

# Rhodium–Hydrido–Benzylamine–Triphenylphosphine Complexes: Solid-State and Solution Structures and Implications in Catalyzed Imine Hydrogenation

Paolo Marcazzan, Brian O. Patrick, and Brian R. James\*

Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

Received June 14, 2004

The complexes cis, trans, cis-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (1) and cis-[Rh(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (2) are characterized by X-ray crystallography; the structures are maintained in CH<sub>2</sub>Cl<sub>2</sub> where the species are in equilibrium under H<sub>2</sub>. In MeOH and in acetone, loss of amine and/or H<sub>2</sub> can occur. Traces of 1 and 2 are present after a Rh-catalyzed H<sub>2</sub>-hydrogenation of PhCH=NCH<sub>2</sub>Ph in MeOH, where the amine is generated by hydrolysis of the imine substrate through adventitious water. The findings are relevant to catalyst poisoning in the catalytic process.

## Introduction

The cis,trans, cis-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(MeOH)<sub>2</sub>]PF<sub>6</sub> (3) precursor, readily formed from [Rh(COD)(PPh<sub>3</sub>)<sub>2</sub>]PF<sub>6</sub> and 1 atm  $H_2$  at room temperature (room temperature, ~20 °C), catalyzes homogeneously the H<sub>2</sub>-hydrogenation of benzylideneamines (PhCH=NR, R = alkyl, aryl) in MeOH at ambient conditions.<sup>1,2</sup> We have shown recently that, for the imine PhCH=NCH<sub>2</sub>Ph, the mixed imine-amine complex cis-[Rh-(PPh<sub>3</sub>)<sub>2</sub>(PhCH=NCH<sub>2</sub>Ph)(PhCH<sub>2</sub>NH<sub>2</sub>)]PF<sub>6</sub> (4) is the species that reacts with  $H_2$  in the key step of the catalytic cycle; the benzylamine is generated via a Rh-promoted hydrolysis of the imine, the source of the adventitious water possibly being the liquid imine.<sup>2</sup> At the end of the catalysis, trace amounts of Rh species were detected by <sup>31</sup>P NMR. These have now been identified as cis, trans, cis-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]- $PF_6$  (1) and *cis*-[Rh(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (2); this article describes the characterization of 1 and 2 in the solid state and their solution structures in CH<sub>2</sub>Cl<sub>2</sub>, MeOH, and acetone. More generally, catalyzed imine hydrogenation is very solvent-dependent<sup>1</sup> and can be subject to catalyst poisoning by amines,<sup>2</sup> and so, the findings are important in this area that has industrial significance.<sup>3</sup>

#### **Experimental Section**

**General.** General experimental procedures were carried out, and reagents were obtained, as described recently elsewhere.<sup>2</sup>

Syntheses. *cis,trans,cis*-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (1). A yellow suspension of [Rh(COD)(PPh<sub>3</sub>)<sub>2</sub>]PF<sub>6</sub> (85 mg, 0.100 mmol) in MeOH (6 mL) was stirred under 1 atm H<sub>2</sub> for 2 h. To the resultant pale yellow solution was added the amine (27  $\mu$ L, 0.250 mmol) under H<sub>2</sub>, and the mixture was stirred for 15 min to afford spontaneous precipitation of a white solid that was collected, washed with hexanes (3 mL) and Et<sub>2</sub>O (3 × 3 mL), and dried in vacuo. Yield: 50 mg (51%). Anal. Calcd for C<sub>50</sub>H<sub>50</sub>N<sub>2</sub>P<sub>3</sub>F<sub>6</sub>Rh: C, 60.74; H, 5.10; N, 2.83. Found: C, 60.38; H, 4.87; N, 2.78. <sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  49.55 (d,  $J_{RhP} = 116$ ). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -17.55 (pseudo-q, 2H, Rh(*H*)<sub>2</sub>,  $J_{RhH} \approx {}^{2}J_{HP} = 14$ ), 2.20 (m, 4H, -N*H*<sub>2</sub>), 2.80 (m, 4H, -C*H*<sub>2</sub>), 6.20 (d, 4H, -CH<sub>2</sub>(*o*-C<sub>6</sub>*H*<sub>5</sub>),  ${}^{3}J_{HH} = 5$ ), 6.95–7.60 (m, 36H, arom-*H*). IR (KBr pellet):  $\nu$  2050, 2090 (Rh–H, m), 3336 (N–H, m).

