H.; (p) Pannell, K. H.; Cervantes, J.; Parkanyi, L.; Cervantes-Lee, F.
(p) Pannell, K. H.; Cervantes, J.; Parkanyi, L.; Cervantes-Lee, F.
Organometallics 1990, 9, 859. (q) Sharma, S.; Cervantes, J.; Mata-Mata, J. L.; Brun, M.-C.; Cervantes-Lee, F.; Pannell, K. H. Organometallics 1995, 14, 4269. (r) Baya, M.; Esteruelas, M. A.; Oñate, E. Organometallics 2001, 20, 4875. (s) Dean, W. K.; Graham, W. A. G. Inorg. Chem. 1977, 16, 1061. (t) Cervantes, J.; Vicenti, S. P.; Kappor, R. N.; Pannell, K. H. Organometallics 1989, 8, 744

^{(15) (}a) Davis, S. G.; Felkin, H.; Watts, O. J. Chem. Soc., Chem. Commun. 1980, 159. (b) Merrifield, J. H.; Gladysz, J. A. Organometallics 1983, 2, 782. (c) Crocco, G. L.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1985, 283. (d) Crocco, G. L.; Gladysz, J. A. J. Am. Chem. Soc. 1988, 110, 6110.

Table 1. Yields and Spectroscopic Data of the Sulfilimine Complexes CpCo[S(NTs)SC₂(COOMe)₂](PR₃) (2a-h)

				³¹ P NMR (δ/ppm)			
com- plex	PR_3	yield/%	$\frac{\text{IR (}\nu_{\text{S}-\text{N}}\text{/}}{\text{cm}^{-1}\text{)}}$	com- plex	corresponding free P ligand		
2a	PPh_3	95 ^a	922	35.2	-5.0		
2b	P(OPh) ₃	80 ^b	932 ^b	126.6	128.4^{b}		
2c	$P(p-C_6H_4Me)_3$	96	920	33.2	-7.6		
2d	$P(p-C_6H_4Cl)_3$	95	922	35.6	-7.9		
2e	PČy ₃	90	932	32.5	11.9		
2f	$P(p-C_6H_4OMe)_3$	98	935	32.0	-9.7		
2g	PBu ₃	92	928	49.4	-30.3		
2h	P(OMe) ₃	95	932	122.8	141.5		
^{<i>a</i>} Reference 7. ^{<i>b</i>} Reference 12.							

Figure 1.

separated by column chromatography and obtained as brown solids in nearly quantitative yield (Table 1). Complexes 2a,b have already been characterized.^{7,12} In this work, analogous PR_3 complexes 2c-h were identified by spectroscopic data. Although the purities of complexes 2c-h were confirmed by ¹H NMR spectra, the PBu₃ complex **2g** and the P(OMe)₃ complex **2h** were found to exist as isomers (see the Supporting Information). We have found two types of isomers in such complexes. One is that in which the phosphite ligand and the alkylidene group are located at opposite sides of the cobaltadithiolene ring (anti form¹⁰), and the other is the complex of syn form.¹² Also in this case, we propose that the two isomers are syn and anti ones (Figure 1). Our elemental analyses of complexes 2c-h failed because these complexes were thermally unstable or air-sensitive. The IR spectra of complexes 2a-h showed two different signals around 1700 cm⁻¹ attributed to the C=O stretching vibrations of the cobaltadithiolene substituents; signals around 920-930 cm⁻¹ attributed to the S^+-N^- stretching vibrations also appeared (Table 1). Two different C=O signals indicate that the imido group is attached to the sulfur atom of the cobaltadithiolene ring. The latter values are similar to those for the S^+-N^- stretching vibration of a typical sulfilimine compound.²¹ These results suggest that the ring opening of the cobaltathiaziridine ring was induced by the nucleophilic attack of PR3 at the cobalt atom of complex 1. (In the present paper, the three-membered ring consisting of Co, N, and S is described as a

(21) (a) Kucsman, A.; Ruff, F.; Kapovits, I. *Tetrahedron* **1966**, *22*, 1575. (b) Tsujihara, K.; Furukawa, N.; Oae, S. *Bull. Chem. Soc. Jpn.* **1970**, *43*, 2153.

Figure 2. Cyclic voltammograms ($v = 100 \text{ mV s}^{-1}$, $\Phi = 1.6 \text{ mm}$ Pt disk, concentration of sample 1 mM): (a) complex **2a**; (b) multiple scan of the one-electron reduction process of complex **2a**; (c) complex **2g**; (d) complex **1**.⁷

cobaltathiaziridine ring.) The ³¹P NMR signals of complexes **2a**-**h** showed two trends: the δ values of the phosphine complexes **2a** and **2c**-**g** were shifted more downfield than those of the corresponding free phosphines; the δ values of the phosphite complexes **2b**¹² and **2h** were shifted more upfield than those of the corresponding free phosphites (Table 1). These tendencies have also been found in the PR₃ adducts of cobaltadithiolene complexes, [CpCo(S₂C₂X₂)(PR₃)].²²