*cis*-[Rh(PPh<sub>3</sub>)<sub>2</sub>(PhCH<sub>2</sub>NH<sub>2</sub>)<sub>2</sub>]PF<sub>6</sub> (2)·0.5MeOH. To a red solution of [Rh<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub>][PF<sub>6</sub>]<sub>2</sub> (85 mg, 0.110 mmol Rh)<sup>4</sup> in MeOH (4 mL) under Ar was added the amine (27  $\mu$ L, 0.250 mmol), and the resultant yellow solution was stirred for 2 h. The volume was then reduced to ~1 mL to afford precipitation of a yellow solid that was collected, washed with hexanes (3 mL) and Et<sub>2</sub>O (3 × 3 mL), and dried in vacuo. Yield: 60 mg (55%). Anal. Calcd for C<sub>50</sub>H<sub>48</sub>N<sub>2</sub>P<sub>3</sub>F<sub>6</sub>Rh·(0.5CH<sub>3</sub>OH): C, 60.48; H, 4.99; N, 2.79. Found: C, 60.27; H, 4.90; N, 2.80. <sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  51.81 (d,

<sup>\*</sup> To whom correspondence should be addressed. E-mail: brj@ chem.ubc.ca.

For reviews on imine hydrogenation, see: James, B. R. Catal. Today 1997, 37, 209. Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.

<sup>(2)</sup> Marcazzan, P.; Abu-Gnim, C.; Seneviratne, K. N.; James, B. R. *Inorg. Chem.* **2004**, *43*, 4820. Marcazzan, P.; Patrick, B. O.; James, B. R. *Organometallics* **2003**, *22*, 1177.

<sup>(3)</sup> Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103.

<sup>(4)</sup> Marcazzan, P.; Ezhova, M. B.; Patrick, B. O.; James, B. R. C. R. Chim. 2002, 5, 373 (J. A. Osborn Memorial Volume).

#### Rh-Hydrido-Benzylamine-Triphenylphosphine Complexes

| <b>Table 1.</b> Crystallographic Data for | 1 | and | 2 |
|-------------------------------------------|---|-----|---|
|-------------------------------------------|---|-----|---|

| _                              | 1                              | 2                                                                                                  |
|--------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------|
| formula                        | C52H54N2F6P3Cl4Rh              | C <sub>50.5</sub> H <sub>50</sub> N <sub>2</sub> O <sub>0.5</sub> F <sub>6</sub> P <sub>3</sub> Rh |
| fw                             | 1158.59                        | 1002.74                                                                                            |
| cryst color, habit             | colorless, chip                | red, blocks                                                                                        |
| cryst size (mm <sup>3</sup> )  | $0.15 \times 0.15 \times 0.10$ | $0.38 \times 0.30 \times 0.25$                                                                     |
| space group                    | <i>C</i> 2/ <i>c</i> (No. 15)  | C2/c (No. 15)                                                                                      |
| a (Å)                          | 13.7776(9)                     | 29.3124(7)                                                                                         |
| b(A)                           | 21.9566(14)                    | 21.0184(5)                                                                                         |
| <i>c</i> (Å)                   | 19.2997(14)                    | 18.1676(4)                                                                                         |
| $\beta$ (deg)                  | 95.948(4)                      | 124.853(2)                                                                                         |
| $V(Å^3)$                       | 5806.9(7)                      | 9185.2(4)                                                                                          |
| Ζ                              | 4                              | 8                                                                                                  |
| $\mu \text{ (mm}^{-1}\text{)}$ | 0.614                          | 0.540                                                                                              |
| total reflns                   | 27616                          | 40023                                                                                              |
| unique reflns                  | 6625                           | 9302                                                                                               |
| R <sub>int</sub>               | 0.071                          | 0.057                                                                                              |
| no. variables                  | 349                            | 590                                                                                                |
| R1 ( $I > 2\sigma(I)$ )        | 0.060 (4488 obsd reflns)       | 0.042 (7083 obsd reflns)                                                                           |
| wR2                            | $0.168  (all  data)^a$         | 0.120 (all data) <sup>b</sup>                                                                      |
| GOF                            | 0.96 (all data)                | 1.03 (all data)                                                                                    |

<sup>*a*</sup>  $w = 1/[\sigma^2(F_o^2) + (0.0996P)^2]$ , where  $P = (\max(F_o^2, 0) + 2F_c^2)/3$ . <sup>*b*</sup>  $w = 1/[\sigma^2(F_o^2) + (0.0588P)^2 + 0.5327P]$ , where  $P = (\max(F_o^2, 0) + 2F_c^2)/3$ .

 $J_{\text{RhP}} = 177$ ). In CD<sub>3</sub>OD:  $\delta$  52.21 (d,  $J_{\text{RhP}} = 176$ ). <sup>1</sup>H NMR (CD<sub>2</sub>-Cl<sub>2</sub>):  $\delta$  2.50 (br t, 4H,  $-NH_2$ ), 3.45 (br t, 4H,  $-CH_2$ ), 6.90–7.70 (m, 40H, arom-*H*).

X-ray Crystallographic Analysis. X-ray quality crystals of 1 and 2, respectively, were grown from CH2Cl2/hexanes and from MeOH solutions of the complexes. Measurements were made at 173(2) K on a Rigaku/ADSC CCD area detector with graphite monochromated Mo Ka radiation (0.71073 Å). Some crystallographic data for 1 and 2 are shown in Table 1. Data were collected and processed using the d\*TREK program.<sup>5</sup> The final unit-cell parameters for **1** and **2** were based on 14423 ( $3.7^{\circ} < 2\theta < 55.7^{\circ}$ ) and 22397 (5.9° <  $2\theta$  < 55.9°) reflections, respectively. The structures were solved by direct methods<sup>6</sup> and expanded using Fourier techniques.<sup>7</sup> Compound 1 crystallizes with a  $CH_2Cl_2$ molecule in the asymmetric unit; additional residual electron density peaks were found but could not be modeled as either CH<sub>2</sub>Cl<sub>2</sub> or hexane. The SQUEEZE function8 in PLATON9 was used to correct the raw data for the residual density. All non-H-atoms of the cations of 1 and 2 were refined anisotropically. Within 1, the N-H and Rh-H H-atoms were refined isotropically, while other H-atoms were included in fixed positions. Within 2, the associated  $PF_6$ counterion resides on two positions with one-half PF3 on each; one PF<sub>3</sub> fragment is disordered and was modeled in two orientations. In addition, one-half molecule of MeOH also crystallized in the asymmetric unit of 2. Some atoms in the disordered  $PF_3$  fragment were refined isotropically, while the H-atoms of the MeOH involved in H-bonding were refined isotropically, but all other H-atoms were included in calculated positions. The final cycle of full-matrix leastsquares refinement (function minimized:  $\sum w(F_0^2 - F_c^2)^2$ ) was based on 6625 observed reflections ( $I > 0.00\sigma(I)$ ) and 349 variables



**Figure 1.** ORTEP diagram of the cation cis, trans, cis-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>-CH<sub>2</sub>Ph<sub>2</sub>]<sup>+</sup> (1) with 50% probability thermal ellipsoids.

for **1**, and on 9302 observed reflections  $(I > 0.00\sigma(I))$  and 590 variables for **2**. All calculations were performed using the teXsan<sup>10</sup> crystallographic software package and SHELXL-97.<sup>11</sup>

#### **Results and Discussion**

Reaction of a MeOH solution of *cis,trans,cis*-[Rh(H)<sub>2</sub>-(PPh<sub>3</sub>)<sub>2</sub>(MeOH)<sub>2</sub>]PF<sub>6</sub> (**3**), generated in situ from [Rh(COD)-(PPh<sub>3</sub>)<sub>2</sub>]PF<sub>6</sub>,<sup>12</sup> with ~2 equiv of PhCH<sub>2</sub>NH<sub>2</sub> at room temperature under 1 atm H<sub>2</sub> for 15 min results in the displacement of the MeOH ligands and the formation of *cis,trans,cis*-[Rh-(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (**1**) in ~50% isolated yield (Scheme 1).