2. Electrochemical Behavior of the Sulfilimine Complexes. In situ CV measurements of the reaction mixtures of complex 1 with PR₃ (1 equiv excess) were performed, because complexes **2a**-**h** were thermally unstable and air-sensitive. It was confirmed that complexes 2a-h were quantitatively formed by in situ ¹H NMR spectra of the mixtures. The CVs of complexes 2a and 2g are shown in Figure 2a-c, and the CV of complex **1**⁷ is also shown in Figure 2d for a comparison. The reduction potential data for the complexes and the reversibility of the reaction are shown in Table 2. The CV of complex 2a showed two irreversible reduction waves at -0.93 and -1.79 V, respectively (Figure 2a). The first reduction potential of complex 2a was more negative than that of complex 1, and the second one was almost identical with that of complex 1 (Figure 2d). In

⁽²²⁾ Kajitani, M.; Igarashi, A.; Hatano, H.; Akiyama, T.; Sugimori, A.; Matsumoto, S.; Iguchi, Y.; Boennemann, H.; Shimizu, K.; Satô, G. P. *J. Organomet. Chem.* **1995**, *485*, 31.

Table 2. Reduction Potentials (vs Fc|Fc⁺) of the
Sulfilimine Complexes 2a-h^a

		first redn seco			d redn
complex	$E_{1/2}/V$	$\Delta E/mV$	$\Delta E_{\rm p}/{\rm mV}$	$E_{1/2}/V$	Δ <i>E</i> /mV
2a	-0.93^{ir}	76		-1.79 ^{ir}	70
2b	-0.83^{ir}	118		-1.80^{ir}	82
2c	-1.04^{ir}	92		-1.83^{ir}	80
2d	-0.88 ^{ir}	72		-1.81^{ir}	80
2e	-1.10^{ir}	80		-1.82^{ir}	70
2f	-1.04^{ir}	80		-1.80^{ir}	68
2g	-1.19^{r}	70	98	-1.98^{ir}	72
2h	-1.04^{r}	74	134	-1.79^{ir}	82
1 ^b	-0.79^{r}	68	90	-1.80^{ir}	78

^{*a*} Definitions: r, reversible wave; ir, irreversible wave; $E_{1/2} = (E_{\rm p} + E_{\rm p/2})/2$; $\Delta E = |E_{\rm p} - E_{\rm p/2}|$; $\Delta E_{\rm p} = |E_{\rm pc} - E_{\rm pa}|$. ^{*b*} Reference 7.

addition, two reoxidation waves due to a reaction product appeared around -0.80 and -0.90 V. The former reoxidation wave appeared after the first reduction, and the latter reoxidation wave appeared after the second reduction. These reoxidation waves corresponded to the waves of $1/1^-$ and $5/5^-$ couples, respectively.

The following reduction behavior can thus be speculated: (1) The electron density of the reduction site of complex 2a has increased more than that of complex 1. (2) Anion 1^- was formed by the elimination of PPh₃ from the reductant $2a^{-}$. Therefore, as soon as PPh₃ is eliminated from the reductant 2a⁻, the cobaltathiaziridine ring is re-produced by the Co-N bond re-formation. We have also reported such a reversible Co-N bond cleavage and re-formation between complex 1 and its protic acid adduct $[CpCo{S_2C_2(COOMe)_2}(Cl)(NHTs)]$.⁷ However, the rereduction wave of complex 1 did not appear in the multiple CV scan (Figure 2b). This result suggests that complex 2a was re-formed by PPh₃ present at close range to the electrode as soon as the neutral complex 1 was re-formed. These electrode reactions (ECEC reactions) can be described as an electrochemical square scheme.²³ (3) When anion 1^- formed by the reduction of complex 2a was further reduced, the imido group was eliminated to form anion 5⁻. This behavior has also been observed in the second reduction of complex **1**.⁷ The electrochemical behavior of complex 2a is summarized in Scheme 3. The electrochemical

behavior of complexes 2b-f was similar to that of complex 2a.

The CV of complex 2g showed a reversible reduction wave at -1.19 V and an irreversible reduction wave at -1.81 V (Table 2 and Figure 2c). The first reduction potential of complex 2g was more negative than that of complex 1, and the second reduction potential corresponded to that of complex 1. The first reduction and reoxidation responses of complex 2g are different from those of complexes 2a-f. This result suggests that anion $2g^{-}$ is stable on the CV time scale; therefore, the PBu₃ ligand of complex 2g is difficult to eliminate by a oneelectron reduction. However, the second reduction wave due to the $1^{-}/1^{2-}$ couple (-1.81 V) indicates the formation of anion 1^{-} by the elimination of PBu₃. Therefore, anions $2g^-$ and 1^- both coexist in an equilibrium state (Scheme 4). Likewise, after a second reduction, the reoxidation wave attributed to the wave of the $5/5^{-1}$ couple appeared around -0.90 V. This result suggests the elimination of the imido group by a second reduction. The electrochemical behavior of complex 2g is summarized in Scheme 4. Complex 2h showed electrochemical behavior similar to that of complex 2g. Therefore, P(OMe)₃ of complex **2h** is also difficult to eliminate.