The structure of the cation is shown in Figure 1, with selected bond lengths and angles given in Table 2. The complex resides on a 2-fold rotation axis, and the geometry at the Rh(III) is close to octahedral. The Rh–P distance within the *trans*-PPh<sub>3</sub> ligands (2.293 Å) and the Rh–H bond length (1.47 Å) are typical of those found in Rh(III) complexes,<sup>13,14</sup> while the phosphine ligands are bent towards the hydrides as indicated by the P–Rh–H angles (86.9° and 82.4°) and the P–Rh–P angle (165.6°). The Rh–N distance (2.239 Å) is ~0.2 Å longer than an estimated average Rh<sup>III</sup>–N bond length,<sup>15</sup> presumably because the amine is trans to the high trans-influence hydride ligand.<sup>16</sup> The geometry of the coordinated amine is essentially identical to that in the mixed Rh<sup>I</sup>–imine–amine complex such as **4** (see Introduction) but where the phosphine is P(*p*-tolyl)<sub>3</sub> and the

- (10) teXsan: Crystal Structure Analysis Package; Molecular Structure Corporation: The Woodlands, TX, 1985 and 1992.
- (11) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
- (12) Shapley, J. R.; Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1969, 91, 2816. Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1971, 93, 2397. Haines, L. M.; Singleton, E. J. Chem. Soc., Dalton Trans. 1972, 1891.
- (13) Yu, X.-Y; Maekawa, M.; Morita, T.; Chang, H.-C.; Kitagawa, S.; Jin, G.-X. Polyhedron 2002, 21, 1613.
- (14) Ezhova, M. B.; Patrick, B. O.; James, B. R.; Ford, M. E.; Waller, F. J. *Russ. Chem. Bull. Int. Ed.* **2003**, *52*, 2707 (M. Vol'pin Memorial Volume).
- (15) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. J. Chem. Soc., Dalton Trans. 1989, S1.
- (16) Kaesz, H. D.; Saillant, R. B. Chem. Rev. 1972, 72, 231.

<sup>(5)</sup> d\*TREK: Area Detector Software, version 7.11; Molecular Structure Corporation: The Woodlands, TX, 2001.

<sup>(6)</sup> SIR97: Altomare, A.; Burla, M. C.; Cammalli, G.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, A. J. Appl. Crystallogr. 1999, 32, 115.
(7) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de

<sup>(7)</sup> Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF-94 Program System*; Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1994.

<sup>(8)</sup> SQUEEZE: Sluis, P. v. d.; Spek, A. L. Acta Crystallogr., Sect. A 1990, 46, 194.

<sup>(9)</sup> PLATON: Spek, A. L. A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1998.

Scheme 1. Reaction Scheme for the Formation of cis, trans, cis-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (1) and cis-[Rh(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (2)



**Table 2.** Selected Bond Distances and Angles for cis,trans,cis-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (1) with Estimated Standard Deviations in Parentheses

| bond         | length (Å) | bond                | angle (deg) |
|--------------|------------|---------------------|-------------|
| Rh(1) - P(1) | 2.2927(10) | P(1) - Rh(1) - N(1) | 91.76(11)   |
| Rh(1) - N(1) | 2.239(3)   | N(1)-Rh(1)-N(1*)    | 94.33(19)   |
| Rh(1) - H(1) | 1.47(3)    | $P(1)-Rh(1)-P(1^*)$ | 165.63(5)   |
| N(1) - C(1)  | 1.489(5)   | N(1) - Rh(1) - H(1) | 174.5(12)   |
| C(1) - C(2)  | 1.513(5)   | $N(1^*)-Rh(1)-H(1)$ | 91.1(12)    |
|              |            | P(1) - Rh(1) - H(1) | 86.9(13)    |
|              |            | $P(1^*)-Rh(1)-H(1)$ | 82.4(13)    |
|              |            | $P(1)-Rh(1)-N(1^*)$ | 98.01(11)   |
|              |            | C(1) - N(1) - Rh(1) | 114.7(2)    |

amine is trans to the phosphine; in this mixed complex, the Rh–N distance is 2.209 Å.<sup>2</sup> For complex **1**, IR bands are seen for  $\nu$ (Rh–H) and  $\nu$ (N–H).