The lifetimes of the reductants of complexes 2a-h can be explained by the basicity and the cone angle¹³ of the PR₃ ligand. In the case of PR₃ having stronger basicity (or nucleophilicity), the Co–P bond of the sulfilimine complex becomes stronger and the lifetime of the reductant becomes longer (e.g. the lifetimes of reductant: PPh₃ complex $2a < PBu_3$ complex 2g; P(OPh)₃ complex $2b < P(OMe)_3$ complex 2h). Although PCy₃ has stronger basicity than PBu₃, the lifetime of the reductant of complex 2e is shorter than that of complex 2g. The difference in the value of cone angle means there is some steric hindrance between the complex and PCy₃.

In situ measurements of visible absorption spectra during electrolysis were performed using an optically transparent thin-layer electrode cell (OTTLE). When complex **2a** was reduced at -1.40 V, the absorption band around 490 nm was decreased, and two isosbestic points appeared around 395 and 435 nm (Figure 3a). Spectral changes stopped after 2 min, and the final spectrum corresponded to that of anion **1**⁻ previously reported.⁷ When anion **1**⁻ was reoxidized at -0.20 V, the absorption spectrum reverted to that of complex **2a** (Figure 3b). This result also supports the electrochemical square scheme shown in Scheme 3. In addition, when a second reduction was performed at -2.20 V (Figure 3c) and the sample was then reoxidized at -0.90 V, an absorption band appeared around 550 nm (Figure 3d). This absorp-

^{(23) (}a) Moraczewski, J.; Geiger, W. E. J. Am. Chem. Soc. **1981**, 103, 4779. (b) Bernardo, M. M.; Robant, P. V.; Schroeder, R. R.; Rorabacher, D. B. J. Am. Chem. Soc. **1989**, 111, 1224. (c) Bond, A. M.; Colton, R.; Mann, T. F. Organometallics **1988**, 7, 2224. (d) Tsintavis, C.; Li, H.-L.; Chambers, J. Q. J. Phys. Chem. **1991**, 95, 289. (e) Richards, T. C.; Geiger, W. E. J. Am. Chem. Soc. **1994**, 116, 2028. (f) Connelly, N. G.; Geiger, W. E.; Lagunas, M. C.; Metz, B.; Rieger, A. L.; Rieger, P. H.; Shaw, M. J. J. Am. Chem. Soc. **1995**, 117, 12202.

Figure 3. Visible spectral changes of complex **2a**: (a) first reduction $(-1.40 \text{ V}, \text{ sampling time 30 s}, \text{ sampling interval 2 s}); (b) reoxidation <math>(-0.20 \text{ V}, \text{ sampling time 30 s}, \text$

Table 3. Reactions of the Imido-Bridged Cobaltadithiolene Complex 1 with 2 Equiv of PR₃ in Refluxing Benzene

	basicitv ^b	cone angle/		yield/%		
PR ₃	$(\mathbf{p}K_{\mathbf{a}})$	deg	time/h	3	2a-h	5
PPh ₃ ^a	2.73	145	5	44	0	35
$P(p-C_6H_4Me)_3$	3.84	145	5	36	0	34
$P(p-C_6H_4Cl)_3$	1.03	145	5	35	0	48
$P(p-C_6H_4OMe)_3$	4.59	145	5	0	0	31
PBu ₃	8.43	136	5	0	95	0
PCy ₃	9.70	170	5	0	0	80
P(OPh) ₃	-2.00	128	45	27	0	62
P(OMe) ₃	2.60	107	5	0	20	55

^{*a*} Reference 7. ^{*b*} The Brønsted basicities of the phosphorus(III) compounds (pK_a values of R_3PH^+).

tion band corresponds to that of $[CpCo{S_2C_2(COOMe)_2}]$ (5).²⁴ The yield of complex 5 based on the spectral changes was 50%. These spectroelectrochemical data support our speculation based on the CV data of complex **2a**.

3. Reactivities of the Sulfilimine Complexes: Migration Reactions to the Cp Ring. The reactions of complex **1** with 2 equiv of PR₃ were attempted with heating. In these reactions, the sulfilimine complexes are first formed. The products, yields, basicities, and cone angles¹³ of PR₃ are shown in Table 3. The reaction of complex **1** with PPh₃ or P(OPh)₃ has been previously reported to give the amide-substituted Cp complex $[(C_5H_4-NHTs)Co{S_2C_2(COOMe)_2}]$ (**3**)^{7,12} as a migration product and complex **5** (Scheme 2). In this work, complex **1** reacted with 2 equiv of P(*p*-C₆H₄Me)₃ or P(*p*-C₆H₄Cl)₃ in refluxing benzene to also give complex **3** in 36% or 35% yield, respectively (Scheme 2 and Table 3). In the reaction of complex **1** with PBu₃ in refluxing benzene, the corresponding sulfilimine complex **2g** was

isolated in quantitative yield. This result, similar to the result of the reaction at room temperature (Table 1), suggests that complex **2g** is thermally stable at 80 °C. In addition, although $P(p-C_6H_4OMe)_3$ reacted with complex **1** under the same conditions, only complex **5** was formed (Table 3). $P(C_6F_5)_3$ did not react with complex **1** because of its low nucleophilicity.