The structure of **1** is maintained in  $CH_2Cl_2$  under  $H_2$  (see additional details elsewhere in this paper) as shown by room temperature NMR data: the <sup>31</sup>P{<sup>1</sup>H} doublet ( $\delta_P$  49.55,  $J_{RhP}$ = 116) is typical for *trans*-PPh<sub>3</sub> ligands coupled to Rh,<sup>12</sup> while the high-field <sup>1</sup>H resonance for the equivalent cishydrides ( $\delta_{\rm H}$  –17.55,  $J_{\rm RhH} \approx {}^2J_{\rm PH} = 14$ ) appears as a pseudoquartet instead of the expected doublet of triplets. This overlapping of triplets has been seen previously with corresponding dihyride complexes containing unsaturated N-donor ligands.<sup>13,17</sup> The more downfield  $\delta_{\rm H}$  shift for the hydrides of 1 versus that of the analogous bis-alcohol complex 3 ( $\delta_{\rm H}$  –21.20) is consistent with the relative *trans*influence of the ligands ( $RNH_2 > ROH$ ).<sup>16</sup> The <sup>1</sup>H NMR doublet at  $\delta$  6.20 ( ${}^{3}J_{\rm HH} = 5$ ) is assigned to the *ortho*-H atoms of the amine benzylic rings, likely involved in a  $\pi$ -arene interaction with one phosphine-Ph group: a similar assignment was made for the imine-amine complex 4, where a <sup>1</sup>H<sup>-13</sup>C HETCOR NMR experiment established that these protons correlate with aromatic C-atoms.<sup>2</sup>

Complex 1 in  $CD_2Cl_2$  under Ar loses  $H_2$  reversibly to generate *cis*-[Rh(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (2) (Scheme 1), a species that was more readily isolated from reaction of 2 equiv of PhCH<sub>2</sub>NH<sub>2</sub> with *cis*-[Rh(PPh<sub>3</sub>)<sub>2</sub>(MeOH)<sub>2</sub>]PF<sub>6</sub>, this being generated in situ by dissolution of [Rh<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub>][PF<sub>6</sub>]<sub>2</sub> in MeOH.<sup>4</sup> The reaction is again simple replacement of MeOH ligands by amines. The structure of the cation of 2 (Figure 2, Table 3) reveals the expected, essentially squareplanar geometry at the Rh(I) center. The Rh<sup>I</sup>–P distances are within ±0.05 Å of those found in other Rh(I) complexes containing *cis*-PPh<sub>3</sub> ligands<sup>3,4</sup> while the Rh<sup>I</sup>–N lengths are

**Table 3.** Selected Bond Distances and Angles for cis-[Rh(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)<sub>2</sub>]PF<sub>6</sub> (**2**) with Estimated Standard Deviations in Parentheses

| bond                                                                             | length (Å)                                                             | bond                                                                                                                                                                                  | angle (deg)                                                                                         |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Rh(1)-P(1)<br>Rh(1)-P(2)<br>Rh(1)-N(1)<br>Rh(1)-N(2)<br>N(1)-C(37)<br>N(2)-C(44) | 2.2063(8)<br>2.2483(8)<br>2.202(3)<br>2.146(3)<br>1.486(4)<br>1.475(6) | $\begin{array}{c} P(1)-Rh(1)-N(1) \\ P(2)-Rh(1)-N(2) \\ P(1)-Rh(1)-P(2) \\ P(1)-Rh(1)-N(2) \\ P(2)-Rh(1)-N(1) \\ C(37)-N(1)-Rh(1) \\ C(44)-N(2)-Rh(1) \\ N(1)-Rh(1)-N(2) \end{array}$ | 178.17(10)<br>173.47(11)<br>93.88(3)<br>92.50(10)<br>87.70(10)<br>120.0(2)<br>120.0(3)<br>85.95(14) |
|                                                                                  |                                                                        | N(1) = Kn(1) = N(2)                                                                                                                                                                   | 85.95(14)                                                                                           |

0.03-0.09 Å shorter than those in complex 1. The Rh-N-C angles of 2, compared to those of 1, have opened up by  $\sim$ 5 °, presumably because of less steric constraint.

The structure of **2** is retained in  $CD_2Cl_2$  and in  $CD_3OD$  solutions, where a <sup>31</sup>P{<sup>1</sup>H} doublet is seen in the room temperature NMR spectra, the  $J_{RhP}$  value of ~175 Hz being typical for *cis*-PPh<sub>3</sub> ligands coupled to Rh.<sup>3,12</sup> The corresponding <sup>1</sup>H NMR spectra also identify **2** as the only species present in solution.