We assume that the imido migration is also influenced by the basicities of the PR₃ ligands. In the case of PR₃ having stronger basicity (or nucleophilicity), the Co-P bond also becomes thermally stable. As a result, the imido group is eliminated due to the S-N bond cleavage before the Co-P bond can cleave. We assume that the imido elimination from the sulfilimine complex 2 prevents the imido migration to the Cp ring, because this migration is intramolecular.¹² For the imido migration, the Co-P bond cleavage may conceivably occur before the S-N bond cleavage, or both bond cleavages may be simultaneous. In the reaction of complex 2g under refluxing xylene, this reaction only gave [CpCo{S₂C₂- $(COOMe)_2$ (PBu₃)] due to the only S–N bond cleavage in 80% yield (Scheme 5). This reaction also supports that the Co-P bond cleaves first for the imido migration. The bond strength of the Co-P bond was also examined by the electrochemistry of complexes **2a-h** in this work. We conclude that the basicity (or nucleophilicity) of PR₃ is one of the important parameters for the imido migration.

Werner et al. have proposed a mechanism for the migratory insertion of a carbene ligand into the C–H

⁽²⁴⁾ Kajitani, M.; Suetsugu, T.; Wakabayashi, R.; Igarashi, A.; Akiyama, T.; Sugimori, A. *J. Organomet. Chem.* **1985**, *293*, C15.

bond of the Cp ring.^{18d} Their report says that the reaction of [CpRh(=CPh₂)(P*i*Pr₃)] with PF₃ gives [(C₅H₄-CHPh₂)Rh(P*i*Pr₃)(PF₃)] as a migration product. Ligand displacement reactions of [CpRhL₂] with Lewis bases L' are known to follow second-order kinetics.²⁵ A reasonable assumption is that a labile 1:1 adduct is formed from [CpRh(=CPh₂)(P*i*Pr₃)] and PF₃. A slippage of the carbene ligand to the temporarily generated η^3 -C₅H₅ unit affords the migration product [(C₅H₄-CHPh₂)Rh(P*i*-Pr₃)]. We assume that the mechanism of the imido migration is similar to that of this carbene migration via a η^3 -C₅H₅ intermediate.

The reaction of complex **1** with PCy₃ under refluxing benzene gave only complex **5** in good yield (Table 3). Although PCy₃ is as basic as PBu₃, the cone angle of PCy₃ ($\theta = 170^{\circ}$) is larger than that of PBu₃ ($\theta = 136^{\circ}$). The cone angle of a phosphorus ligand is related to the stability of the sulfilimine complex rather than to the imido migration. On the other hand, trimesitylphosphine, P(C₆H₂Me₃)₃, which has a larger cone angle ($\theta =$ 212°) than that of PCy₃, did not react with complex **1** due to steric hindrance.

We also attempted the reactions of complex 1 with other trivalent ligands, such as phosphite, amine, arsine, and stibine. Although the reaction of complex 1 with $P(OMe)_3$ did not form the migration product 3 under refluxing benzene, the sulfilimine complexes 2h and 5 were obtained (Table 3). The sulfilimine complex **2h** was thermally more stable than complex **2a**, although P(OMe)₃ has a basicity similar to that of PPh₃. We assume that the bond pattern of a phosphite ligand with the cobalt is different from that of a phosphine ligand. This suggestion is supported by the δ value shifts of ³¹P NMR spectra of complexes **2a-h** (see Table 1). The difference can be explained by the difference in back-donation from cobalt to the phosphorus ligand. On the other hand, NEt₃, NPh₃, AsPh₃, and SbPh₃ did not react with complex 1. These results indicate that complex 1 only reacts with a trivalent phosphorus compound.

According to our previous report, the reaction of complex 1 with a large excess of PPh₃ with heating gave not only complex 3 but also the disubstituted Cp complex [$\{C_5H_3(NTs)(PPh_3)\}Co\{S_2C_2(COOMe)_2\}$ (4a)¹² (Scheme 6). The reactions of complex 1 with various amounts of PPh₃ were examined (Table 4). Although a larger amount of PPh₃ gave a higher yield of complex 4a than did 1 equiv of PPh₃, a lower yield of complex 3 was obtained than when 1 equiv of PPh₃ gave complex 3 and did not give complex 4a. In the reaction of complex 1 with 0.5 equiv of PPh₃, the reaction rate became

Table 4. Reactions of Imido-Bridged Cobaltadithiolene Complex 1 with Various Amounts of PR₃ in Refluxing Benzene

				yield/%				
PR_3	amt/equiv	time/h	4	3	2a,c,d	5		
PPh3 ^a	2	5	trace	44	0	35		
PPh ₃	1	5	0	44	0	31		
PPh ₃	0.5	5	0	31	28	29		
PPh ₃	0.5	18	0	36	0	47		
PPh ₃	0.2	5	0	trace	20	trace		
PPh ₃	0.2	18	0	3	0	58		
PPh ₃	5	5	12	42	0	34		
PPh ₃	10	5	17	29	0	34		
$P(p-C_6H_4Me)_3$	2	5	trace	36	0	34		
$P(p-C_6H_4Me)_3$	10	5	18	34	0	15		
$P(p-C_6H_4Cl)_3$	2	5	0	35	0	48		
$P(p-C_6H_4Cl)_3$	10	5	0	37	0	38		
0 0 0								

^a Reference 7.

slower and a lower yield of complex **3** was obtained. Therefore, 1 equiv of PPh₃ is necessary to obtain complex **3** efficiently, and a large excess of PPh₃ efficiently gives complex **4a**.

The effects of various phosphines were examined in the formation of the disubstituted Cp complex 4. The reactions of complex 1 with a large excess of $P(p-C_6H_4 OMe_{3}$ or PBu_{3} did not form complexes **3** and **4**, and finally results similar to those shown in Table 3 were obtained. The reaction of complex 1 with 10 equiv of $P(p-C_6H_4Me)_3$ gave complex **3** and the corresponding disubstituted Cp complex $[{C_5H_3(NTs)(P(p-C_6H_4Me)_3)}]$ $Co{S_2C_2(COOMe)_2}$ (4c). However, a large excess of $P(p-C_6H_4Cl)_3$ only gave complex **3**, and the disubstituted Cp complex was not formed (Table 4). These results suggest that the basicity (or nucleophilicity) of phosphine is also one of the important parameters in the formation of the disubstituted Cp complex. According to a similar procedure, the NMs- and PPh₃-substituted Cp complex $[{C_5H_3(NMs)(PPh_3)}Co{S_2C_2(COOMe)_2}]$ (4a') was synthesized by the reaction of the imido adduct $[CpCo{S_2C_2(COOMe)_2}(NMs)]^7$ with a large excess of PPh₃. The ³¹P NMR signals of complexes **4a**' and **4c** appeared at 23.0 and 23.3 ppm, respectively. These ³¹P NMR signals are similar to those of a typical phosphonium salt (PPh₄⁺I⁻, 22.0 ppm) and complex 4a (23.4 ppm) previously reported.¹² This result suggests that complexes 4a' and 4c also have a triarylphosphonium cyclopentadienyl ligand.²⁶

Conclusions

The imido-bridged cobaltadithiolene adduct 1 reacts with PPh₃ and P(OPh)₃ to give the sulfilimine complexes

^{(25) (}a) Basolo, F. *Inorg. Chim. Acta* **1985**, *100*, 33. (b) Rerek, M. E.; Basolo, F. J. Am. Chem. Soc. **1984**, *106*, 5908.

^{(26) (}a) Tresoldi, G.; Recca, A. Finocchiaro, P.; Faraone, F. *Inorg. Chem.* **1981**, *20*, 3103. (b) Watanabe, M.; Sato, M.; Takayama, T. *Organometallics* **1999**, *18*, 5201.

 $CpCo[S(NTs)SC_2(COOMe)_2](PR_3)$ (PR₃ = PPh₃ (**2a**), $P(OPh)_3$ (**2b**)) at room temperature, and these complexes undergo the imido migration to the Cp ring when heated.^{7,12} In this work, the reactions of complex **1** with other PR₃ species quantitatively gave the corresponding sulfilimine complexes **2c-h** at room temperature. However, these sulfilimine complexes 2c-h were not always intermediates in the imido migration. The imido migration was influenced by the basicities (nucleophilicities) of PR₃ ligands. Sulfilimine complexes containing strongly nucleophilic PR_3 ligands (e.g. $PR_3 = PBu_3$) were thermally stable because of the strong Co-P bond, and the nonelimination of PR₃ ligands prevents the imido migration. In the case of PR₃ having weaker basicity (e.g. $PR_3 = P(C_6F_5)_3$, the sulfilimine complex was not formed, due to its low nucleophilicity. The phosphines having $pK_a = 1.03 - 3.84$ (PR₃ = PPh₃, P($p-C_6H_4Me$)₃, $P(p-C_6H_4Cl)_3$) were required in the imido migration. In addition, the cone angles of phosphines were only correlated with the thermal stability of the sulfilimine complex.

The elimination of PR₃ was confirmed by the investigation of the electrochemical behavior of the sulfilimine complexes **2a**–**h**. The sulfilimine complexes **2a**–**h** showed two opposite trends in a first reduction process. One is the elimination of a PR₃ ligand by the first reduction of the sulfilimine complexes (PR₃ = PPh₃, P(OPh)₃, P(p-C₆H₄Me)₃, P(p-C₆H₄Cl)₃, PCy₃, P(p-C₆H₄-OMe)₃), and the other is the nonelimination of the PR₃ ligand; that is, the reductants of the sulfilimine complexes (PR₃ = PBu₃, P(OMe)₃) are stable. These trends revealed the different strengths of the Co–P bonds of the sulfilimine complexes. The basicities and the cone angles of PR₃ ligands also influenced the electrochemical behavior of the sulfilimine complexes.