Complex 1 on dissolution at room temperature in CD<sub>3</sub>-OD under Ar undergoes partial (reversible) loss of H<sub>2</sub> to form 2, and a *trans*-Rh(PPh<sub>3</sub>)<sub>2</sub> species ( $\delta_P$  46.09 d,  $J_{RhP} =$ 118 Hz). This is almost certainly the amine—MeOH species *cis,trans,cis*-[Rh(H)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph)(MeOH)]PF<sub>6</sub> (5), as in the presence of excess amine this species is reconverted to 1. Of note, the high-field hydride resonances for 1 and 5 are not seen in CD<sub>3</sub>OD, presumably because of hydride exchange with the solvent (an intermediate with hydrogenbonding between *cis*-disposed hydride and MeOH ligands

**Figure 2.** ORTEP diagram of the cation cis-[Rh(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>CH<sub>2</sub>Ph<sub>2</sub>]<sup>+</sup> (2) with 50% probability thermal ellipsoids.



<sup>(17)</sup> Albinati, A.; Auklin, C. G.; Gunazzoli, F.; Ruegg, H.; Pregosin, P. S. Inorg. Chem. 1987, 26, 503. Ghedini, M.; Neve, F.; Manotti Lanfredi, A. M.; Ugozzoli, F. Inorg. Chim. Acta 1988, 147, 243. Al-Najjar, I. M.; El-Baih, F. E. M.; Abu-Loha, F. M.; Gomaa, Z. Transition Met. Chem. 1994, 19, 325.

### Rh-Hydrido-Benzylamine-Triphenylphosphine Complexes

is readily envisioned). Thus, the fact that 1 dissolved in MeOH (the favored solvent for catalyzed imine hydrogena- $(tion)^{2,3}$  exists as a mixture of 1, 2, and 5 certainly shows that benzylamine may compete for (i.e., poison) the Rh catalyst. When PhCH=NCH<sub>2</sub>Ph is added (Rh/imine = 1:1) to a  $CD_3OD$  solution of 2 stored under Ar, the imine-amine complex  $4^2$  (~30% formation), unreacted imine, and 2 are detected. Exposure of this solution to 1 atm H<sub>2</sub> for 5 min results in complete conversion of the imine to the dibenzylamine product and generation of 1. Similarly, if excess imine (10 equiv) is added to 2 (or 1) in CD<sub>3</sub>OD under  $H_2$ , catalytic hydrogenation occurs via complete formation of 4 as described elsewhere,<sup>2</sup> although here  $\mathbf{1}$  is the final species remaining in solution. Thus in MeOH, the presence of up to 2 equiv of benzylamine per Rh is innocuous to the catalysis, and indeed 1 equiv is essential for formation of the key imine-amine species. Addition of >2 equiv of PhCH<sub>2</sub>NH<sub>2</sub>, however, does inhibit the catalysis.<sup>2</sup>

Addition of 1 equiv of PhCH=NCH<sub>2</sub>Ph to a CD<sub>2</sub>Cl<sub>2</sub> solution of **2** under Ar again results in partial formation (~50%) of the mixed species **4**. Exposure of this solution to 1 atm H<sub>2</sub>, however, results in the hydrogenation of only the imine contained in complex **4**, with complete conversion of all the Rh into **1**; consistent with this, there is no reaction of **1** with 1 equiv of imine. These observations indicate further that, although **2** (and **1**) are themselves a "dead-end" for catalysis, hydrogenation can still occur if the mixed species is formed.