In the formation of the disubstituted Cp complex, the amounts and the basicity values of phosphines were important parameters. A large excess of phosphine efficiently gave the disubstituted Cp complex. Only phosphines having $pK_a = 2.73-3.84$ (PR₃ = PPh₃, P(*p*-C₆H₄Me)₃) were required.

Experimental Section

All reactions were carried out under an argon atmosphere by means of standard Schlenk techniques. Solvents were purified by ketyl distillation before use. The phosphines and phosphites were used without further purification. The cobaltadithiolene complexes [CpCo{S2C2(COOMe)2}] (5) were prepared by literature methods.²⁷ Silica gel (Wakogel C-300) was obtained from Wako Pure Chemical Industries, Ltd. Thin-layer chromatography plates filled with silica gel 60 (20×20 cm, 0.25 mm thick) were obtained from Merck Japan Ltd. HPLC was performed on an LC-908 instrument produced by Japan Analytical Industry Co. Mass and IR spectra were recorded on JEOL JMS-D300 and Shimadzu FTIR 8600PC instruments, respectively. NMR spectra were measured with a JEOL LA500 spectrometer. UV-vis spectra were recorded on a Hitachi UV-2500PC instrument. Elemental analyses were determined by using a Shimadzu PE2400-II instrument. Melting points were measured on a Yanaco Micro melting point apparatus. All electrochemical measurements were performed under an argon atmosphere. Cyclic voltammograms were measured on a CV-50W instrument by BAS Co. Visible absorption spectra during electrolysis were measured on MCPD-7000 and MC-2530 instruments by Otsuka Electronics Co., Ltd.

Reactions of Complex 1 with PR₃ at Room Temperature. A solution of complex **1** (50 mg, 0.1 mmol) and PR₃ (0.2 mmol, PR₃ = P(p-C₆H₄Me)₃, P(p-C₆H₄Cl)₃, PCy₃, P(p-C₆H₄-OMe)₃, PBu₃, P(OMe)₃) in dichloromethane (10 mL) was stirred at room temperature for 5 min. After the solvent was removed under reduced pressure, the residue was separated by column chromatography. Products **2c**-**h** were obtained as brown solids in quantitative yields. The yields of products are summarized in Table 1.

Reactions of Complex 1 with 2 Equiv of PR₃ with Heating. A solution of complex 1 (50 mg, 0.1 mmol) and PR₃ (0.2 mmol, PR₃ = P(*p*-C₆H₄Me)₃, P(*p*-C₆H₄Cl)₃, PCy₃, P(*p*-C₆H₄-OMe)₃, PBu₃, P(OMe)₃) in benzene (10 mL) was refluxed for 5 h. After the solvent was removed under reduced pressure, the residue was separated by column chromatography. Product **3**^{7,12} was obtained as a purple solid, and products **2f**-**h** were obtained as brown solids. The yields of products are summarized in Table 3.

Reactions of Complex 1 with Various Amounts of PR₃. A solution of complex **1** (50 mg, 0.1 mmol) and PR₃ (PR₃ = PPh₃, P(p-C₆H₄Me)₃, P(p-C₆H₄Cl)₃) in benzene (10 mL) was refluxed for 5 h. After the solvent was removed under reduced pressure, the residue was separated by thin-layer chromatography (silica gel 60) and then the product was further separated by HPLC. Products **4a** and **4c** were obtained as blue crystalline solids. In these reactions, complex **3**^{7,12} was formed as a migration product and complex **5** was also formed. The yields of products are summarized in Table 4.

Complex **4a**' was synthesized by the reaction of $[CpCo\{S_2C_2 \cdot (COOMe)_2\}(NMs)]^7$ with 10 equiv of PPh₃ under the same reaction conditions. The separation of complex **4a**' was also achieved by the same method, and product **4a**' was obtained as a blue crystalline solid in 25% yield. The amide-substituted Cp complex $[(C_5H_4 \cdot NHMs)Co\{S_2C_2(COOMe)_2\}]^7$ as a migration product and complex **5** were also obtained in 23% and 31% yields, respectively.

CV Measurements. CV measurements were done in 1 mmol dm⁻³ acetonitrile solutions of complexes containing 0.1 mol dm⁻³ tetraethylammonium perchlorate (TEAP) at 25 °C. A stationary platinum disk (1.6 mm in diameter) was used as a working electrode. A coiled platinum wire served as a counter electrode. The reference electrode is Ag|AgNO₃ corrected for junction potentials by being referenced internally to the ferrocene/ferrocenium (Fc|Fc⁺) couple.

Visible Absorption Spectral Measurements during Electrolysis. Visible absorption spectra during electrolysis were obtained for 1 mmol dm⁻³ acetonitrile solutions of complexes containing 0.1 mol dm⁻³ TEAP at 25 °C in an optically transparent thin-layer electrode cell (OTTLE, thin-layer thickness 0.4 mm) by using a Photal MCPD-7000 rapid scan spectrometer. The working electrode was stationary platinum mesh. A coiled platinum wire served as a counter electrode. The reference electrode is Ag|AgNO₃ corrected for junction potentials by being referenced internally to the ferrocene/ferrocenium (Fc|Fc⁺) couple.

CpCo[S(NTs)SC₂(COOMe)₂][P(*p***-C₆H₄Me)₃] (2c). Mp: 134–135 °C dec. Mass (FAB⁺, 70 eV): m/z 804 (M⁺ + 1), 500 (M⁺ - P(***p***-C₆H₄Me)₃ + 1). ¹H NMR (500 MHz, CDCl₃, vs TMS): δ 7.78 (d, J = 8.43 Hz, 2H, Ar), 7.56 (broad, 6H, Ar), 7.25 (broad, 6H, Ar), 7.18 (d, J = 8.43 Hz, 2H, Ar), 5.36 (s, 5H, Cp), 3.67 (s, 3H, OMe), 2.71 (s, 3H, OMe), 2.38 (s, 9H, Me), 2.37 (s, 3H, Me). ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃-PO₄): δ 33.2 (P(***p***-C₆H₄Me)₃). UV-vis (CH₂Cl₂; \lambda_{max}, nm (\epsilon, M⁻¹ cm⁻¹)): 495 (3400), 369 (11 000). IR (KBr disk; cm⁻¹): 1734, 1699, 1528, 1431, 1252, 1130, 1082, 920.**

CpCo[S(NTs)SC₂(COOMe)₂][P(p-C₆H₄Cl)₃] (2d). Mp: 121–122 °C dec. Mass (FAB⁺, 70 eV; m/z): 866 (M⁺(³⁷Cl) +

⁽²⁷⁾ Boennemann, H.; Bogdanovic, B.; Brijoux W.; Brinkmann, R.; Kajitani, M.; Mynott, R.; Natarajan, G. S.; Samson, M. G. Y. Transition Metal-Catalyzed Synthesis of Heterocyclic Compounds. In *Catalysis in Organic Reactions*; Kosak, J. R., Ed.; Marcel Dekker: New York, 1984; pp 31–62.

1), 864 (M⁺(³⁵Cl) + 1), 500 (M⁺ - P(p-C₆H₄Cl)₃ + 1). ¹H NMR (500 MHz, CDCl₃, vs TMS): δ 7.73 (d, J = 8.28 Hz, 2H, Ar), 7.60 (broad, 6H, Ar), 7.46 (broad, 6H, Ar), 7.20 (d, J = 8.28 Hz, 2H, Ar), 5.41 (s, 5H, Cp), 3.68 (s, 3H, OMe), 2.79 (s, 3H, OMe), 2.38 (s, 3H, Me). ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃PO₄): δ 35.6 (P(p-C₆H₄Cl)₃). UV-vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 475 (2600), 369 (8300). IR (KBr disk; cm⁻¹): 1732, 1701, 1531, 1431, 1252, 1130, 1082, 922.

CpCo[S(NTs)SC₂(COOMe)₂](PCy₃) (2e). Mp: 114–115 °C dec. ¹H NMR (500 MHz, CDCl₃, vs TMS): δ 7.78 (d, J = 8.07 Hz, 2H, Ar), 7.19 (d, J = 8.07 Hz, 2H, Ar), 5.64 (s, 5H, Cp), 3.83 (s, 3H, OMe), 2.95 (s, 3H, OMe), 2.36 (s, 3H, Me), 1.22–2.09 (m, 33H, Cy). ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃PO₄): δ 32.5 (PCy₃). UV–vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 516 (2700), 367 (11 000). IR (KBr disk; cm⁻¹): 2926, 2851, 1734, 1699, 1526, 1431, 1248, 1132, 1084, 932.

CpCo[S(NTs)SC₂(COOMe)₂][P(*p***-C₆H₄OMe)₃] (2f). Mp: 124–125 °C dec. Mass (FAB⁺, 70 eV;** *m/z***): 851 (M⁺), 500 (M⁺ – P(***p***-C₆H₄OMe)₃ + 1). ¹H NMR (500 MHz, CDCl₃, vs TMS): \delta 7.79 (d,** *J* **= 8.28 Hz, 2H, Ar), 7.60 (broad, 6H, Ar), 7.19 (d,** *J* **= 8.28 Hz, 2H, Ar), 6.95 (broad, 6H, Ar), 5.37 (s, 5H, Cp), 3.84 (s, 9H, OMe), 3.67 (s, 3H, OMe), 2.71 (s, 3H, OMe), 2.37 (s, 3H, Me). ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃PO₄): \delta 32.0 (P(***p***-C₆H₄OMe)₃). UV–vis (CH₂Cl₂; \lambda_{max}, nm (\epsilon, M⁻¹ cm⁻¹)): 489 (3400), 369 (16 000). IR (KBr disk; cm⁻¹): 1732, 1697, 1593, 1431, 1259, 1126, 1022, 935.**