In acetone solution at rt under Ar, **1** and **2** display behavior very different from that in CD<sub>2</sub>Cl<sub>2</sub> and CD<sub>3</sub>OD: both complexes quantitatively rearrange (via loss of H<sub>2</sub> and/or amine) into a species **6** that is either *cis*-[Rh(PPh<sub>3</sub>)<sub>2</sub>(NH<sub>2</sub>-CH<sub>2</sub>Ph)(acetone)]PF<sub>6</sub> or *cis*-[Rh(PPh<sub>3</sub>)<sub>2</sub>{NH<sub>2</sub>CH<sub>2</sub>( $\eta^2$ -C<sub>6</sub>H<sub>5</sub>)}]-PF<sub>6</sub> (eq 1).<sup>18</sup> Free benzylamine and H<sub>2</sub>, displaced from either **1** or **2**, were detected in the <sup>1</sup>H NMR spectrum [ $\delta$ (CH<sub>2</sub>) 4.55 s,  $\delta$ (H<sub>2</sub>) 4.15], but attempts to isolate **6** were unsuccessful.



The 8-line AMX pattern seen in the <sup>31</sup>P{<sup>1</sup>H} NMR spectrum reveals inequivalent cis phosphines, each trans to a different ligand, and both protons within each of the CH<sub>2</sub> and NH<sub>2</sub> groups of the coordinated amine are inequivalent in the <sup>1</sup>H NMR, presumably because of restricted rotation about the Rh-N bond.<sup>2</sup> An upfield-shifted doublet resonance for 2 protons in the aromatic region ( $\delta$  6.23) is similar to that observed for 1 and could be assigned to the *o*-protons of the benzylamine moiety of the mixed amine/acetone species, in which case the downfield resonance would be assigned to the P-atom trans to acetone, and the upfield resonance to the P-atom trans to the amine.<sup>19</sup> However, in situ 6 in acetone was unreactive toward 1 atm H<sub>2</sub> or 1 equiv of PhCH=NCH<sub>2</sub>-Ph, and no catalyzed imine hydrogenation was observed in this solvent. As the bis(amine) and bis(acetone)<sup>12</sup> species readily oxidatively add H<sub>2</sub>, nonreactivity of the amine/acetone species toward  $H_2$  would be surprising. Thus, **6** is more likely a bidentate benzylamine adduct containing  $\eta^2$ -coordination of the phenyl group, in which case the  $\delta$  6.23 signal would be assigned to the protons of the  $\eta^2$ -moiety.

Acetone is clearly a stronger donor ligand than MeOH within these Rh systems and does not allow for ready formation of the mixed imine—amine species that is necessary for the catalytic hydrogenation.<sup>2</sup> Further, dihydrides are readily formed at 1 atm H<sub>2</sub> by Rh(I)—bis(amine) and Rh(I)—amine(solvent) species in MeOH, but not in acetone. Such marked solvent effects, coupled with the requirement for adventitious water, make optimization of conditions for hydrogenation of PhCH=NCH<sub>2</sub>Ph a nontrivial problem. The generality of such findings within other imine substrates remains to be established.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

**Supporting Information Available:** X-ray crystallographic data for the structures of **1** and **2** in CIF format. This material is available free of charge at http://pubs.acs.org.

#### IC049227B

(18) The in situ characterization of species **6** follows. <sup>31</sup>P{<sup>1</sup>H} NMR (acetone-*d*<sub>6</sub>):  $\delta$  47.46 (dd,  $J_{RhP} = 167$ , <sup>2</sup> $J_{PP} = 49$ ), 52.44 (dd,  $J_{RhP} = 183$ , <sup>2</sup> $J_{PP} = 49$ ). <sup>1</sup>H NMR (acetone-*d*<sub>6</sub>):  $\delta$  2.90 (d, 1H, <sup>2</sup> $J_{HH} = 12$ ,  $-NH_2$ ), 3.16 (d, 1H, <sup>2</sup> $J_{HH} = 12$ ,  $-NH_2$ ), 4.50 (d, 1H, <sup>2</sup> $J_{HH} = 12$ ,  $-CH_2$ ), 4.75 (d, 1H, <sup>2</sup> $J_{HH} = 12$ ,  $-CH_2$ ), 6.23 (d, 2H, <sup>3</sup> $J_{HH} = 8$ ,  $-CH_2$ -(*o*-C<sub>6</sub> $H_5$ ) or  $\eta^2$ -Ph, see text), 7.05–7.65 (m, 33H, arom-*H*).

<sup>(19)</sup> Marcazzan, P. Ph.D. Thesis, The University of British Columbia, Vancouver, Canada, 2002. Becalski, A. G.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Kang, G.-J.; Rettig, S. J. *Inorg. Chem.* **1991**, *30*, 5002.