CpCo[S(NTs)SC₂(COOMe)₂](PBu₃) (2g). Mp: 50–51 °C. Mass (FAB⁺, 70 eV; *m/z*): 702 (M⁺ + 1). ¹H NMR (500 MHz, CDCl₃, vs TMS): δ 7.86 (d, J = 8.14 Hz, 2H, Ar), 7.24 (d, J = 8.14 Hz, 2H, Ar), 5.35 (s, 5H, Cp), 3.75 (s, 3H, OMe), 2.95 (s, 3H, OMe), 2.39 (s, 3H, Me), 1.40–1.62 (m, 18H, Bu), 0.97 (t, J = 7.39 Hz, 9H, Bu). ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃-PO₄): δ 49.4 (PBu₃). UV–vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 378 (12 000). IR (KBr disk; cm⁻¹): 2957, 2932, 2872, 1734, 1701, 1526, 1431, 1252, 1130, 1084, 928.

CpCo[S(NTs)SC₂(COOMe)₂][P(OMe)₃] (2h). Mp: 69–70 °C dec. Mass (FAB⁺, 70 eV; m/z): 624 (M⁺ + 1), 500 (M⁺ – P(OMe)₃ + 1). ¹H NMR (500 MHz, CDCl₃, vs TMS): δ 7.87 (d, J = 8.39 Hz, 2H, Ar), 7.25 (d, J = 8.39 Hz, 2H, Ar), 5.44 (s, 5H, Cp), 4.02 (d, J = 10 Hz, 9H, Me), 3.76 (s, 3H, OMe), 2.99 (s, 3H, OMe), 2.40 (s, 3H, Me). ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃PO₄): δ 122.8 (P(OMe)₃). UV–vis (CH₂Cl₂; λ_{max} , nm (ϵ , $M^{-1}\ cm^{-1})):\ 471\ (2900),\ 371\ (11\ 000).\ IR\ (KBr\ disk;\ cm^{-1}):\ 1734,\ 1699,\ 1433,\ 1254,\ 1132,\ 1020,\ 932.$

[{C₃H₃(NMs)(PPh₃)}Co{S₂C₂(COOMe)₂}] (4a'). Mp: 219–220 °C dec. Mass (FAB⁺, 70 eV, NBA; m/z): 684 (M⁺ + 1). ¹H NMR (500 MHz, CDCl₃, vs TMS): δ 7.62–7.93 (m, 15H, Ph), 6.50 (1H, Cp), 5.31 (1H, Cp), 5.02 (1H, Cp), 3.80 (s, 6H, OMe), 2.55 (s, 3H, Me). ¹³C NMR (125 MHz, CDCl₃, vs TMS): δ 165.6, 154.1, 140.5, 140.4, 134.91, 134.88, 134.76, 134.68, 130.0, 129.9, 119.1, 118.4, 78.1, 78.0, 77.9, 68.1, 68.0, 57.5, 52.6, 36.5. ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃PO₄): δ 23.0 (PPh₃). IR (KBr disk; cm⁻¹): 1701, 1497, 1246, 1109. UV–vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 745 (1500), 578 (5800), 294 (22 000). Anal. Calcd for C₃₀H₂₇NO₆PS₃Co·CH₂Cl₂: C, 48.44; H, 3.80. Found: C, 48.80; H, 3.82.

[{C₅H₃(NTs)(P(*p*-C₆H₄Me)₃)}Co{S₂C₂(COOMe)₂}] (4c). Mp: 140–141 °C; 228–229 °C dec. Mass (FAB⁺, 70 eV, NBA; *m/z*): 802 (M⁺ + 1). ¹H NMR (500 MHz CDCl₃, vs TMS): δ 7.75 (d, J = 5.19 Hz, 6H, Ar), 7.36 (d, J = 5.19 Hz, 6H, Ar), 7.41 (d, J = 8.24 Hz, 2H, Ar), 6.94 (d, J = 8.24 Hz, 2H, Ar), 6.20 (1H, Cp), 5.25 (1H, Cp), 4.81 (1H, Cp), 3.80 (s, 6H, OMe), 2.48 (s, 9H, Me), 2.23 (s, 3H, Me). ³¹P NMR (200 MHz, CDCl₃, vs 85% H₃PO₄): δ 23.3 (P(*p*-C₆H₄Me)₃). IR (KBr disk; cm⁻¹): 1701, 1477, 1234, 1140. UV–vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 772 (1500), 585 (5900), 294 (23 000). Anal. Calcd for C₃₉H₃₇NO₆PS₃Co·CH₂Cl₂: C, 54.18; H, 4.43. Found: C, 53.94; H, 4.80.

Acknowledgment. The present work was supported by the Sasakawa Scientific Research Grant, by the grant-in-aid for Scientific Research No. 14740369, and by the grants-in-aid on Priority Area-Researches on 'Interelements' Nos. 09239246 and 11120251 from the Ministry of Education, Science, Sports and Culture, Japan.

Supporting Information Available: Figures giving ¹H NMR spectra as evidence of the purity of complexes **2c**–**h**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM034127J